Colección INTI-SNRD


Título: A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60
Fuente: Nano Trends, 10 (2025): 100116
Autor/es: Molinari, F. N.; Mancuso, M. A.; Bilbao, E.; Giménez, G.; Monsalve, L. N.
Materias: Sensores; Microsensores; Policarbonatos; Nanotubos de carbono
Editor/Edición: Elsevier;2025
Licencia: https://creativecommons.org/licenses/by/4.0/
Afiliaciones: Molinari, F. N. Instituto Nacional de Tecnología Industrial. Textiles (INTI-Textiles); Argentina
Molinari, F. N. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); Italia
Mancuso, M. A. Consiglio Nazionale delle Ricerche. Istituto sull'Inquinamento Atmosferico (CNR-IIA); Italia
Bilbao, E. Instituto Nacional de Tecnología Industrial. Micro y Nanotecnologías (INTI); Argentina
Giménez, G. Instituto Nacional de Tecnología Industrial. Micro y Nanotecnologías (INTI); Argentina
Monsalve, L. N. Instituto Nacional de Tecnología Industrial. Textiles (INTI-Textiles); Argentina
Monsalve, L. N. Universidad Nacional de San Martín. Instituto de la Calidad Industrial (UNSAM-INCALIN); Argentina
Monsalve, L. N. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina

Resumen: In this work electron radiation microdevices were fabricated and characterized. The microdevices consisted of aligned conductive electrospun fibers made of polycaprolactone loaded with multiwalled carbon nanotubes and C60 deposited onto gold interdigitated microelectrodes. They were capable of permanently increasing their conductivity upon exposure to electron beam irradiation from 0.02 pC μm-2 accelerated at 10 and 20 keV. This phenomenon could be explained due to the ability of C60 to trap and stabilize negative charges and thus contribute to the conductivity of the polymer composite. The microdevices achieved their maximum conductivity after an irradiation between 0.22 and 0.27 pC μm-2 and this maximum was dependent of the electron acceler­ ation. Montecarlo simulations were performed to explain dependence as function of electron penetration in the polymer composite. Moreover, the microdevices irradiated at 20 keV maintained their final conductivity and the microdevices irradiated at 10 keV increased their final conductivity after 6 days from irradiation. C60 proved to act as highly efficient electron scavengers within the polymer composite and contribute to its conductivity, and the microdevices have potential application as beta radiation sensors.
Descargar
Ver+/-