Página **0** de **65**

PROGRAMA NACIONAL DE ELECTRÓNICA CONGRESO CIENTIFICO RESÚMENES DE TRABAJOS OCTUBRE 9-10-11 Y 12 DE 1979 LA FALDA -- CÓRDOBA REPÚBLICA ARGENTINA

MINISTERIO DE CULTURA Y EDUCACIÓN SECRETARIA DE ESTADO DE CIENCIA Y TECNOLOGÍA

Temario

MESA 6 - ÁREA COMPONENTES Y MATERIALES SALA "B" 15.30 Medición por Interferometría infrarroja de capas epitaxiales Líc. Berset - INTI

ESTUDIO Y PUESTA A PUNTO DE LA TÉCNICA DE MEDICIÓN DE ESPESORES DE CAPAS EPITAXIALES POR EL MÉTODO DE INTERFEROMETRIA INFRARROJA

Alberto Berset y Enrique Grünhut Sector Materiales, Componentes y Sistemas Electrónicos, INTI.

1. INTRODUCCIÓN

Dentro de las determinaciones de gran interés en la industria de semiconductores está la medición del espesor de films monocristalinos crecidos sobre substratos monocristalinos.

El espesor de dichos films, llamados epitaxiales, puede medirse por métodos destructivos y no destructivos. Dentro de éstos el más extensamente utilizado es el que se basa en la obtención e interpretación de un espectro de interferencia infrarrojo.

Este método, propuesto por primera vez por Spltzer, W.G. y Tanenbaum, M. (1) en 1961 y que aparece esquemáticamente mencionado en diferentes publicaciones dedicadas a la caracterización de semiconductores (2)(3)(4)(5)(6) ha sido extensamente estudiado y objeto de numerosos aportes para su mejoramiento y automatización(7)(8)(9)(10)(11)(12)(13).

En este trabajo se describe de un modo detallado y accesible para el no iniciado en el campo, la teoría y la técnica a emplear. En este resumen no se Incluyen las tablas de cambio de fase, que pueden ser solicitadas a los autores.

2... PARTE EXPERIMENTAL 2..1. CONDICIONES DE TRABAJO

Para que este método pueda ser aplicado, la resistividad del substrato debe ser menor que 0,02 Ω cm (alta concentración de Impurezas) a 23 °C y la resistivi dad de la capa epttaxlal debe ser mayor que 0,1 Ω cm (baja concentración de impurezas) a 23 °C.

La superficie de la oblea debe ser altamente reflectiva, libre de imperfecciones y de pasivadores, salvo los óxidos nativos.

Las obleas que se utilizaron tenían substratos de conduc-tividad tipo " n " y capa epitaxial de conductividad tipo " n+ ".

2.2. SISTEMAS DE MEDICIÓN UTILIZADOS

Se utilizó un espectrómetro infrarrojo Perkin Elmer IR 577, con rango de longitudes de onda 2 a 50 µm y un sistema óptico de reflectancia Barnes modelo 133.

Esta técnica se puede aplicar con buenos resultados para me-dir espesores de capas de conductividad tipo " n " y " p ", de espeso-res mayores de 2 µm. Reduciendo la precisión, puede ser también apli-cada a espesores de 0,5 a 2 µm.

La distribución de impurezas debe ser uniforme, si no, es imposible aplicar el método y el ángulo de Incidencia del haz infra¬rrojo debe ser menor de 30º para evitar los efectos de polarización.

El ángulo de incidencia del equipo que nosotros utilizamos es de 5°38'.

Se midió la resistividad del substrato por el método de las cuatro puntas y el tipo de conductividad del substrato y de la capa epitaxial por el método de punta caliente.

Se construyeron porta obleas de acrílico para evitar daños en la superficie de la oblea. Teniendo en cuenta que la máscara debe ser construida en un material que no refleje y la apertura debe ser tal que exponga un área da la superficie de la oblea pequeña, y que el valor del dilmetro de la apertura tiene que ser pequeño para elimi¬nar fluctuaciones por efecto de espesor; se construyeron máscaras de grafito con un diámetro de apertura de 4mm.

2.3. PREPARACION DE LOS EQUIPOS

Siguiendo las recomendaciones ASTM F95-73 se calibraron las longitudes de onda a medirse con una exactitud < $0,05 \mu$ m; para ver cuál es la máxima velocidad de barrido permitida, se eligió una oblea con un substrato de resistividad entre $0,008 y 0,012 \Omega$ cm.

Se registra el espectro infrarrojo a utilizarse, que debe dar un mínimo observable a longitudes de onda mayores de 25 μ m, para diferentes velocidades de barrido. La velocidad máxima admisible es aquélla que muestra un cambio en la posición de! mínimo menor que ± 0,1 μ m relativo al mínimo registrado a la más baja velocidad de ba¬rrido. Las velocidades de barrido que utilizamos fueron: X10 - 120 mín y X5 - 60 min.

Para determinar la longitud de onda de cada pico y valle en el espectro de reflexión; se tomaron los valores de longitudes de onda de la intersección de una línea horizontal, que se traza a un 3% de la escala máxima debajo de un máximo o arriba de un mínimo y se prome-diaron estos valores.

$$d_{n} = (P_{n} - 1/2 + \frac{\delta_{2^{n}}}{2\pi}) \times (\frac{\lambda_{n}}{2(n_{1}^{2} - n_{0}^{2} \operatorname{sen}^{2}\theta)^{1/2}}) \quad (2)$$

3. CÁLCULOS

Para la determinación de los órdenes correspondientes a cada máximo y mínimo se utiliza la siguiente ecuación:

$$P_n = \frac{m \lambda_1}{(\lambda_1 - \lambda_n)} + 1/2 - \frac{\left(\delta_{21}\lambda_1 - \delta_{2n}\lambda_n\right)}{2 \pi (\lambda_1 - \lambda_n)}$$
(1)

donde se estipula que $\lambda 1 > \lambda n$ y el significado de los simbolos es el siguiente :

Pn : orden correspondiente a la longitud de onda "n".

m : diferencia de órdenes de los extremos considerados (m = P1 - P2).

 λ : longitud de onda en μ m.

 $\delta 21$ y $\delta 2n$: son los cambios de fase sufridos por el haz reflejado en \neg la interfase capa - substrato para $\lambda 1$ y λn respectivamente.

Los valores de los cambios de fase (21) (22) (23) en la interfase capa - substrato se encuentran tabulados en las tablas del apén-dice del trabajo.

El espesor se calcula con la siquiente ecuación (tabias Nº1 a Nº4):

$$d_{n} = (P_{n} - 1/2 + \frac{\delta_{2^{n}}}{2\pi}) \times (\frac{\lambda_{n}}{2(n_{1}^{2} - n_{0}^{2} \operatorname{sen}^{2} \theta)^{1/2}}) \quad (2)$$

donde:

dn : espesor de la capa epitaxial.

n1 : índice de refracción de la capa epitaxial.

n0 : índice de refracción del aire.

 θ : ángulo de incidencia del haz infrarrojo sobre la capa epitaxial.

El espesor dn tendrá unidades de µm si usarnos longitudes de onda y de cm si usamos número de onda. Se calcula dn para todos los máximos y mínimos, y luego se halla el promedio).

La parte teórica de las ecuaciones, que se halla desarrollada en el apéndice del trabajo, fue elaborada en base a trabajos previos (14) (15) (16) (17) (18) (19) (20) (24).

4. ELIMINACIÓN.DE RUIDO

A longitudes de onda entre 28 um (350 cm-1) y 50 µm (200 cm-1), el dióxido de carbono y el agua presentes en el aire dan bandas en el espectro infrarrojo.

En consecuencia es obvio que para evitar las indefiniciones que aparecen corrientemente en los picos o valles del espectro de in-terferencia infrarroja, es conveniente trabajar en atmósferas inertes en ese rango del infrarrojo.

Nosotros registramos espectros en aire y en nitrógeno para su comparación.

La figura N°1 muestra al espectro obtenido en atmó sfera de aire y la figura N°2 el obtenido en atmós fera de nitrógeno. En la parte superior de estas figuras, donde están marcados los números de onda y el ruido, se observa claramente como en atmósfera de nitrógeno se eliminan casi totalmente las bandas entre 350 cm -1 y 200 cm -1.

Además, comparando los dos espectros de interferencia, vemos que en atmósfera de aire los máximos y mínimos de amplitud numerados n = 4; n = 3; n = 2; y n = 1; no están tan bien definidos como los re¬gistrados en atmósfera de nitrógeno.

En base a lo observado es aconsejable trabajar en atmósfera de nitrógeno cuando las características del trabajo exijan mejorar la precisión.

5. TRATAMIENTO DE ERROR

Los parámetros que aportan mayor error son: el índice de re-fracción de la capa epitaxlal y la longitud de onda.

Considerando los tres métodos; ASTM F95 - 73, dispersión standard y propagación, nosotros hemos tomado como error el ASTM, él nos índica el máximo error probable.

Figura N°1. Espectro de reflectancia infrarroj a en atmósfera de aire.

Figura N². Espectro de reflectártela infrarroj a en atmósfera de nitrógeno

Estudio y puesta a punto de la técnica de medición de espesores

de capas epitaxiales por el método de interferometria infrarroja

Lic. Berset, Alberto y Dr. Grünhut, Enrique

Sector Materiales, Componentes y Sistemas Electrónicos

INTI (Instituto Nacional de Tecnología Industrial)

Mayo 1979

Presentado en el Congreso Científico del Programa Nacional de Electrónica de la Secretaría de Estado de Ciencia y Tecnología realizado del **09 al 12 de octubre de 1979 en** La Falda - Provincia de Córdoba - República Argentina.

0 Contenido

1	INT	INTRODUCCIÓN									
2	PAF	RTE EXPERIMENTAL									
	2.1	Condiciones de trabajo									
	2.2	SISTEMAS DE MEDICIÓN UTILIZADOS									
	2.3	PREPARACIÓN DE LOS EQUIPOS									
3	CÁL	CULOS									
4	EJE	MPLO DE CÁLCULO									
5	TRA	TAMIENTO DE ERROR									
6	ELIN	MINACIÓN DEL RUIDO									
7	APÉ	NDICE									
	7.1	TEORÍA									
	7.2	SIGNIFICADO DE LOS SÍMBOLOS									
	7.3	Tablas 34									
8	REF	ERENCIAS BIBLIOGRAFICAS									

1 INTRODUCCIÓN

Dentro de las determinaciones de gran interés en la industria de semiconductores está la medición del espesor de films monocristalinos crecidos sobre substratos monocristalinos.

El espesor de dichos films, llamados epitaxiales, puede medirse por métodos destructivos y no destructivos. Dentro de éstos el más extensamente utilizado es el que se basa en la obtención e interpretación de un espectro de interferencia infrarrojo.

Dichas interferencias aparecen debido a que la capa epitaxial es transparente y el substrato absorbente a la radiación utilizada.

El haz infrarrojo al ser reflejado en la interfase capa-substrato y en la interfase airecapa, tiene dos caminos ópticos distintos, apareciendo a ciertos valores de longitud de onda interferencia destructiva (mínimo) y a otros valores interferencia constructiva (máximo).

Este método, que fue propuesto por primera vez por Spitzer, W.G. y Tanenbaum, M. en 1961 y que aparece esquemáticamente mencionado en diferentes publicaciones dedicadas a la caracterización de semiconductores ^{(2) (3) (4) (5) (6)}, ha sido extensamente estudiado y objeto de numerosos aportes para su mejoramiento y autom a t i z a c i ó n ^{(7) (8) (9) (10) (11) (12) (13)}.

En este trabajo se describe de un modo detallado y accesible para el no iniciado en el campo, la teoría y la técnica a emplear. Se incluyen también tablas, cuyo uso es necesario para el empleo de esta técnica, que aparecieron originalmente en publicaciones de difícil acceso.

2 PARTE EXPERIMENTAL

2.1 Condiciones de trabajo

Para que este método pueda ser aplicado, una observable diferencia tiene que existir entre las constantes ópticas de la capa epitaxial y el substrato; para poder efectuar mediciones, la resistividad del substrato debe ser menor que $0.02 \quad \Omega.cm$ (alta concentración de impurezas) a 23 °C de temperatura y la resistividad de la capa epitaxial debe ser mayor que 0.1 $\Omega.cm$ (baja concentración de impurezas) a 23 °C de temperatura.

La superficie de la oblea debe ser altamente reflectiva, libre de imperfecciones y de pasivadores, salvo los óxidos nativos.

Las obleas que se utilizaron tenían substratos de conductividad tipo " n " y capa epitaxial de conductividad tipo " n⁺ ".

Es una característica esencial para todos los cálculos que se hacen, asumir que la "juntura" es abrupta, lo cual no es estrictamente así en todos los casos. Sin embargo la teoría sigue siendo válida aun en el caso de juntura difusa⁽¹⁵⁾, pues Sato, K.; Ishikawa, Y. y Sugawara, K. ⁽⁸⁾ con tratamiento térmico encontraron que si bien, para un mismo espesor de capa epitaxial, las franjas de interferencia cambian hacia valores más bajos de longitud de onda, y decrece su amplitud a medida que se difunde la juntura, el valor final obtenido para el espesor permanece constante.

Lo que ocurre es que:

- 1°) Aunque la amplitud del espectro de interferenci a decrece con el tratamiento térmico, el nivel de base no varía.
- 2°) Si bien los máximos y los mínimos de las franjas cambian hacia menores longitudes de onda conjuntamente; la diferencia de longitud de onda entre máximos y mínimos adyacentes no cambia con el tratamiento térmico.

2.2 SISTEMAS DE MEDICIÓN UTILIZADOS

Se utilizó un espectrómetro infrarrojo Perkin Elmer IR 577, con rango de longitudes de onda 2 a 50 µm y un sistema óptico de reflectancia Barnes modelo 133.

El rango de longitudes de onda en el cual se trabajó es de 2.5 a 50 μ m y se toma como independiente de la longitud de onda al índice de refracción de la capa epitaxial (el error que se comete es menor a 0.5% ⁽¹⁴⁾).

Esta técnica se puede aplicar con buenos resultados para medir espesores de capas de conductividad tipo "n" y "p", de espesores mayores de 2 μ m. Reduciendo la precisión, puede ser también aplicada a espesores de 0.5 a 2 μ m.

La distribución de impurezas debe ser uniforme, si no, es imposible aplicar el método.

El ángulo de incidencia del haz infrarrojo debe ser menor de 30° para evitar los efectos de polarización."Estos se pueden despreciar en estas mediciones (se despreciaron también en el desarrollo de la teoría en el apéndice), porque para un ángulo de incidencia de 30° el error en reflectanci a entre r_{01}^2 y la expresión que incluye la polarización es menor del 1% a λ = 50 µm. Debido al alto índice de refracción (n₁ = 3.42) de la capa epitaxial el haz incidirá en la interfase capa-substrato con un ángulo máximo de 8°, para un ángulo de incidencia de 30° en la in terfase aire - capa. El error en r_{12}^2 es entonces mucho menor que el 1% y ambos errores disminuyen aun más para longitudes de onda menores a 50 µm.

El ángulo de incidencia del equipo que nosotros utilizamos es de 5°38'.

Se midió la resistividad del substrato por el método de las cuatro puntas y el tipo de conductividad del substrato y de la capa epitaxial por el método de punta caliente.

Se construyeron porta obleas de acrílico para evitar daños en la superficie de la oblea. Teniendo en cuenta que la máscara debe ser construida en un material que no refleje y la apertura debe ser tal que exponga un área de la superficie de la oblea pequeña, y que el valor del diámetro de la apertura tiene que ser pequeño para eliminar fluctuaciones por efecto de espesor; se construyeron máscaras de grafito con un diámetro de apertura de 4 mm.

2.3 PREPARACIÓN DE LOS EQUIPOS

Siguiendo las recomendaciones ASTM F95 - 73 se calibraron las longitudes de onda a medirse con una exactitud $^{0.05} \mu$ m; para ver cuál es la máxima velocidad de barrido permitida, se eligió una oblea con un substrato de resistividad entre 0.008 y 0.012 Ω cm.

Se registra el espectro infrarrojo a utilizarse, que debe dar un mínimo observable a longitudes de onda mayores de 25 μ m, para diferentes velocidades de barrido. La velocidad de barrido máxima admisible es aquella que muestra un cambio en la posición del mínimo menor que ± 0.1 μ m relativo al mínimo registrado a la más baja velocidad de barrido.

Las velocidades de barrido que utilizamos fueron: X10 – 120 min y X5 - 60 min.

Para determinar la longitud de onda de cada pico y valle en el espectro de reflexión; se tomaron los valores de longitudes de onda de la intersección de una línea horizontal, que se traza a un 3% de la escala máxima debajo de un máximo o arriba de un mínimo y se promediaron estos valores.

Se debe tener en cuenta que no se puede calcular el espesor de la capa epitaxial si la relación del pico o valle a la amplitud del ruido es menor que cinco.

3 CÁLCULOS

Para la determinación de los órdenes correspondientes a cada máximo y mínimo se utiliza la siguiente ecuación:

donde se estipula que $\lambda_1 > \lambda_n$ y el significado es el siguiente:

Pn: orden correspondiente a la longitud de onda "n".

m: diferencia de ordenes de los extremos considerados

 $(m = P_1 - P_n)$

 λ : longitud de onda en μ m.

 δ_{21} y δ_{2n} : son los cambios de fase sufridos por el haz reflejado en la interfase capasubstrato para λ_1 y λ_n respectivamente.

Los valores de los cambios de fase ⁽²¹⁾⁽²²⁾⁽²³⁾ en la interfase capa-substrato se encuentran tabulados en las tablas del apéndice (tablas N°I al N°4).

El espesor se calcula con la siguiente ecuación:

$$d_{n} = (P_{n} - 1/2 + \frac{\delta_{2n}}{2\pi}) \times (\frac{\lambda_{n}}{2(n_{1}^{2} - n_{0}^{2} \operatorname{sen}^{2}\theta)^{1/2}}) (2)$$

donde:

d_n: espesor de la capa epitaxial.

n₁: índice de refracción de la capa epitaxial.

n₀: índice de refracción del aire.

θ: ángulo de incidencia del haz infrarrojo sobre la capa epitaxial.

El espesor d_n tendrá unidades de μm si usamos longitudes de onda y de cm si usamos número de onda.

Se calcula d para todos los máximos y mínimos y luego se halla el promedio (\overline{d}) .

La parte teórica de las ecuaciones, que se halla desarrollada en el apéndice, fue elaborada en base a trabajos previos^{(16) (17) (18) (19) (20) (24)}.

4 EJEMPLO DE CÁLCULO

Los pasos a seguir para determinar el espesor de una oblea son los siguientes:

- Obtener el valor de la resistividad del substrato en
 el lugar donde se piensa medir el espesor de la capa epitaxial (en la parte de atrás de la oblea). En nuestro
 ejemplo vale 0,010 Ωcm.
- II) Determinar tipo de conductividad de la capa epitaxial; que en nuestro caso es de tipo "n⁺" (Silicio).

- III) Determinar tipo de conductividad del substrato; que para nuestra oblea que es de Silicio dopado con Sb, es tipo "n".
- IV) Tener idea aproximada de la resistividad de la capa epitaxial; que para este ejemplo es de 1 - 3 Ωcm.
- V) Determinar la longitud de onda del primer y último pico o valle (en nuestro caso se tomo el segundo por no estar tabulado el cambio de fase para la longitud de onda correspondiente al primer valor y haber hallado éste por extrapolación); viendo la tabla de la página N°13, para $n = 2 \rightarrow \lambda_2 = 39,30 \ \mu m$ y para $n = 12 \rightarrow \lambda_{12} = 14,12 \ \mu m$.
- VI) Calcular el valor de " m " para λ_{12} ; esto se halla restando los subíndices de las longitudes de onda y dividiendo por dos $\left(\left(\frac{12-2}{2}\right) = 5\right)$, luego m = 5.
- VII) Buscar en las tablas los valores correspondientes a estas longitudes de onda de los cambios de fase, recordando que la conductividad del substrato es tipo "n", el material semiconductor Silicio y la resistividad es de 0,010 Ωcm.

$$\frac{\frac{\delta_{22}}{2}}{\frac{\delta_{212}}{2\pi}} = 0.227$$

VIII) Calcular el orden asociado a λ_{12} de la ecuación (1):

$$P_{12} = \frac{m \lambda_2}{(\lambda_2 - \lambda_{12})} + \frac{1}{2} - \frac{\delta_2 \lambda_2 - \delta_2 \lambda_{12}}{2 \pi (\lambda_2 - \lambda_{12})}$$

entonces

$$P_{12} = \frac{5 \times 39.3 \ \mu m}{(39.3 - 14.12) \ \mu m} + 0.5 - \frac{0.227 \times 39.3 \ \mu m - 0.088 \times 14.12 \ \mu m}{(39.3 - 14.12) \ \mu m}$$
$$P_{12} = 7.80 + 0.50 - 0.31 = 7.99 \approx 8.00$$

Se aproxima al entero o semi-entero más próximo porque el orden es semi-entero para un mínimo y entero para un máximo.

 $P_{12} = 8,00$

IX) Sustituir el valor de P₁₂ en la ecuación (2)

$$d_{12} = (P_{12} - 1/2 + \frac{\delta_{2 12}}{2 \pi}) \times (\frac{\lambda_{12}}{2 (n_1^2 - n_0^2 \sin^2 \theta)^{1/2}})$$

 d_{12} = (8,0 - 0,5 + 0,088) x (14,12 µm x 0,1462)

Nota : Se tomó el valor del índice de refracción del aire

 $n_0 = 1$ (error cometido < 0,03%) y el del Silicio

 $n_1 = 3,42$ como constante en el rango de longitudes de onda de trabajo⁽¹⁴⁾

(error cometido < 0,5%). El ángulo de incidencia en nuestro caso es de θ = 5°38'.

$$\frac{1}{2 (n_1^2 - n_0^2 \sin^2 \theta)^{1/2}} = 0.1462$$

Luego:

luego

d₁₂ =15,66 µm.

- X) Repetir los puntos VIII y IX para todos los valores de " n " de la tabla de la página N°13.
- XI) Con todos los valores obtenidos de d_n se halla el promedio de estos (\overline{d}):

$$\overline{d} = \sum_{n = 1}^{12} \frac{d_n}{12}$$

que en nuestro ejemplo nos da igual a:

 $\vec{a} = 15,64 \ \mu m$ $\sigma = 0,04$

Instituto Nacional de Tecnología Industrial SECTOR: MATERIALES, COMPONENTES Y SISTEMAS ELECTRÓNICOS

INFORME N°

Datos de la oblea:N/N⁺- (111) - Dopante Sb - Si -Resistividad Substrato 0,010Ωcm

Técnica Utilizada: Operador: . Fecha:

n	$\lambda_n = \mu m$ λ_n	$\delta 2n/2\pi$	Pn	d _n = μm d _n	Observaciones
1	46,9 ± 0,2	0,275	m= () ≅ 2,5	15,60	Cambio de fase extrapolado .
2	39,3 ± 0,1	0,227	m= 0 () ≌ 3,0	15,67	
3	33,53 ± 0,06	0,194	m= 0,5 (3,49) ≅ 3,5	15,66	
4	29,11± 0,04	0,168	m= 1,0 (3,96) ≅ 4,0	15,61	
5	25,73 ± 0,03	0,148	m= 1,5 (4,47) ≅ 4,5	15,60	
6	23,1 ± 0,1	0,133	m= 2,0 (4,99) ≌ 5,0	15,65	
7	20,86 ± 0,03	0,121	m= 2,5 (5,48) ≅ 5,5	15,62	
8	19,12 ± 0,04	0,113	m= 3,0 (4,47) ≅ 4,5	15,69	
9	$17,48 \pm 0,03$	0,104	m= 3,5 (6,48) ≅ 6,5	15,60	
10	$16,26 \pm 0,04$	0,098	m= 4,0 (7,00) ≅ 7,0	15,68	
11	15,13 ± 0,07	0,093	m= 4,5 (7,51) ≅ 7,5	15,69	
12	14,12 ± 0,04	0,088	m=5,0 (7,99) ≅8,0	15,66	

<u>NOTA:</u> En algunos casos cuando el valor de σ es mayor de 0,1, se puede mejorar el valor promedio y a su vez σ , eliminando algunos de los datos obtenidos de mayor longitud de onda y haciendo un nuevo promedio.

5 TRATAMIENTO DE ERROR

El error calculado por propagación partiendo de la ecuación (2) es:

$$\Delta d_{n} = \frac{\partial^{3} d_{n}}{\partial n_{1} \partial \lambda_{n} \partial \delta_{2n}} = \left(\frac{\Delta \delta_{2n}}{2\pi}\right) \left(\frac{\lambda_{n}}{2(n_{1}^{2} - n_{0}^{2} \operatorname{sen}^{2}\theta)^{1/2}}) + \left(\frac{\partial \lambda_{n}}{2(n_{1}^{2} - n_{0}^{2} \operatorname{sen}^{2}\theta)^{1/2}}\right) + \left(\frac{\partial \lambda_{n}}{2(n_{1}^{$$

$$\Delta d_1 = 0,007 + 0,067 + 0,046 = 0,12 \ \mu m$$

 $\Delta d_2 = 0,002 + 0,044 + 0,046 = 0,092 \ \mu m$

luego el error por propagación es:

 $\Delta d_n = \pm 0,1 \ \mu m$

Los parámetros que aportan mayor error son: el índice de refracción y la longitud de onda.

El método ASTM F95 - 73 estima para capas de conductividad de tipo "n" de espesor más grande que 2 µm un error de ± (0,25 µm + 0,005 \overline{d}), que aplicado a nuestro ejemplo da:

$$Ad = \pm 0,3 \mu m$$

El mismo método ASTM estima para capas de conductividad tipo "p" ó "n", con espesores entre 0,5 y 2 µm, un error de \pm (0,51 µm + 0,035 \overline{d}) y para capas de tipo "p" de espesor más grande de 2 µm un error de \pm (0,25 µm + 0,025 \overline{d}), donde \overline{d} en todo los casos es el espesor promedio.

Vimos en el ejemplo de cálculo que la dispersión estándar es σ = 0,04.

Considerando los tres métodos; ASTM, dispersión estándar y propagación, nosotros hemos elegido en este ejemplo el error ASTM, el nos indica el máximo error probable, es decir:

 $d = (15,6 \pm 0,3) \mu m$

En la página siguiente, se muestra un ejemplo de cómo se puede presentar un informe.

Instituto Nacional de Tecnología Industrial

SECTOR: MATERIALES, COMPONENTES Y SISTEMAS ELECTRÓNICOS

INFORME	N٥
----------------	----

Silicio dopado con Sb. (111)
Substrato
Conductividad tipo <u>n</u>
Resistividad <u>0,010</u> Ωcm
Capa crecida
Conductividad tipon ⁺
Resistividad <u>1 – 3</u> Ω cm
Rango barrido de longitudes de onda <u>4000 – 200</u> cm ⁻¹ Mascara utilizada <u>4</u> mm
Velocidad de barrido X10 – 120 min
Lugar de medición en la oblea: x = 0 mm y = 16 mm
Espesor de la capa crecida <u>15,6 ± 0,3</u> µm Fecha del informe: <u>Observaciones:</u>

Firma

Aclaración:

6 ELIMINACIÓN DEL RUIDO

A longitudes de onda entre 28 μ m (350 cm⁻¹) y 50 μ m (200 cm⁻¹), el dióxido de carbono y el agua presentes en el aire dan bandas en el espectro infrarrojo.

En consecuencia, es obvio que para evitar las indefiniciones que aparecen corrientemente en los picos o valles del espectro de interferencia infrarroja, es conveniente trabajar en atmosferas inertes en ese rango infrarrojo.

Nosotros registramos espectros en aire y en nitrógeno para su comparación.

La figura N°2 muestra el espectro obtenido en atmo sfera de aire y la figura N°3 el obtenido en atmósfera de nitrógeno. En la parte superior de estas figuras, donde están marcados los números de onda y el ruido, se observa claramente como en atmosfera de nitrógeno se eliminan casi totalmente las bandas entre 350 cm⁻¹ y 200 cm⁻¹.

Además, comparando los dos espectros de interferencia, vemos que en atmosfera de aire los máximos y mínimos de amplitud numerados n = 4; n = 3; n = 2; n = 1; no están tan bien definidos como los registrados en atmosfera de nitrógeno.

En base a lo observado es aconsejable trabajar en atmosfera de nitrógeno cuando las características del trabajo exijan mejorar la precisión.

Figura Nº2. Espectro de reflectancia infrarroja en atmósfera de aire.

Figura N°3. Espectro de reflectancia infrarroja e n atmosfera de nitrógeno.

7 APÉNDICE

7.1 TEORÍA

Los coeficientes de reflexión son:

$$r_{01} = \frac{n_0 - n_1}{n_0 + n_1}$$
(1)

$$r_{12} = \frac{n_1 - n_2}{n_1 + n_2}$$
(2)

y el coeficiente de amplitud efectivo de reflexión " r " es:

donde

$$r = \frac{r_{01} + r_{12} e^{-i\phi}}{1 + r_{01} r_{12} e^{-i\phi}}$$
(3)

$$\frac{1 + r_{01} r_{12} e^{-i\phi}}{4 \pi d n_{1}}$$
(4)

$$\frac{\lambda \cos \theta'}{2}$$

escribiendo para los índices de reflexión complejos " r = $\rho e^{i\delta}$ " nos queda:

$$r_{01} = \rho_{01} e^{i\delta}_{01}$$
(5)

$$r_{12} = \rho_{12} e^{i\delta}_{12}$$
(6)
La reflectancia R = rr*; donde "r" es:

$$r = \frac{\rho_{01} e^{i\delta}_{01} + \rho_{12} e^{i(\delta}_{12} - \phi)}{1 + \rho_{01} \rho_{12} e^{i(\delta}_{01} + \delta_{12} - \phi)}$$
(7)

luego haciendo el producto " rr^* " y recordando que $\cos x = \frac{1}{2} (e^{ix} + e^{-ix})$, nos queda:

$$R = \frac{\rho_{01}^{2} + \rho_{12}^{2} + 2 \rho_{01} \rho_{12} \cos(\phi - \delta_{01} - \delta_{12})}{1 + \rho_{01}^{2} \rho_{12}^{2} + 2 \rho_{01} \rho_{12} \cos(\phi - \delta_{01} - \delta_{12})}$$
(8)

De la teoría electromagnética se puede demostrar que cuando la capa epitaxial (1) es transparente y el substrato (2) muestra absorción; el coeficiente de reflexión (ρ_{12}) y el cambio de fase (δ_{12}) por reflexión esta dado por:

$$y = n'_{2} + ik_{2}$$
(9)

$$r_{12}r_{12}^{*} = \rho_{12}^{2} = \frac{(n_{1} - n'_{2})^{2} + k_{2}^{2}}{(n_{1} + n'_{2})^{2} + k_{2}^{2}}$$
(10)

$$r_{12}r_{12}^{*} = \frac{2n_{1}k_{2}}{n_{1}^{2} - (k_{2}^{2} + n_{2}^{2})}$$
(11)

Para una capa epitaxial de Silicio, con resistividad típica de 1 Ω cm, sobre un substrato de Silicio, el índice de refracción es $n_1 = 3,42$, con una parte imaginaria despreciable⁽¹⁴⁾. Entonces, el valor del cambio de fase de δ_{01} es encontrado y es π (recordar que

 $r_{01} = \rho_{01} (\cos \delta + i \sin \delta)$.

Ahora denominaremos directamente δ a δ_{12} y recordando lo dicho anteriormente nos da para "R" partiendo de (8) la siguiente ecuación:

$$R = 1 - \frac{(1 - \rho_{01})^{2} (1 - \rho_{12})^{2}}{(1 - \rho_{01} \rho_{12})^{2} + 4 \rho_{01} \rho_{12} \sin^{2} 1/2 (\phi - \delta)}$$
Esta expresión puede ser aproximada si $\rho_{12}^{2} << 1$ y
 $\rho_{01} \rho_{12} << 1$, lo que resulta es:

$$R = \rho_{01} + 2 \rho_{01} \rho_{12} (1 - \cos(\phi - \delta)) (13)$$

en la ecuación anterior se supone que el coeficiente de reflexión p12 no depende de la longitud de onda y que el 12 cambio de fase (δ) sí depende de la longitud de onda.

Luego los valores extremos de la ecuación (13) son:

 $\phi - \delta = \ell 2 \pi \text{ (para un mínimo)}$ (14) $\phi - \delta = (\ell + 1/2) 2 \pi (\text{para un máximo})$ (15)

donde " ℓ " es un entero que indica el orden.

ρ

Ahora planteamos el problema para nuestra situación.

Las ecuaciones de las fases de los rayos que salen del punto "C" y "D" en términos de camino óptico y de los cambios de fase que los rayos sufren cuando se reflejan, es nuestro punto de partida.

Como la capa epitaxial es no absorbente, el cambio de fase del rayo transmitido en el punto "A" es "0".

$$\delta_{\rm C} = \frac{4 \pi d n_1^2}{\lambda (n_1^2 - n_0^2 \sin^2 \theta)^{1/2}} - \delta_{12} \qquad (16)$$

$$\delta_{\rm D} = \frac{4 \pi d n_0^2 \sin^2 \theta}{\lambda (n_1^2 - n_0^2 \sin^2 \theta)^{1/2}} - \delta_{01} \qquad (17)$$

entonces la diferencia de fases " $\Delta\delta$ " es:

$$\Delta \delta = \delta_{01} - \delta_{12} + \frac{4 \pi d}{\lambda} (n_1^2 - n_0^2 \operatorname{sen}^2 \theta)^{1/2}$$
(18)

$$P = \frac{\Delta \delta}{2 \pi}$$
(19)

El orden " P " es definido de la siguiente manera:

entonces remplazando (18) en (19):

$$P = \frac{\int_{01}^{\delta} \frac{\delta_{12}}{2\pi} - \frac{\lambda_{12}}{2\pi} + \frac{2d}{\pi} (n_1^2 - n_0^2 \sin^2\theta)^{1/2} (20)$$

Ahora cambiamos las denominaciones de la siguiente forma, a δ_{01} por δ_{1n} y a δ_{12} por δ_{2n} ; entonces la formula general nos queda:

$$P_{n} = \frac{\delta_{1n}}{2\pi} - \frac{\delta_{2n}}{2\pi} + \frac{2d}{\pi} \left(n_{1}^{2} - n_{0}^{2} \operatorname{sen}^{2} \theta \right)^{1/2}$$
(21)

Si dos extremos en amplitud de interferencia se observan, los correspondientes órdenes son "P₁ " y "P₂ "; hallados resolviendo la ecuación (21).

$$P_{1} = \frac{\delta_{11}}{2\pi} - \frac{\delta_{21}}{2\pi} + \left(\frac{2 d \left(n_{1}^{2} - n_{0}^{2} \operatorname{sen}^{2} \theta\right)^{1/2}}{\lambda_{1}}\right) (22)$$

$$P_{2} = \frac{\delta_{12}}{2\pi} - \frac{\delta_{12}}{2\pi} + \left(\frac{2 d \left(n_{1}^{2} - n_{0}^{2} \operatorname{sen}^{2} \theta\right)^{1/2}}{\lambda_{2}}\right) (23)$$

donde por convención $\lambda_1 > \lambda_2$.

Sabiendo que la relación entre "P₂ " y "P₁ " es la siguiente:

$$P_2 = P_1 + m$$
 (24)

donde "m" es la diferencia de ordenes entre los extremos de amplitud considerados, y los valores que puede tomar son :

m = 1/2, 1, 3/2, 2, etc.

Resolviendo las ecuaciones (22), (23) y (24) (poniendo $P_2 - P_1 = m$ y luego llevando el término de la derecha de la ecuación resultante para que sea de la forma de la ecuación

llegamos a "P", sumando para ello ($\delta_{12}/2\pi - \delta_{22}/2\pi$) a ambos lados de la ecuación llegamos a:

$$P_{2} = \frac{m \lambda_{1}}{(\lambda_{1} - \lambda_{2})} + \frac{\delta_{11} \lambda_{1} - \delta_{12} \lambda_{2}}{2 \pi (\lambda_{1} - \lambda_{2})} - \frac{\delta_{21} \lambda_{1} - \delta_{22} \lambda_{2}}{2 \pi (\lambda_{1} - \lambda_{2})}$$
(25)

NOTA: Un hecho importante que afecta a la reflexión de la luz en una superficie de índice de refracción mayor que el medio en el cual se propaga inicialmente, queda patente con ayuda de un interferómetro de espejo de Lloyd. El resultado es que las ondas reflejadas en un medio de índice de refracción mayor que el medio en el cual se propaga inicialmente, han experimentado un cambio de fase de 180°.

Como $n_0 < n_1$, esto implica de acuerdo con la nota anterior $\delta_{11y} \delta_{12}$ son iguales a π . Remplazando los valores en la ecuación (25) nos da:

$$P_{2} = \frac{m \lambda_{1}}{(\lambda_{1} - \lambda_{2})} + \frac{1/2}{2 \pi (\lambda_{1} - \lambda_{2})}$$
(26)

$$P_{2} = \frac{m \lambda_{1}}{(\lambda_{1} - \lambda_{2})} + \frac{\pi \lambda_{1} - \pi \lambda_{2}}{2 \pi (\lambda_{1} - \lambda_{2})} - \frac{\delta_{21} \lambda_{1} - \delta_{22} \lambda_{2}}{2 \pi (\lambda_{1} - \lambda_{2})} +$$

o en número de onda $\overline{\nu} = \frac{1}{\lambda}$

$$P_{2} = \frac{m \overline{\nu}_{2}}{(\overline{\nu}_{2} - \overline{\nu}_{1})} + \frac{1/2}{2 \pi (\overline{\nu}_{2} - \overline{\nu}_{1})}$$
(27)

$$\delta_{2} = 2 \pi P_{2} = 4 \pi d_{2} \frac{\left(n_{1}^{2} - n_{0}^{2} \sin^{2}\theta\right)^{1/2}}{\lambda_{2}} + \delta_{12} - \delta_{22} \rightarrow$$
epitaxial "d":

$$\Rightarrow d_{2} = \frac{\lambda_{2}}{2\left(n_{1}^{2} - n_{0}^{2} \sin^{2}\theta\right)^{1/2}} \left(P_{2} + \frac{\delta_{22}}{2\pi} - 1/2\right) \quad (28)$$

A partir de las ecuaciones (18), (19), y (23) calculemos ahora el espesor de la capa

Quedando las siguientes formulas generales:

. 0

$$d_{n} = \left(\frac{\lambda_{n}}{2\left(n_{1}^{2} - n_{0}^{2} \sin^{2}\theta\right)^{1/2}}\right) \left(P_{n} + \frac{\delta_{2n}}{2\pi} - 1/2\right) (29)$$

ó

 $(d_n) = \mu m$, si trabajamos en longitudes de ando.

$$d_{n} = \left(\frac{1}{2\overline{\nu}_{n}} \left(n_{1}^{2} - n_{0}^{2} \sin^{2} \theta\right)^{1/2}}\right) \left(P_{n} + \frac{\delta_{2}n}{2\pi} - 1/2\right) \quad (30)$$

$$(d_{n}) = cm, \text{ si trabajamos en número de onda.}$$

7.2 SIGNIFICADO DE LOS SÍMBOLOS

- n₀ : índice de refracción del aire.
- n₁: índice de refracción de la capa epitaxial.
- n₂ : índice de refracción del substrato.
- n'2 : parte real del índice de refracción del substrato.
- k_1 : coeficiente de extinción ($k = (\alpha \lambda) (4 \pi)^{-1} y$

 α : coeficiente de absorción) de la capa epitaxial.

- k₂ : coeficiente de extinción del substrato.
- λ : longitud de onda (µm).
- \overline{v} : número de onda (cm⁻¹).
- θ : ángulo de incidencia a la interfase aire-capa.
- θ' : ángulo de incidencia a la interfase capa-substrato.
- d : espesor de la capa epitaxial.
- r_{01} : coeficiente de reflexión de la interfase aire-capa.
- r₁₂ : coeficiente de reflexión de la interfase capa--substrato.
- r : coeficiente efectivo de amplitud de reflexión.
- R : reflectancia ($R = rr^*$).
- ρ_{01} : parte real del r₀₁
- ρ_{12} : parte real del r₁₂
- δ_{01} : cambio de fase en la interfase aire-capa.
- δ_{12} : cambio de fase en la interfase capa-substrato.
- δ_C : fase que sale por el punto "C" de la figura N° 4.
- δ_D : fase que sale por el punto "D" de la figura N° 4 .
- P_n : orden correspondiente a la onda de λ_n .

- δ_{1n} : cambio de fase de la onda λ_n en la interfase aire--capa.
- δ_{2n} : cambio de fase de la onda λ_n en la interfase capa--substrato.

7.3 Tablas

Las tablas que en este apéndice se incluyen fueron obtenidas del IBM TR 22.182 ⁽²³⁾ y del IBM TR 22.537⁽²¹⁾ dichas publicaciones son de circulación interna de IBM y fueron obtenidas a través de una gestión personal. Dado que no son de fácil acceso 32 creyó conveniente reproducirlas e Incluirlas en este trabajo.

Para cambio da fase para capa de Silicio sobre substrato de Silicio de conductividad tipo "n", tablas N° 1 y 2; cambio de fase para capa de Silicio sobre substrato de Silicio de conductividad tipo "p", tablas N° 3 y 4.

NOTA: Los autores tienen a disposición de quienes lo soliciten tablas - correspondientes a: cambio de fase para capa de Germanio sobre substrato de Germanio de conductividad tipo "n" y "p"; cambio de fase para capa de Arseniuro de Galio sobre substrato de Germanio de conductividad tipo "n" y "p"; y cambio de fase para capa de Arseniuro de Galio sobre substrato de Galio sobre substrato de Galio de conductividad tipo "n" y "p"; y cambio de fase para capa de Arseniuro de Galio sobre substrato de Galio de fase para capa de Arseniuro de Galio sobre substrato de Arseniuro de Galio de fase para capa de Arseniuro de Galio sobre substrato de Arseniuro de Galio de fase para capa de Arseniuro de Galio sobre substrato de Arseniuro de Galio de conductividad tipo "n".

En la tabla N°5 se da la relación entre concentración y la resistividad para Silicio de conductividad tipo "n" y "p".

Las tablas del Nº 6 al Nº 15 son para Silicio de conductividad tipo "p", están dadas en longitudes de onda (μ m) y para ordenes que aumentan de tabla en tabla un valor de 0,5 a partir del orden 0,5 hasta el orden 5,0.

Estas tablas representan las posiciones de los máximos o mínimos (de acuerdo al orden) en función del espesor de la capa para diferentes concentraciones.

Si se conoce al orden de la franja de interferencia las tablas son de fácil utilización. Por lo general no existe dificultad alguna en asignar o calcular ordenes; sin embargo para capas muy delgadas, es posible que se obtenga una sola franja de interferencia, en ese caso, es necesario saber cuál es el orden observado, ya que un error en la elección provocara una variación de alrededor del 100% en el valor del espesor obtenido.

Las tablas del N°16 al N°25 son similares a las del N°6 al N°15 pero para Silicio de conductividad tipo "n".

Tabla N	J⁰ 1
---------	------

Longitud		Resistividad (Ω.cm)										
(µm)	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008				
2	0,033	0,029	0,028	0,027	0,027	0,026	0,025	0,024				
4	0,061	0,050	0,047	0,046	0,045	0,043	0,041	0,039				
6	0,105	0,072	0,064	0,062	0,060	0,057	0,055	0,052				
8	0,182	0,099	0,083	0,078	0,075	0,071	0,067	0,064				
10	0,247	0,137	0,105	0,095	0,090	0,084	0,079	0,075				
12	0,289	0,183	0,132	0,115	0,106	0,09S	0,091	0,084				
14	0,318	0,225	0,164	0,137	0,124	0,113	0,104	0,097				
16	0,339	0,2S8	0,197	0,163	0,144	0,129	0,117	0,109				
18	0,355	0,283	0,2?6	0,189	0,166	0,146	0,131	0,121				
20	0,368	0,303	0,251	0,214	0,188	0,165	0,147	0,134				
22	0,378	0,319	0,272	0,236	0,209	0,183	0,163	0,148				
24	0,387	0,333	0,289	0,255	0,229	0,202	0,179	0,162				
26	0,394	0,344	0,303	0,272	0,246	0,203	0,196	0,177				
28	0,401	0,353	0,316	0,286	0,261	0,235	0,211	0,191				
30	0,406	0,362	0,326	0,298	0,275	0,250	0,226	0,206				
32	0,411	0,369	0,336	0,309	0,2B7	0,263	0,240	0,219				
34	0,415	0,375	0,344	0,319	0,297	0,274	0,252	0,232				
36	0,419	0,381	0,351	0,327	0,307	0,285	0,263	0,243				
38	0,422	0,386	0,357	0,335	0,315	0,294	0,273	0,254				
40	0,425	0,391	0,363	0,341	0,323	0,302	0,283	0,264				

TABLA N°1. Canbio de fase ($_{\delta}/\,2\,\pi$) para capa de Silicio sobre Sustrato de Silicio tipo " n ".

Tabla	N٥	2
-------	----	---

Longitud	Resistividad (Ω.cm)								
de onda (µm)	0,009	0,010	0,012	0,014	0,016	0,018	0,020		
2	0,023	0,022	0,020	0,019	0,017	0,016	0,021		
4	0,038	0,036	0,034	0,031	0,029	0,027	0,025		
6	0,050	0,048	0,044	0,042	0,039	0,036	0,033		
8	0,061	0,059	0,054	0,051	0,047	0,043	0,040		
10	0,071	0,069	0,063	0,059	0,055	0,051	0,047		
12	0,081	0,078	0,072	0,067	0,062	0,057	0,053		
14	0,092	0,087	0,080	0,074	0,06?	0:064	0,059		
16	0,102	0,097	0,088	0,082	0,075	0,070	0,065		
18	0,113	0,107	Q'096	0,089	0,082	O,076	0,070		
20	0,124	0,117	0,105	0,096	0,088	0,081	0,075		
22	0,136	0,127	0,113	0,104	0,095	0,087	0,081		
24	0,148	0,138	0,122	0,111	0,101	0,093	0,086		
26	0,161	0,150	0,131	0,119	0,108	0,099	0,091		
28	0,175	0,161	0,141	0,127	0,115	0,104	0,096		
30	0,188	0,173	0,150	0,135	0,121	0,110	0,101		
32	0,201	0,185	0,160	0,143	O,1128	0,116	0,106		
34	0,213	0,197	0,170	0,151	0,135	0,122	0,112		
36	0,225	0,209	0,180	0,160	0,143	0,129	0,117		
38	0,236	0,220	0,191	0,167	0,150	0,135	0,123		
40	0,246	0,230	0,200	0,178	0,158	0,141	0,128		

TABLA N°2. Canbio de fase ($_{\delta}/\,2\,\pi$) para capa de Silicio sobre Sustrato de Silicio tipo " n ".

Longitud	Resistividad (Ω.cm)								
de onda (µm)	0,001	0,0015	0,002	0,003	0,004	0,005	0,006	0,007	
2	0,036	0,034	0,033	0,033	0,033	0,034	0,034	0,033	
4	0,067	0,060	0,057	0,055	0,055	0,055	0,055	0,054	
6	0,119	0,091	0,082	0,076	0,074	0,073	0,072	0,071	
8	0,200	0,140	0,114	0,099	0,094	0,091	0,089	0,086	
10	0,261	0,199	0,156	0,127	0,115	0,110	0,105	0,102	
12	0,300	0,247	0,205	0,160	0,140	0,130	0,123	0,117	
14	0,327	0,282	0,244	0,194	0,167	0,152	0,141	0,133	
16	0,346	0,307	0,274	0,226	0,195	0,175	0,161	0,151	
18	0,361	0,327	0,297	0,253	0,221	0,198	0,182	0,168	
20	0,373	0,342	0,315	0,274	0,243	0,220	0,202	0,186	
22	0,383	0,354	0,330	0,292	0,263	0,240	0,220	0,204	
24	0,391	0,365	0,342	0,307	0,279	0,257	0,238	0,220	
26	0,398	0,374	0,352	0,320	0,294	0,272	0,253	0,236	
26	0,404	0,381	0,361	0,331	0,306	0,285	0,267	0,250	
30	0,409	0,387	0,369	0,340	0,316	0,297	0,279	0,262	
32	0,414	0,393	0,37c	0,348	G,326	0,307	0,290	0,273	
34	0,418	0,398	0,381	0,355	0,334	0,316	0,298	0,284	
36	0,421	0,403	0,387	0,362	0,341	0,324	0,308	0,293	
38	0,425	0,407	0,391	0,368	0,348	0,331	0,316	0,301	
40	0,428	0,410	0,396	0,373	0,354	0,338	0,323	0,309	

Tabla № 3

TABLA N°3. Canbio de fase ($_{\delta}/2\pi$) para capa de Silicio sobre Sustrato de Silicio tipo " P ".

Tabla № 4

Longitud	Resistividad (Ω.cm)									
de onda (µm)	0,008	0,009	0,010	0,012	0,014	0,016	0,018	0,020		
2	0,032	0,031	0,030	0,028	0,027	0,025	0,024	0,024		
4	0,052	0,050	0,049	0,045	0,043	0,040	0,038	0,037		
6	0,068	0,066	0,064	0,059	0,056	0,053	0,050	0,049		
S	0,063	0,080	0,077	0,072	0,067	0,064	0,060	0,059		
10	0,097	0,093	0,089	0,083	0,076	0,073	0,070	0,068		
12	0,111	0,106	0,101	0,094	0,088	0,063	0,078	0,076		
14	0,126	0,119	0,113	0,104	0,097	0,091	0,087	0,084		
16	0,141	0,132	0,126	0,115	0,106	0,100	0,094	0,091		
18	0,157	0,146	0,136	0,125	0,116	0,108	0,102	0,099		
20	0,173	0,160	0,151	0,136	0,125	0,117	0,110	0,106		
22	0,188	0,175	0,164	0,147	0,134	0,125	0,117	0,113		
24	0,204	0,189	0,177	0,158	0,144	0,133	0,125	0,120		
26	0,219	0,203	0,190	0,169	0,153	0,142	0,132	0,127		
28	0,233	0,217	0,203	0,180	0,163	0,150	0,140	0,134		
30	0,245	0,225	0,215	0,1S1	0,173	0,159	0,148	0,141		
32	0,257	0,241	0,227	0,202	0,1B2	0,167	0,155	0,148		
34	0,268	0,252	0,238	0,213	0,192	0,176	0,163	0,155		
36	0,277	0,262	0,246	0,223	0,201	0,185	0,171	0,162		
38	0,286	0,271	0,258	0,232	0,211	0,193	0,178	0,169		
40	0,294	0,280	0,266	0,241	0,219	0,201	0,186	0,176		

TABLA N°4. Canbio de fase ($_{\delta}/\,2\,\pi$) para capa de Silicio sobre Sustrato de Silicio tipo " P ".

Tabla № 5

TABLA N° 5. Relación entre concentración y resistividad para Silide conductividad tipo " n " y " p ".

CONCENTRACION	(cm ⁻³)	RESIST	(NIDAD (R.C.m)
		Tipo "n"	Tipo" p"
1×10^{21}		2.56×10^{-4}	1.30×10^{-4}
5×10^{20}		3.50×10^{-4}	2.53×10^{-4}
2 x 10 ²⁰		5.50×10^{-4}	6.13×10^{-4}
1×10^{20}		9.92×10^{-4}	1.20×10^{-3}
5 x 10 ¹⁹		1.52×10^{-3}	2.34×10^{-3}
2×10^{19}		3.60×10^{-3}	5.66×10^{-3}
1×10^{19}		6.90×10^{-3}	1.06×10^{-2}
5×10^{18}		1.01×10^{-2}	1.88×10^{-2}
2×10^{18}		1.67×10^{-2}	3.85×10^{-2}
1 x 10 ¹⁸		2.43×10^{-2}	6.05×10^{-2}
2×10^{17}		5.82×10^{-2}	1.72×10^{-1}
1 x 10 ¹⁶		5.82×10^{-1}	1.39 x 10 ⁰

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.7 1.0	1.5	2.0	2.5	3.0	4.0	5.0	6.0	7.0	8.0	0.6	10.
												i
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	544.3 551.9	563.1	574.6	586.4	597.4	621.2	644.7	668.6	692.3	716.9	740.3	764
16 262.5 266.7 272.7 282.9 293.2 303.7 314.2 335.0 356.0 376.5 396.9 17 190.9 194.8 200.8 210.8 210.9 241.0 261.0 390.1 319.3 17 199.3 143.3 140.9 158.6 158.5 178.1 187.7 206.6 230.7 314.2 319.2 300.1 319.3 19 92.58 94.94 103.4 111.7 128.1 144.2 160.2 176.1 92.58 72.12 77.5 84.26 92.19 112.7 159.4 114.4 160.2 1160.2 <td>405.3 411.8</td> <td>422.4</td> <td>433.1</td> <td>443.8</td> <td>454.6</td> <td>476.4</td> <td>498.5</td> <td>520.3</td> <td>542.3</td> <td>564.1</td> <td>586.0</td> <td>607</td>	405.3 411.8	422.4	433.1	443.8	454.6	476.4	498.5	520.3	542.3	564.1	586.0	607
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	266.7 272.7	282.9	293.2	303.7	314.2	335.0	356.0	376.5	396.9	417.2	437.2	456
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	194.8 200.8	210.8	220.8	230.9	241.0	261.0	280.9	300.1	319.3	338.1	356.7	375
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	143.3 148.9	158.6	168.5	178.1	187.7	206.6	225.1	243.2	261.0	278.6	296.0	313
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	96.33 101.9	111.1	120.3	129.3	138.1	155.5	172.5	189.2	205.7	222.0	238.3	254
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	72.12 77.5	86.30	94.94	103.4	111.7	128.1	144.2	160.2	176.1	191.9	207.7	223
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	54.66 59.79	68.12	76.25	84.26	92.19	107.9	123.5	139.1	154.6	170.0	185.4	200
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	46.75 51.67	59.67	67.51	75.28	10.68	98.43	113.8	129.1	144.4	159.7	174.8	190
10 34.01 38.40 45.72 53.09 60.50 67.95 82.88 97.76 112.7 127.5 19 27.03 29.88 34.15 41.35 48.65 56.01 63.40 78.19 92.95 107.7 122.4 19 27.03 29.48 34.15 41.35 48.65 56.01 63.40 78.19 92.95 107.7 122.4 19 27.03 29.48 34.69 41.93 49.18 56.46 70.98 85.45 99.91 114.3 19 17.91 20.56 24.70 31.80 38.99 46.19 53.39 67.77 82.10 96.41 110.7 19 15.07 17.75 21.93 29.02 36.16 43.29 50.41 64.64 78.80 92.96 107.1 13.61 16.32 20.52 21.60 34.69 41.78 48.66 62.99 77.07 91.13 105.2 13.61 12.55 <td< td=""><td>38.53 43.11</td><td>50.63</td><td>58.13</td><td>65.63</td><td>73.16</td><td>88.23</td><td>103.3</td><td>118.3</td><td>133.3</td><td>148.3</td><td>163.2</td><td>178</td></td<>	38.53 43.11	50.63	58.13	65.63	73.16	88.23	103.3	118.3	133.3	148.3	163.2	178
19 27.03 29.88 34.15 41.35 48.65 56.01 63.40 78.19 92.95 107.7 122.4 19 20.77 23.45 24.53 34.69 41.93 49.18 56.46 70.98 85.45 99.91 114.3 19 17.91 20.56 24.70 31.80 38.99 46.19 53.39 67.77 82.10 96.41 110.7 19 17.91 20.56 24.70 31.80 38.99 46.19 53.39 67.77 82.10 96.41 110.7 19 15.07 17.75 21.93 29.02 36.16 43.29 50.41 64.64 78.80 92.96 107.1 10 13.61 16.32 20.52 27.60 34.69 41.78 48.66 62.99 77.07 91.13 105.2 20 12.35 15.10 19.30 27.56 33.42 40.47 47.51 61.55 77.07 91.13 105.2	34.01 38.40	45.72	53.09	60.50	67.95	82.88	97.76	112.7	127.5	142.3	157.0	171
19 20.77 23.45 27.58 34.69 41.93 49.18 56.46 70.98 85.45 99.91 114.3 19 17.91 20.56 24.70 31.80 38.99 46.19 53.39 67.77 82.10 96.41 110.7 19 17.91 20.56 24.70 31.80 38.99 46.19 53.39 67.77 82.10 96.41 110.7 19 15.07 17.75 21.93 29.02 36.16 43.29 50.41 64.64 78.80 92.96 107.1 10 13.61 16.32 20.52 37.16 34.69 41.78 48.66 62.99 77.07 91.13 105.2 20 12.35 15.10 19.30 26.36 33.42 40.47 47.51 61.55 75.55 89.54 103.5 20 12.35 15.10 19.30 27.35 60.47 40.47 47.51 61.55 75.55 89.54 103.5	29.88 34.15	41.35	48.65	56.01	63.40	78.19	92.95	107.7	122.4	137.0	151.6	166
17 17.91 20.56 24.70 31.80 38.99 46.19 53.39 67.77 82.10 96.41 110.7 19 15.07 17.75 21.93 29.02 36.16 43.29 50.41 64.64 78.80 92.96 107.1 19 13.61 16.32 20.52 36.16 43.29 50.41 64.64 78.80 92.96 107.1 19 13.61 16.32 20.52 27.60 34.69 41.78 48.66 62.99 77.07 91.13 105.2 20 12.35 15.10 19.30 26.33 40.47 47.51 61.55 75.55 89.54 103.5	23.45 27.58	34.69	41.93	49.18	56.46	70.98	85.45	16.66	114.3	128.7	143.0	157
15 17.75 21.93 29.02 36.16 43.29 50.41 64.64 78.80 92.96 107.1 19 13.61 16.32 20.52 27.60 34.69 41.78 48.86 62.99 77.07 91.13 105.2 20 12.55 15.10 19.30 26.34 40.47 47.51 61.55 75.55 89.54 103.5	20.56 24.70	31.80	38.99	46.19	53.39	67.77	82.10	96.41	110.7	124.9	139.1	153
13.61 16.32 20.52 27.60 34.69 41.78 48.86 62.99 77.07 91.13 105.2 20 12.35 15.10 19.30 26.36 33.42 40.47 47.51 61.55 75.55 89.54 103.5 20 12.35 15.10 19.30 26.36 33.42 40.47 47.51 61.55 75.55 89.54 103.5 20 12.35 15.10 19.30 26.36 33.42 40.47 47.51 61.55 75.55 89.54 103.5	17.75 21.93	29.02	36.16	43.29	50.41	64.64	78.80	92.96	107.1	121.1	135.2	149
20 12.35 15.10 19.30 26.36 33.42 40.47 47.51 61.55 75.55 89.54 103.5 20	16.32 20.52	27.60	34.69	41.78	48.86	62.99	70.77	91.13	105.2	119.2	133.2	147
	15.10 19.30	26.36	33.42	40.47	47.51	61.55	75.55	89.54	103.5	117.4	131.4	145
0 10.58 13.35 17.54 24.55 31.54 38.52 45.49 59.41 73.30 87.16 101.0	13.35 17.54	24.55	31.54	38.52	45.49	59.41	73.30	87.16	101.0	114.8	128.7	142
20 9.11 11.89 16.05 22.99 29.91 36.83 43.74 57.54 71.32 85.05 98.83	11.89 16.05	22.99	29.91	36.83	43.74	57.54	71.32	85.05	98,83	112.6	126.3	140
24 8.41 11.18 15.32 22.11 36.00 42.87 56.61 70.33 84.04 97.74	11.18 15.32	22.22	29.11	36.00	42.87	56.61	70.33	84.04	97.74	1.11.4	125.1	138

A/um/

Valores de longitudes de onda para un mínimo de orden P = 0.5 para distintos espesores y distintas concentracciones de dopante en el = • substrato; para Silicio tipo " p

Tabla № 6

					P = 1.0		: G. :	OALL		x			
1	64.17	57.14	50.09	43.05	36.01	28.96	21.92	18.40	14.88	11.36	7.85	5.76	4.39
11	64,69	57.62	50.57	43.51	36.45	29.39	22.32	18.80	15.27	11.75	8.26	6.20	4.90
72.	63.69	58.60	51.52	44.43	37.35	30.26	23.17	19.63	16.11	12.61	9.19	7.26	6.11
73.	66.85	59.74	52.62	45.50	38.38	31.27	24.17	20.64	17.14	13.69	10.39	8.53	1.09
74.	67.62	60.49	53.36	46.22	39.09	31.97	24.87	21.35	17.86	14.46	11.20	9.15	7.22
75.	68.51	61.35	54.20	47.05	39.90	32.77	25.68	22.17	18.71	15.34	11.98	9.49	7.18
.17.	70.19	63.00	55.82	48.63	41.47	34.33	27.24	23.75	20.30	16.81	12.79	9,60	7.11
79.	71.89	64.67	57.45	50.24	43.06	35.90	28.80	25.27	21.67	17.78	13.02	9.58	7.08
82.	75.62	68.34	61.07	53.79	46.52	39.21	31.73	27.77	23.48	18.64	13.18	9.60	7.09
85.	86.77	70.65	63.31	55.97	48.58	41.04	33.08	28.75	24.06	18.90	13.27	9.65	7.12
87.	80.55	13.14	65.70	58.20	50.57	42.63	34.08	29.42	24.42	19.07	13.34	9.70	7.15
92.	84.92	77.26	69.49	61.52	53.27	44.53	35.11	30.08	24.81	19.28	13.45	9.77	7.20
96.	88.46	80.48	72.33	63.90	55.09	45.77	35.85	30.62	25.19	19.54	13.61	9.87	7.28
102	94.30	85.61	76.65	67.36	57.71	47.63	37.06	31.56	25.91	20.05	E6.EI	10.10	7.42
108	99.24	89.78	80.08	70.10	59.81	49.19	38.15	32.44	26.60	20.55	14.24	10.25	7.82
114	104.4	94.15	83.73	80.67	62.20	51.09	39.51	33.56	27.48	21.22	14.66	11.94	8.59
118	107.7	10.79	86.21	75.15	63.92	52.43	40.51	34.42	28.10	21.66	16.63	11 96	8.62
121	110.8	99.76	88.61	77.21	65.67	53.76	41.51	35.26	28.92	23.05	17.10	12.02	8.61
126	114.8	103.4	91.82	80.02	67.90	55.62	42.90	36.04	33.36	25.60	17.20	12.05	8.68
127	116.0	104.6	92.65	80.82	68.62	56.00	48.20	42.37	34.07	25.72	17.25	12.12	

Valores de longitudes de onda para un máximo de orden P = 1.0 para distintos espesores y distintas concentraciones de dopante en el substrato; para Silicio tipo " p ".

(Int) p														
N (cm - 3)	0.5	0.7	1.0	1.5	2.0	2.5	3.0	4.0	5.0	6.0	7.0	8.0	0.6	10.0
1 × 10 ¹⁶		5.04	7.23	10.82	14.39	17.98	21.56	28.70	35.82	42.97	48.20	53, 32	59,69	66.01
2 × 10 ¹⁶	3.63	5.06	7.22	10.82	14.43	18.00	21.58	28.73	35.53	40.37	46.79	53.25	59.63	65.87
5 × 10 ¹⁶	3.62	5.05	7.22	10.81	14.40	17.96	21.53	27.02	33.49	39.92	46.21	52.54	58.72	64.92
1 × 10 ¹⁷	3.61	5.04	7.21	10.78	14.37	17.05	20.32	26.80	33.15	39.47	45.69	51.88	57.98	64.07
2×10^{17}	3.61	5.04	7.19	10.77	13.64	16.90	20.04	26.52	32.78	38.96	45.10	51.14	57.16	63.10
5 × 10 ¹⁷	3.60	5.03	7.18	10.21	13.46	16.67	19.84	26.07	32.20	38.24	44.18	50.06	55.85	61.59
1 × 10 ¹⁸	3.60	5.03	6.84	10.11	13.31	16.47	19.58	25.70	31.69	37.57	43.35	49.04	54.63	60.15
2 × 10 ¹⁸	3.60	4.81	6.78	10.00	13.16	16.26	19.31	25.28	31.09	36.76	42.30	47.72	53.04	58.26
3 × 10 ¹⁸	3.45	4.79	6.75	9.95	13.07	16.13	19.14	25.01	30.69	36.20	41.56	46.79	51.91	56.95
5 x 10 ¹⁸	3.45	4.77	6.72	9.90	12.99	16.00	18.95	24.65	30.10	35.34	40.41	45.37	50,25	55.08
7×10^{18}	3.44	4.76	6.71	9.86	12.92	15.89	18.78	24.32	29.56	34.59	39.49	44.31	49.09	53.84
1 × 10 ¹⁹	3.43	4.75	6.68	9.81	12.82	15.73	18.54	23.85	28.86	02.66	38.47	43.20	47.92	52.63
2 × 10 ¹⁹	3.42	4.73	6.64	9.70	12.57	15.27	17.81	22.61	27.30	31.97	36.63	41.30	45.96	50.63
3 × 10 ¹⁹	3.42	4.72	6.61	9.59	12.32	14.82	17.19	21.83	26.46	31.11	35.75	40.40	45.05	49.70
5×10^{19}	3.41	4.70	6.55	9.35	11.79	14.09	16.38	20.99	25.61	30.24	34.87	39.51	44.14	48.77
7 × 10 ¹⁹	3.41	4.68	6.48	9.08	11.37	13.65	15.94	20.54	25.16	29.78	34.41	39.03	43.65	48.27
1×10^{20}	3.40	4.65	6.36	8.72	10.97	13.25	15.55	20.15	24.77	29.38	33.99	38,61	43.22	47.83
2 × 10 ⁴⁰	3.36	4.50	5.89	8.11	10.38	12.68	14.97	19.58	24.18	28.78	33, 38	37.97	42.57	47.17
5 × 10 ²⁰	3.15	4.00	5.33	7.61	06.9	12.19	14.49	19.08	23.66	28.25	32.83	37.42	42.00	46.58
1 × 10 ⁴¹	2.84	3.73	5.09	7.37	9.66	11.96	14.25	18.83	23.41	27.98	32.56	37.14	41.71	46.29
					x		d . OdII		P = 1.5					
TABLA N° 8										٦				

Valores de longitudes de onda para un mínimo de orden P = 1.5 para el distintos espesores y distintas concentraciones de dopante en = • പ substrato; para Silicio tipo "

				0					. -				
34	31.45	27.99	24.54	21.09	17.64	14.19	10.74	9.01	7.29	5.57	3.87	2.89	
35	31.65	28,20	24.74	21.29	17.83	14.38	10.92	9.20	7.48	5.78	4.13	3.18	2.30
35	32.07	28.61	25.14	21.68	18.22	14.77	11.32	9.61	7.92	6.28	4.50	3.18	2.28
36	32.55	29.08	25.61	22.14	18.68	15.23	11.82	10.13	8.46	6.62	4.50	3.17	
36	32.87	29.40	25,93	22.46	19.00	15.56	12.16	10.46	8.67	6.65	4.50	3.17	
36	33.23	29.76	26.29	22.82	19.37	15.94	12.51	10.71	8.76	6.66	4.50	3.17	
37	33.93	30.45	26.98	23.51	20.05	16.55	12.86	10.87	8.80	6.67	4.50	3.17	
38	34.63	31.14	27.65	24.15	20.60	16.91	12.97	10.92	8.82	6.68	4.50	3.17	
39	36.00	32.41	28.77	25.03	21.18	17.19	13.07	10.97	8.84	6.69	4.51	3.18	
40	36.66	32.96	29.19	25.32	21.34	17.28	13.11	11.00	8.86	6.70	4.51	3.18	
40	37.17	33, 35	29.46	25.50	21.45	17.34	13.15	11.02	8.88	6.71	4.52	3.18	
41	37.70	33.74	29.74	25.68	21.57	17.41	13.19	11.05	8.90	6.73	4.52	3.26	
42	38.03	34.00	29.94	25.83	21.68	17.49	13.24	11.09	8.93	6.74	4.54	3.26	2.33
42	38.51	34.40	30.26	26.08	21.87	17.63	13.33	11.16	8.97	6.78	4.66	3.26	2.33
43	38.91	34.73	30.53	26.30	22.04	17.75	13.41	11.22	9.02	6.99	4.66	3.26	2.33
43	39.35	35,11	30.82	26.56	22.22	17.87	13.50	11.64	9.32	6.99	4.66		
43	39.66	35,38	31.04	26.72	22.40	17.98	13.97	11.64	9.32	66.9			
44	39.93	35.62	31.26	26.92	23.05	18.62	13.99	11.66	9.31				
44	40.39	35,95	32.56	27.92	23.29	18.66	13.99						
46.	41.86	37,20	32.57	27.96	23.32	18.63							
PO	0.9	8.0	7.0	6.0	5.0	4.0	3.0	2.5	2.0	1.5	1.0	0.7	0.5

Valores de longitudes de onda para un máximo de orden P = 2.0 para distintos espesores y distintas concentraciones de dopante en el substrato; para Silicio tipo " p ".

Tabla № 9

(m) p														
((mo) N	0.5	0.7	1.0	1.5	2.0	2.5	3.0	4.0	5.0	6.0	7.0	8.0	0.6	10.0
1 × 10 ¹⁶											24.22	27,68	31.14	34.59
2 × 10 ¹⁶	2								17.29	20.77	24.22	27.68	31.13	34.57
5×10^{16}							10.39	13.85	17.31	20.76	23.64	26,96	30.24	33.54
1×10^{17}						8.66	10.39	13.84	16.91	20.22	23.51	26.80	30.08	33.34
2×10^{17}				5.19	6.93	8.66	10.38	13.50	16.82	20.12	23.39	26.65	29.91	33.14
5×10^{17}			3.46	5.19	6.92	8.46	10.13	13.42	16.71	19.97	23.22	26.45	29.68	32.88
1 × 10 ¹⁸		2.42	3.46	5.19	6.77	8.42	10.08	13.36	16.62	19.68	23.08	26.28	29.46	32.62
2 × 10 ¹⁸		2.43	3.46	5.08	6.74	8.39	10.03	13.29	16.52	19.72	22.90	26,06	29,19	32.31
3 × 10 ¹⁸		2.43	3.41	5.07	6.72	8.37	10.00	13.25	16.46	19.64	22.79	25.92	29.02	32.09
5 × 10 ¹⁸		2.42	3.40	5.06	6.72	8.35	9.98	13.21	16.39	19.54	22.65	25.72	28.76	31.76
7×10^{18}		2.39	3.39	5.06	6.71	8.34	9.96	13.17	16.34	19.45	22.52	25.54	28.51	31.44
1 × 10 ¹⁹		2.39	3.39	5.05	6.70	8.32	9.94	13.13	16.25	19.32	22.32	25.27	28.16	31.02
2 × 10 ¹⁹		2.38	3.39	5.04	6.68	8.29	9.88	13.00	16.00	18.90	21.73	24.52	27.31	30.09
3 × 10 ¹⁹		2.38	3.39	5.04	6.66	8.26	9.83	12.85	15.73	18.52	21.29	24.06	26.82	29.59
5 × 10 ¹⁹		2.38	3.38	5.03	6.64	8.20	9.70	12.54	15.29	18.04	20.80	23,56	26.32	29.08
7 × 10 ¹⁹	×.,	2.38	3.38	5.02	6.60	8.11	9.54	12.29	15.03	17.78	20.54	23.29	26.05	28+81
1 × 10 ²⁰		2.38	3.38	4.99	6.54	7.96	9.33	12.05	14.80	17.55	20.30	23.06	25.81	28.57
2×10^{20}		2.37	3.36	4.89	6.26	7.61	8.97	11.71	14.46	17.21	19.96	22.71	25.46	28.21
5 × 10 ²⁰		2.36	3.25	4.58	5.93	7.30	8.67	11.42	14.17	16.91	19,66	22.41	25,15	27.90
1×10^{21}		2.28	3.07	4.42	5.79	7.16	8.53	11.28	14.02	16.77	19.51	22.25	25.00	27.74
						x		L CALL	:	P = 2.	5			
TABLA Nº 10											1			

2.5 para el distintos espesores γ distintas concentraciones de dopante en Valores de longitudes de onda para un mínimo de orden P = = д substrato; para Silicio tipo "

(mu)b N(cm ⁻³)	0.5	0.7	1.0	1.5	2.0	2.5	3.0	4.0	5.0	6.0	7.0	8.0	0.6	10.0
1 × 10 ¹⁶														27,56
2 × 10 ¹⁶											19.29	22.06	24.82	27.57
5 x 10 ¹⁶									13.79	16.55	19.28	22.04	24.35	26.99
1 × 10 ^{1/}								11.03	13.78	16.53	18.91	21.57	24.21	26.87
2 × 10 ¹						6.89	8.27	11.02	13.51	16.17	18.82	21.47	24.11	26.75
5×10^{1}				4.14	5.51	6.89	8.13	10.80	13.45	16.10	18.74	21.37	23.98	26.60
1 × 10 ¹⁶			2.76	4.14	5.52	6.77	8.10	10.76	13.40	16.04	18.66	21.27	23.87	26.46
2 × 10 ¹⁸			2.76	4.09	5.41	6.75	8.08	10.72	13,35	15.96	18.57	21.16	23.74	26.30
3 × 10 ¹⁸			2.76	4.07	5.41	6.74	8.07	10.70	13.32	15.93	18.51	21.09	23.65	26.20
5 × 10 ¹⁸			2.75	4.07	5.40	6.73	8.05	10.68	13.29	15.89	18.46	21.02	23.55	26.07
1 × 10 ¹⁸			2.72	4.06	5.40	6.72	8.04	10.67	13.27	15.85	18.41	20.95	23.46	25.95
1 × 10 ¹⁹			2.72	4.06	5.39	6.72	8.04	10.65	13.24	15.80	18.34	20.84	23.31	25.75
2 × 10 ¹⁹			2.72	4.06	5.39	6.71	8.02	10.61	13.17	15.66	18.10	20.48	22.82	25.15
3 × 10 ⁴³			2.72	4.06	5.38	6.70	8.01	10.58	13.08	15.49	17.83	20.14	22.44	24.74
5 x 10 ⁴³			2.72	4.05	5.38	6.69	1.98	10.48	12.84	15.13	17.42	19.71	22.00	24.30
7 × 10 ^{±2}			2.72	4.05	5.38	6.68	7.95	10.34	12.62	14.89	17.18	19.47	21.77	24.06
1 × 10 ²⁰			2.72	4.05	5.37	6.65	7.86	10.13	12.40	14.68	16.97	19.27	21.56	23.86
2 × 10 ⁻⁰			2.72	4.05	5.30	6.42	7.54	9.80	12.09	14.38	16.67	18.97	21.26	23.56
5 × 10 ²⁰			2.72	3.88	4.98	6.12	7.25	9.54	11.83	14.12	16.42	18.71	21.00	23.30
1 × 10_			2.62	3.71	4,85	5.99	7.13	9.42	11.71	14.00	16.29	18.58	20.88	23.17
TABLA N° 11						۲		" d " Odii		Δ,	= 3.0			
												1		

Valores de longitudes de onda para un máximo de orden P = 3.0 para el distintos espesores y distintas concentraciones de dopante en =' substrato; para Silicio tipo " p

Tabla Nº 11

0.7	1.0	1.5	2.0	2.5	3.0	4.0	5.0	6.0	7.0	8.0	9.0	
											20.63	22
								13.75	16.05	18.34	20.62	22
						9.17	11.46	13.75	16.04	18.05	20.27	22
					6.88	9.17	11.46	13.55	15.76	17.98	20.21	22.
			4.58	5.73	6.88	9.03	11.25	13.48	15.69	17.90	20.11	22.
		3.44	4.58	5.66	6.77	00.6	11.22	13.43	15.64	17.84	20.03	22.
	2.29	3.44	4.52	5.64	6.75	8.98	11.19	13.39	15.58	17.76	19.94	22.
	2.29	3.41	4.52	5.63	6.75	8.96	11.17	13.36	15.54	17.72	19.88	22.
	2.29	3.40	4.51	5.63	6.74	8.95	11.15	13.33	15.51	17.67	19.82	21.
	2.29	3.39	4.51	5.63	6.73	8.94	11.13	13.31	15.47	17.62	19.75	21.
	2.27	3.39	4.51	5.62	6.73	8.93	11.11	13.28	15.42	17.55	19.66	21.
	2.27	3.39	4.50	5.61	6.72	8.90	11.06	13.19	15.28	17.34	19.36	21.
	2.27	3.39	4.50	5.61	6.71	8.88	11.01	13.09	15.12	11.11	19.09	21.
	2.27	3.39	4.50	5.60	69.9	8.82	10.87	12.86	14.83	16.79	18.75	20.
	2.27	3.38	4.49	5.59	6.67	8.75	10.73	12.69	14.64	16.66	18.57	20.
	2.27	3.38	4.48	5.57	6.62	8.62	10.54	12.52	14.48	16.44	18.40	20.
	2.26	3.37	4.45	5.45	6.42	8.36	10.32	12.27	14.23	16.20	18.16	20.
	2.26	3.30	4.25	5.22	6.19	8.15	10.11	12.07	14.03	15.99	17.95	19.
	2.22	3.17	4.14	5.11	60.9	8.05	10.01	11.97	13.92	15.88	17.84	19.
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1											
				۲		d . Odli	ч	1.5				

.

,

Valores de longitudes de onda para un mínimo de orden P = 3.5 para distintos espesores y distintas concentraciones de dopante en el substrato; para Silicio tipo " p ".

Tabla Nº 12

8.U 9.U I(15.69 17.66 1	15.69 17.41 19	15.46 17.38 1	15.41 17.31 1	15.36 17.26 1	15.31 17.20 1	15.29 17.17 1	15.26 17.13 1	15.24 17.10 1	15.20 17.06 1	15.11 16.91 1	14.99 16.75 1	14.75 16.46 1	14.57 16.29 1	14.42 16.13 1	14.19 15.91 1	14.01 15.72 1	13.91 15.63 1	
0.7		13.73	13.73	13.55	13.50	13.46	13.42	13.40	13.38	13.36	13.34	13.28	13.21	13.03	12.86	12.70	12.48	12.29	12.20	
0.0			11.77	11.77	11.59	11.56	11.53	11.51	11.50	11.48	11.47	11.43	11.40	11.29	11.15	11.00	10.76	10.57	10.48	P = 4.0
0.0			9.81	9.81	9.68	9.65	9.63	9.61	9.60	9.60	9.58	9.56	9.55	9.50	9.43	9.30	9.05	8.86	8.77	
e F				7.85	7.82	7.74	7.72	7.71	7.70	7.70	7.69	7.68	7.67	7.66	7.63	7.58	7.35	7.15	7.05	TIPO " I
2					5.89	5.82	5.81	5,80	5.80	5.79	5.79	5.79	5.78	5.78	5.77	5.76	5.67	5.44	5.34	
r.,					4.91	4.90	4.85	4.84	4.84	4.84	4.83	4.83	4.83	4.83	4.82	4.82	4.79	4.59	4.49	~
						3.92	3.92	3.88	3.88	3.88	3.87	3.87	3.87	3.87	3.87	3.87	3.86	3.76	3.64	
2:4						2.94	2.94	2.94	2.92	2.91	2.91	2.91	2.91	2.91	2.91	2.91	2.91	2.90	2.80	
2.4																				
c.0																				

Valores de longitudes de onda para un máximo de orden P = 4.0 para distintos espesores y distintas concentraciones de dopante en el = • substrato; para Silicio tipo " p

Tabla Nº 13

	 and the second se	and the second se					10 COLUMN 10 COLUMN				
									12.19	13.71	
						7.62	9.141	10.67	12.08	13.57	
				4.57	6.09	7.62	9.047	10.55	12.04	13.53	
			3.81	4.57	6.04	7.54	9.030	10.52	12.01	13.50	
	2.29	3.05	3.81	4.53	6.03	7.52	9,015	10.50	11.99	13.47	
	2.29	3.05	3.78	4.53	6.02	7.52	9.006	10.49	11.97	13.45	
	2.29	3.02	3.78	4.52	6.02	7.51	8.997	10.48	11.96	13.44	
	2.29	3.02	3.77	4.52	6.02	7.51	8.992	10.47	11.95	13.42	
	2.27	3.02	3.77	4.52	6.01	7.50	8.984	10.46	11.94	13.40	
	2.27	3.02	3.77	4.52	6.01	7.49	8.970	10.44	11.90	13.36	
	2.27	3.02	3.77	4.52	6.01	7.49	8.959	10.42	11.87	13.30	
	2.27	3.02	3.77	4.52	6.00	7.47	8.93	10.36	11.76	13.15	
	2.27	3.02	3.77	4.51	6.00	7.46	8.887	10.28	11.65	13.02	
	2.27	3.02	3.77	4.51	5.98	7.42	8.799	10.16	11.53	12.89	
	2.27	3.02	3.77	4.50	5.90	7.25	8.608	9.974	11.34	12.71	
	2.27	3.01	3.69	4.36	5.72	7.08	8.451	9.822	11.19	12.57	
	2.26	2.92	3.59	4.27	5.64	1.01	8.380	9.751	11.02	12.49	
			~		TIPO "		P = 5	0			

Valores de longitudes de onda para un máximo de orden P = 5.0 para el distintos espesores y distintas concentraciones de dopante en = д substrato; para Silicio tipo "

Página **51** de **65**

~									0.0				I
		503.8	513.0	522.5	531.7	541.1	560.0	578.9	597.8	617.3	635.5	649.4	672
360.0	363.4	368.6	377.3	386.1	394.8	403.6	421.0	438.4	455.8	473.9	490.2	510.2	52
235.8	238.8	243.5	251.5	259.3	267.2	275.1	290.7	306.1	321.3	336.6	351.6	369.0	38
170.8	173.7	178.1	185.4	192.6	199.8	206.9	221.0	235.1	249.1	263.1	277.2	290.7	30
123.0	125.9	130.2	137.4	144.6	151.6	158.7	172.7	186.6	200.7	214.9	229.1	242.7	25
80.51	83.37	87.62	94.63	101.6	108.5	115.4	129.4	143.5	157.8	172.3	186.8	201.4	210
59.03	61.84	66.01	72.89	79.75	86.66	93.63	107.8	122.2	136.7	151.3	166.0	180.6	19
43.78	46.54	50.63	57.44	64.34	71.35	78.64	92.87	107.4	122.1	136.7	151.3	166.0	18
36.99	39.72	43.78	50.61	57.57	64.68	71.86	86.38	101.0	115.6	130.2	144.8	159.4	17
30.15	32.84	36.89	43.79	50.86	58.06	65.32	79.89	94.50	1.901	123.6	138.2	152.7	16
26.51	29.19	33.26	40.24	47.39	54.63	61.91	76.50	91.09	105.6	120.1	134.6	149.1	16
23.24	25.92	30.02	37.08	44.28	51.54	58.83	73.40	87.95	102.4	116.9	131.3	145.7	16
17.16	20.58	24.69	31.75	38.91	46.09	53.27	67.62	16.18	96.18	110.4	124.6	138.8	15
15.64	18.29	22.44	29.51	36.64	43.77	50.89	65.11	79.30	93.45	107.5	121.6	135.7	ř
13.38	16.10	20.28	27.34	34.42	41.49	48.55	62.64	76.71	90.74	104.7	118.7	132.7	14
12.30	15.05	19.25	26.31	33.37	40.43	47.46	61.52	75.52	89.50	103.5	117.4	131.3	14
11.35	14.03	18.34	25.39	32.42	39.45	46.47	60.47	74.43	88.37	102.3	116.2	130.1	14
9.980	12.77	16.89	23.99	30.99	37.97	44.94	58.85	72.74	86.60	100.4	114.3	128.1	14
8.885	11.69	15.90	22.89	29.86	36.81	43.76	57.61	71.45	85.27	90.06	112.8	126.6	14
8.348	11.15	15.35	22.32	29.28	36.22	43.14	56.98	70.78	84.56	98.33	112.1	125.8	H

Valores de longitudes de onda para un mínimo de orden P = 0.5 para distintos espesores y distintas concentraciones de dopante en el substrato; para Silicio tipo " n ".

Tab	a	N٥	16

	17.30	25.92	34.42	42.87	45.30	58.89	72.11	84.96	97.08	110.1	122.7	
12.10	17.30	25.87	33.65	37.80	45.07	58.36	71.32	84.12	96.15	108.9	121.2	
12.13	17.29	22.99	30.56	37.46	44.25	57.65	70.46	83.09	95.45	107.5	118.8	
12.13	17.20	23.31	30.32	37.25	44.03	57.26	70.03	82.55	94.72	106.6	118.3	
12.12	15.56	22.66	29.50	36.23	42.75	55.39	67.61	79.43	68.06	101.7	112.4	
10.85	15.08	21.91	28.47	34.82	41.00	52.88	64.04	74.43	84.06	95.96	101.3	
10.61	14.72	21.30	27.61	33.68	39.51	50.36	60.08	68.78	76.78	84.39	91.76	
10.34	14.32	20.65	26.64	32.27	37.48	46.69	54.74	62.22	69.48	76.66	83.82	
10.19	14.08	20.24	25.96	31.17	35.87	44.09	51.54	58.76	16.29	73.07	80.25	
9.99	13.77	19.64	24.85	29.38	33.43	40.84	48,00	55.14	62.29	69.48	76.69	
9.84	13.53	19.12	23.88	27.99	31.76	38.95	46.08	53.23	60.41	67.62	74.84	
9.69	13.27	18.46	22.73	26.51	30.11	37.21	44.36	51.53	58.73	65.95	73.17	
9.72	12.95	16.92	20.36	23.79	27.26	34.31	41.43	48.59	55.75	62.92	70.10	
9.67	12.31	15.70	19.05	22.48	25.98	33.05	40.17	17.31	54.46	61.61	68.76	
9.14	11.10	14.33	17.73	21.21	24.73	31.82	39.94	46.06	53.18	60.31	67.43	
8.48	10.35	13.65	17.11	20.62	24.15	31.25	38.36	45.48	52.59	59.72	66.83	
7 7.81	9.693	13.07	16.56	20.09	23.63	30.73	37.85	44.95	52.06	20.17	66.27	
6.78	8.785	12.26	15.79	19.33	22.87	29.97	37.07	44.16	51.25	58.34	65.44	
6 6.02	8.118	11.65	15.20	18.75	22.29	29.39	36.48	43.57	50.67	57.75	64.85	
0 5.70	7.815	11.36	14.91	18.46	22.01	29.11	36.20	43.30	50.39	57.48	64.57	
					F	. u . 040	•	= 1.0			2.	
			_	-	H	-		D*1 #	٦			

Valores de longitudes de onda para un máximo de orden P = 1.0 para distintos espesores y distintas concentraciones de dopante en el substrato; para Silicio tipo " n

india /														
-3/ 0.	S	0.7	1.0	1.5	2.0	2.5	3.0	4.0	5.0	6.0	7.0	8.0	0.6	10.0
10 ¹⁶			7.24	10.84	14.39	18.02	21.63	28.80	35.95	43.11	48.54	54.51	61.73	67.57
10 ¹⁶ 3.	.63	5.07	7.24	10.82	14.40	18.02	21.61	28.77	34.50	41.14	48.08	54.29	61.35	67.28
10 ¹⁶ 3.	.61	5.05	7.21	10.80	14.42	18.01	21.60	27.63	34.32	40.91	47.46	53.96	60.98	66.79
10 ¹⁷ 3.	.61	5.05	7.21	10.84	14.40	17.45	20.87	27.57	34.18	40.73	47.23	53.66	60.24	66.35
10 ¹⁷ 3.	.60	5.04	7.20	10.80	13.93	17.30	20.62	27.22	33.73	40.14	46.48	52.74	58.48	65.03
10 ¹⁷ 3.	.60	5.04	7.19	10.41	13.74	17.04	20.31	26.74	33.04	39.22	45.28	51.22	57.04	62.73
10 ¹⁸ 3.	.60	5.04	7.00	10.30	13.59	16.83	20.02	26.27	32.36	38.27	44.01	49.57	54.95	60.17
10 ¹⁸ 3.	.60	4.87	6.88	10.18	13.40	16.56	19.66	25.68	31.44	36.95	42.21	47.27	52.19	57.00
10 ¹⁸ 3.	.49	4.84	6.84	10.10	13.27	16.37	19.40	25.22	30.72	35.93	40.91	45.75	50.51	55.22
10 ¹⁸ 3.	.47	4.81	6.78	9.98	13.09	16.10	19.00	24.50	29.62	34.49	39.25	43.95	48.64	53.32
10 ¹⁸ 3.	. 45	4.78	6.74	9.89	12.94	15.86	18.66	23.90	28.81	33.56	38.26	42.94	47.61	52.29
10 ¹⁹ 3.	. 44	4.76	69.9	9.79	12.76	15.57	18.24	23.22	27,98	32.66	37.34	42.01	46.68	51,35
10 ¹⁹ 3.	.43	4.74	6.64	9.63	12.37	14.86	17.22	21.84	26.47	31.10	35.74	40.38	45.03	49.67
10 ¹⁹ 3.	.42	4.72	6.59	9.45	11.95	14.27	16.56	21.15	25.77	30.40	35.03	39.66	44.29	48.92
10 ¹⁹ 3.	.41	4.69	6.49	9.04	11.31	13.58	15.87	20.47	25.08	29.70	34.32	38.94	43.55	48.17
10 ¹⁹ 3.	. 39	4.64	6.34	8.70	10.95	13.'23	15.53	20.13	24.75	29.37	33.98	38.59	43.21	47.82
10 ²⁰ 3.	.37	4.57	6.12	8.37	10.64	12.93	15.23	19.84	24.45	29.06	33.67	38.28	42.88	47.49
10 ²⁰ 3.	.28	4.30	5.63	7.89	10.18	12.48	14.79	19.39	23.99	28.60	33.20	37.79	42.39	46.99
10 ²⁰ 2	.98	3.87	5.23	7.52	9.824	12.13	14.43	19.03	23.63	28.23	32.82	37.41	42.00	46.58
10 ²¹ 2	.76	3.67	5.04	7.34	9.648	11.95	14.25	18.85	23.45	28.04	32.63	37.22	41.81	46.39
						-	. Odili		P = 1.5					
A Nº 1F											٦			

Valores de longitudes de onda para un mínimo de orden P = 1.5 para distintos espesores y distintas concentraciones de dopante en el substrato; para Silicio tipo " n

Tabla Nº 18

			A State of the		11						0.0		Ť
						13.97	18.68	23.32	27.98	32.79	37.27	41.67	4
				9.33	11.65	13.98	18.66	23.30	29.96	32.26	36.28	41.15	4
			6.99	9.31	11.65	13.99	18.64	22.87	27.26	31.72	36.15	40.82	4
		4.66	6.99	9.33	11.65	13.99	18.28	22.76	27.22	31.66	36.10	40.49	-47
3.	. 26	4.67	6.99	9.33	11.65	13.70	18.17	22.61	27.04	31.45	35.82	40.16	4
2.33 3.	.27	4.67	6.99	9.13	11.37	13.60	18.03	22.42	26.77	31.10	35,39	39.66	4
2.36 3.	.27	4.66	6.85	9.08	11.30	13.51	17.89	22.22	26.52	30.77	34.98	39.15	4
2.33 3.	.27	4.57	6.81	9.03	11.22	13.41	17.73	21.99	26.20	30.34	34.41	38.40	~
2.33 3.	.24	4.56	6.79	8.99	11.17	13.34	17.62	21.83	25.95	29.99	33.92	37.74	
2.33 3.	20	4.54	6.75	8.94	11.10	13.24	17.45	21.55	25.53	29.36	33.06	36.66	
2.29 3.	19	4.53	6.73	8.90	11.04	13.16	17.31	21.31	25.13	28.81	32.39	35.92	
2.28 3.	.18	4.51	6.70	8.85	10.98	13.07	17.12	20.97	24.63	28.18	31.70	35.19	
2.28 3.	. 18	4.51	6.69	8.83	10.91	12.91	16.60	20.08	23.53	26.99	30.45	33.93	
2.28 3.	.18	4.51	6.68	8.80	10.80	12.64	16.09	19.51	22.96	26.42	29.89	33.36	
2.28 3.	18	4.50	6.67	8.67	10.43	12.11	15.51	18.94	22.40	25.86	29.33	32.80	
2.28 3.	.17	4.49	6.61	8.44	10.11	11.80	15.22	18.76	22.13	25.60	29.07	32.53	
2.28 3.	11.	4.48	6.47	8.15	9.83	11.53	14.97	18.43	21.89	25.36	28.82	32.29	
2.27 3.	.16	4.38	6.04	7.72	9.43	11.16	14.61	18.08	21.54	25.00	28.47	31.93	
2.25 3.	10.	3.99	5.69	7.41	9.14	10.87	14.34	17.80	21.26	24.73	28.18	31.65	
2.14 2.	.80	3.82	5.54	7.27	9.00	10.73	14.20	17.66	21.12	24.58	28.05	31.51	

Valores de longitudes de onda para un máximo de orden P = 2.0 para еl distintos espesores y distintas concentraciones de dopante en substrato; para Silicio tipo " n ".

(mi)p														
N(cm ⁻³)	0.5	0.7	1.0	1.5	2.0	2.5	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0
1 × 10 ¹⁶										20.77	24.33	27.69	31.15	34.61
2 x 10 ¹⁶								13.85	17.32	20.78	24.10	27.68	30.96	34.02
5 × 10 ¹⁶						8.69	10.38	13.86	17.30	20.76	23.83	27.20	30.58	33.87
1×10^{17}						8.65	10.38	13.85	17.20	20.44	23.79	27.16	30.49	33.82
2×10^{17}				5.20	6.92	8.65	10.39	13.64	17.00	20.34	23.68	27.00	30.30	33.62
5 × 10 ¹⁷			3.46	5.19	6.93	8.53	10.21	13.56	16.90	20.20	23.51	26.79	30.05	33.30
1 × 10 ¹⁸		2.42	3.46	5.19	6.82	8.49	10.17	13.49	16.79	20.07	23.33	26.56	29.78	32.97
2 × 10 ¹⁸	1.73	2.42	3.46	5.11	6.79	8.46	10.11	13.41	16.67	19.90	23.10	26.27	29.40	32.49
3 × 10 ¹⁸	1.73	2.43	3.42	5.10	6.77	8.43	10.08	13.35	16.58	19.77	22.92	26.03	29.09	32.10
5 x 10 ¹⁸	1.73	2.43	3.41	5.08	6.74	8.39	10.02	13.26	16.44	19.57	22.63	25.63	28.57	31.46
7 × 10 ¹⁸	1.73	2.39	3.40	5.07	6.72	8.36	186.9	13.18	16.32	19.39	22.37	25.29	28.15	30.98
1 × 10 ¹⁹	1.73	2.39	3.39	5.05	6.70	8.32	9.932	13.09	16.17	19.15	22.05	24.89	27.69	30.49
2 × 10 ¹⁹	1.71	2.39	3.39	5.04	6.68	8.28	9.855	12.88	15.75	18.54	21.30	24.06	26.82	29.59
3 × 10 ¹⁹	1.71	2.38	3.39	5.04	6.66	8.23	9.758	12.64	15.40	18.15	20.90	23.66	26.41	29.18
5 × 10 ¹⁹	1.71	2.38	3.38	5.02	6.60	8.11	9.519	12.25	14.99	17.74	20.49	23.35	26.00	28.76
7×10^{19}	1.71	2.38	3.37	4.99	6.53	7.95	9.314	12.04	14.79	17.54	20.29	23.05	25.81	28.56
1×10^{20}	1.70	2.37	3.36	4.95	6.40	7.76	9.121	11.86	14.61	17.36	20.12	22.87	25,63	28,38
2×10^{20}	1.70	2.36	3.32	4.76	6.11	7.47	8.843	11.59	14.34	17.10	19.85	22.60	25.35	28.10
5×10^{20}	1.68	2.31	3.15	4.51	5.88	7.25	8.625	11.38	14.13	16.88	19.63	22.38	25.13	27.88
1 × 10 ²¹	1.65	2.21	3.02	4.39	5.77	7.14	8.520	11.27	14.02	16.77	19.52	22.27	25.02	27.77
									-					
TABLA N° 20							OUT	-			٦			

/

= 2.5 para distintos espesores y distintas concentraciones de dopante en el Valores de longitudes de onda para un mínimo de orden P substrato; para Silicio tipo " n ".

5.52 4.14 5.52 2.76 4.14 5.52 2.76 4.09 5.44									
5.52 4.14 5.52 2.76 4.14 5.52 2.76 4.09 5.44							22.06	24.75	27.58
5.52 4.14 5.52 2.76 4.14 5.52 2.76 4.09 5.44					16.54	16.91	22.07	24.75	27.56
5.52 4.14 5.52 2.76 4.14 5.52 2.76 4.09 5.44			11.03	13.78	16.55	19.30	22.05	24.63	27.16
5.52 4.14 5.52 2.76 4.14 5.52 2.76 4.09 5.44	6.89	8.272	11.02	13.78	16.54	19.06	21.77	24.51	27.15
4.14 5.52 2.76 4.14 5.52 2.76 4.09 5.44	6.90	8.275	11.03	13.62	16.31	19.00	21.68	24.39	27.03
2.76 4.14 5.52 2.76 4.09 5.44	6.90	8.180	10.88	13.56	16.24	18.91	21.57	24.23	26.87
2.76 4.09 5.44	6.81	8.155	10.84	13.51	16.17	18.82	21.46	24.09	26.71
	6.79	8.129	10.80	13.45	16.09	18.71	21.33	23.92	26.51
2.76 4.09 5.43	6.77	8.108	10.77	13.41	16.03	18.64	21.23	23.80	26.35
2.73 4.08 5.42	6.75	8.082	10.72	13.34	15.94	18.52	21.06	23.58	26.06
2.73 4.07 5.41	6.74	8.062	10.69	13.29	15.87	18.41	20.91	23.37	25.80
2.72 4.06 5.40	6.72	8.038	10.65	13.23	15.77	18.26	20.71	23.10	25.46
2.72 4.06 5.39	6.71	8.022	10.60	13.11	15.52	17.85	20.15	22.45	24.75
2.72 4.06 5.39	6.70	8.005	10.54	12.93	15.22	17.51	19.80	22.09	24.36
2.72 4.06 5.38	6.69	7.954	10.32	12.58	14.86	17.14	19.43	21.73	24.02
2.72 4.05 5.37	6.64	7.848	10.12	12.39	14.67	16.96	19.26	21.55	23.85
2.71 4.04 5.34	6.55	7.683	9.941	12.22	14.51	16.80	19.10	21.40	23.70
2.71 4.01 5.16	6.28	7.410	9.692	11.98	14.28	16.57	13.87	21.17	23.46
2.66 3.79 4.92	6.06	7.207	9.502	11.80	14.10	16.39	18.69	20.99	23.28
2.54 3.68 4.82	5.97	7.114	9.412	11.71	14.01	16.30	18.60	20.89	23.19

Valores de longitudes de onda para un máximo de orden P = 3.0 para distintos espesores y distintas concentraciones de dopante en el substrato; para Silicio tipo " \mathbf{n} "

Página 57 de 65

									18.33	20.70	22.93
						11.46	13.75	16.05	18.34	20.66	22.8
					9.169	11.46	13.76	16.04	18.17	20.41	22.60
			5.73	6.877	9.170	11.46	13.62	15.87	18.11	20.33	22.59
	3.44	4.59	5.73	6.876	9.077	11.32	13.56	15.80	18.03	20.26	22.48
2.29	3.44	4.59	5.68	6.806	9.052	11.29	13.52	15.74	17.96	20.17	22.36
.61 2.29	3.44	4.54	5.67	6.787	9.024	11.25	13.47	15.67	17.87	20.06	22.24
.61 2.29	3.41	4.53	5.66	6.775	9.004	11.22	13.43	15.62	17.80	19.97	22.1
61 2.29	3.40	4.53	5.64	6.758	8.975	11.18	13.37	15.54	17.69	19.83	21.95
61 2.27	3.40	4.52	5.63	6.744	8.953	11.14	13.32	15.47	17.60	19.71	21.79
2.27	3.39	4.51	5.62	6.729	8.926	11.10	13.25	15.38	17.47	19.54	21.56
2.27	3.39	4.51	5.61	6.715	8.892	11.03	13.11	15.14	17.13	19.10	21.0
2.27	3.39	4.50	5.61	6.701	8.819	10.93	12.93	14.90	16.86	18.83	20.79
2.27	3.39	4.50	5.59	6.667	8.735	10.71	12.66	14.62	16.58	18.54	20.50
2.27	3.38	4.48	5.56	6.614	8.607	10.56	12.51	14.47	16.43	18.40	20.36
2.26	3.36	4.46	5.52	6.523	8.471	10.42	12.38	14.34	16.31	18.27	20.2
2.26	3.35	4.38	5.35	6.318	8.271	10.23	12.19	14.15	16.12	18.08	20.04
2.23	3.23	4.20	5.17	6.152	8.114	10.08	12.04	14.00	15.96	17.93	19.8
1.56 2.16	3.14	4.11	5.09	6.075	8.038	10.00	11.96	13.93	15.89	17.85	18.8

Valores de longitudes de onda para un mínimo de orden P = 3.5 para el distintos espesores y distintas concentraciones de dopante en substrato; para Silicio tipo " n ".

10.0		10 61	10 61		19.45	19.40	19.33	19.27	19.18	19.12	19.03	18.94	18.83	18.49	18.24	17.97	17.84	17.73	17.56	17.42	17.35	11 N 11		
9.0			17 03	CD - 1 -	17.67	17.48	17.41	17.36	17.29	17.24	17.17	17.10	17.01	16.76	16.53	16.26	16.13	16.01	15.84	15.70	15.64			
8.0	and the second secon		15 60	5	15.69	15.55	15.50	15.45	15.40	15.36	15.30	15.25	15.18	15.01	14.81	14.55	14.41	14.29	14.12	13.98	13.92			
n•/	and the second second		A7 61		13.73	13.74	13.62	13.54	13.49	13.46	13.42	13.38	13.33	13.26	13.09	12.84	12.70	12.58	12.40	12.27	12.20	0		
0.0			11 77		11.77	11.77	11.65	11.62	11.58	11.56	11.53	11.50	11.46	11.41	11.34	11.13	10.99	10.86	10.69	10.55	10.48	P = 4.		
0.0					9.808	9.812	9.722	9.698	9.672	9.654	9.629	9.608	9.585	9.559	9.527	9.420	9.289	9.157	8.970	8.828	8.761	10.00 10.00 10.00 10.00		
7 .0					7.849	7.847	7.788	7.772	7.752	7.741	7.723	7.709	7.694	7.682	7.670	7.636	7.571	7.460	7.260	7.110	7.042	r " ottr		
0.0						5.886	5.886	5.841	5.827	5.819	5.809	5.800	5.791	5.786	5.781	5.773	5.756	5.724	5.564	5.395	5.323	and a second		
r.,							4.91	4.91	4.86	4.86	4.85	4.84	4.84	4.83	4.83	4.83	4.82	4.80	4.72	4.54	4.47			
2.2							3.92	3.92	3.93	3.89	3.89	3.88	3.88	3.87	3.87	3.87	3.87	3.86	3.84	3.69	3.61	1.		
2								2.94	2.94	2.94	2.92	2.92	2.91	2.91	2.91	2.91	2.91	2.91	2.90	2.85	2.76			
2:									1.96	1.96	1.96	1.96	1.95	1.95	1.95	1.95	1.95	1.94	1.94	1.93	1.91			
2																								
7	16	16	16	17	17			8 :	18	. 18	18		19	19	<u>କ</u>	61	19	20	20	20	21	6 C . N		

Valores de longitudes de onda para un máximo de orden P = 4.0 para distintos espesores y distintas concentraciones de dopante en el substrato; para Silicio tipo " n ".

Tabla Nº 23

	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.7	1.0	1.5	2.0	2.5	3.0	4.0	5,0	6.0	7.0	8.0	0.6	10.0
		$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
8.577 10.29 12.01 13.72 15.43 17.15 2.57 3.43 5.861 8.575 10.29 12.01 13.62 15.31 17.01 2.57 3.43 4.29 5.145 6.860 8.516 10.21 11.89 13.58 15.27 16.93 2.57 3.43 4.25 5.090 6.711 8.467 10.18 13.53 15.27 16.93 1.72 2.55 3.40 4.25 5.099 6.771 8.461 10.11 11.76 15.43 16.79 1.72 2.55 3.40 4.25 5.099 6.771 8.465 10.11 11.71 13.35 15.01 16.79 1.71 2.55 3.40 4.24 5.073 6.739 8.431 10.07 11.71 13.23 15.01 16.79 16.59 1.71 2.55 3.39 4.23 5.061 6.739 8.435 10.01 11.71 13.23 14.90 16.5												12.00	13.72	15.50	17.15
6.861 8.575 10.29 12.01 13.62 15.31 17.01 2.57 3.43 4.29 5.145 6.860 8.516 10.21 11.89 13.53 16.53 2.57 3.43 4.29 5.145 6.807 8.467 10.16 11.81 13.51 16.69 1.72 2.57 3.41 4.25 5.099 6.771 8.465 10.11 11.16 13.41 15.17 16.69 1.72 2.55 3.40 4.24 5.099 6.771 8.465 10.07 11.71 13.43 15.01 16.69 1.72 2.55 3.40 4.24 5.091 6.771 8.445 10.07 11.71 13.43 15.09 16.761 1.72 2.55 3.40 4.24 5.071 6.750 8.413 10.07 11.71 13.43 15.04 16.761 1.71 2.55 3.40 4.23 5.015 6.739 8.431 10.07 11.71 13.93 14.07 16.63 1.71 2.55 3.40 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>8.577</td><td>10.29</td><td>12.01</td><td>13.72</td><td>15.43</td><td>17.15</td></td<>										8.577	10.29	12.01	13.72	15.43	17.15
2.57 3.43 6.860 8.516 10.21 11.87 13.53 15.27 16.95 2.57 3.43 4.29 5.145 6.807 8.497 10.18 11.87 13.55 15.21 16.90 2.57 3.41 4.25 5.105 6.793 8.477 10.16 11.87 13.51 15.13 15.01 1.72 2.55 3.40 4.25 5.099 6.771 8.465 10.11 11.78 13.43 15.03 16.66 1.72 2.555 3.40 4.24 5.077 6.759 8.413 10.07 11.71 13.43 15.03 16.65 1.71 2.55 3.40 4.24 5.077 6.759 8.413 10.07 11.71 13.43 15.03 16.65 1.71 2.55 3.40 4.23 5.077 6.759 8.413 10.07 11.71 13.93 14.97 16.55 1.71 2.55 3.39 4.23 5.077 6.739 8.213 9.775 14.97 16.65 1.70	4.29 5.145 6.800 8.516 10.21 11.89 13.53 15.27 16.95 2.57 3.43 4.26 5.145 6.807 8.497 10.18 11.87 13.55 15.22 16.90 1.72 2.57 3.41 4.25 5.099 6.771 8.465 10.14 11.81 13.41 15.74 16.93 1.72 2.55 3.40 4.25 5.099 6.771 8.465 10.11 11.71 13.43 15.09 16.72 1.72 2.55 3.40 4.24 5.079 6.771 8.446 10.11 11.71 13.43 15.09 16.73 1.71 2.55 3.40 4.24 5.079 6.779 8.431 10.07 11.71 13.43 15.09 16.65 1.71 2.55 3.40 4.24 5.079 6.779 8.431 10.07 11.71 13.49 15.03 16.65 1.71 2.55 3.40 4.24 5.073 6.793 8.431 10.07 11.49 15.09 16.15 <td>4.29 5145 6860 8.5.16 1119 13.56 1527 1690 2.57 3.41 4.28 5145 6807 8477 1018 1187 1355 1321 1690 2.57 3.41 4.25 5103 6714 8477 1016 1187 1355 1517 1690 1.72 2.55 3.40 4.25 5.090 6714 8441 1011 1178 1343 1506 1675 1.72 2.55 3.40 424 5096 6714 8413 1007 111.71 1335 1497 1669 171 2.55 3.40 424 509 6704 8433 1007 111.71 1335 1497 1665 171 2.55 340 423 5066 6714 8433 1007 111.71 1335 1497 1665 171 2.55 330 421 5014 6667 8413 1007 111.71 1393</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6.861</td> <td>8.575</td> <td>10.29</td> <td>12.01</td> <td>13.62</td> <td>15.31</td> <td>17.01</td>	4.29 5145 6860 8.5.16 1119 13.56 1527 1690 2.57 3.41 4.28 5145 6807 8477 1018 1187 1355 1321 1690 2.57 3.41 4.25 5103 6714 8477 1016 1187 1355 1517 1690 1.72 2.55 3.40 4.25 5.090 6714 8441 1011 1178 1343 1506 1675 1.72 2.55 3.40 424 5096 6714 8413 1007 111.71 1335 1497 1669 171 2.55 3.40 424 509 6704 8433 1007 111.71 1335 1497 1665 171 2.55 340 423 5066 6714 8433 1007 111.71 1335 1497 1665 171 2.55 330 421 5014 6667 8413 1007 111.71 1393							6.861	8.575	10.29	12.01	13.62	15.31	17.01
2.57 3.43 4.29 5.145 6.807 8.497 10.18 11.87 13.55 15.22 16.90 2.57 3.41 4.26 5.105 6.793 8.477 10.16 11.83 13.51 15.17 16.84 1.72 2.55 3.41 4.25 5.099 6.774 8.465 10.11 11.78 13.43 15.03 16.73 1.72 2.55 3.40 4.25 5.090 6.771 8.465 10.11 11.78 13.43 15.03 16.73 1.72 2.55 3.40 4.24 5.073 6.779 8.413 10.07 11.71 13.35 14.97 16.56 1.71 2.55 3.40 4.24 5.073 6.779 8.328 10.07 11.71 13.35 14.97 16.56 1.71 2.555 3.40 4.23 5.069 6.779 8.328 10.07 11.71 13.32 14.97 16.56 1.71 2.555 3.39 4.23 5.061 6.779 8.328 10.03 11.45 <t< td=""><td>2.57 3.43 4.29 5.145 6.607 8.497 10.16 11.87 13.55 15.22 16.90 2.57 3.43 4.26 5.105 6.733 8.477 10.16 11.81 13.43 15.73 16.84 1.72 2.55 3.40 4.25 5.090 6.771 8.431 10.00 11.77 13.43 15.00 16.77 1.72 2.55 3.40 4.24 5.004 6.730 8.431 10.00 11.77 13.43 15.00 16.73 1.72 2.55 3.40 4.24 5.004 6.773 8.431 10.00 11.77 13.43 15.00 16.66 1.71 2.55 3.40 4.24 5.076 6.730 8.431 10.00 11.77 13.23 14.90 16.65 1.71 2.55 3.39 4.23 5.066 6.772 8.30 9.978 11.37 12.99 14.01 15.93 16.65 1.71 2.55 3.39 4.23 5.061 6.774 8.302 9.475 1</td><td>2.57 3.43 4.29 5.145 6.807 8.497 10.16 11.87 13.55 15.22 16.90 1.72 2.57 3.41 4.25 5.009 6.771 8.465 10.14 11.41 11.46 15.14 16.67 1.72 2.55 3.40 4.25 5.009 6.771 8.465 10.11 11.71 13.43 15.09 16.77 1.72 2.55 3.40 4.25 5.009 6.771 8.465 10.11 11.71 13.43 15.09 16.77 1.72 2.55 3.40 4.24 5.073 6.793 8.413 10.07 11.71 13.43 15.03 16.65 1.71 2.55 3.40 4.24 5.073 6.793 8.431 10.07 11.71 13.43 14.97 16.66 1.71 2.55 3.39 4.23 5.069 6.793 8.430 10.07 14.41 15.93 16.65 1.71 2.55 3.39 4.23 5.069 6.793 8.10 9.732 11.40 17</td><td></td><td></td><td></td><td></td><td>4.29</td><td>5.145</td><td>6.860</td><td>8.516</td><td>10.21</td><td>11.89</td><td>13.58</td><td>15.27</td><td>16.95</td></t<>	2.57 3.43 4.29 5.145 6.607 8.497 10.16 11.87 13.55 15.22 16.90 2.57 3.43 4.26 5.105 6.733 8.477 10.16 11.81 13.43 15.73 16.84 1.72 2.55 3.40 4.25 5.090 6.771 8.431 10.00 11.77 13.43 15.00 16.77 1.72 2.55 3.40 4.24 5.004 6.730 8.431 10.00 11.77 13.43 15.00 16.73 1.72 2.55 3.40 4.24 5.004 6.773 8.431 10.00 11.77 13.43 15.00 16.66 1.71 2.55 3.40 4.24 5.076 6.730 8.431 10.00 11.77 13.23 14.90 16.65 1.71 2.55 3.39 4.23 5.066 6.772 8.30 9.978 11.37 12.99 14.01 15.93 16.65 1.71 2.55 3.39 4.23 5.061 6.774 8.302 9.475 1	2.57 3.43 4.29 5.145 6.807 8.497 10.16 11.87 13.55 15.22 16.90 1.72 2.57 3.41 4.25 5.009 6.771 8.465 10.14 11.41 11.46 15.14 16.67 1.72 2.55 3.40 4.25 5.009 6.771 8.465 10.11 11.71 13.43 15.09 16.77 1.72 2.55 3.40 4.25 5.009 6.771 8.465 10.11 11.71 13.43 15.09 16.77 1.72 2.55 3.40 4.24 5.073 6.793 8.413 10.07 11.71 13.43 15.03 16.65 1.71 2.55 3.40 4.24 5.073 6.793 8.431 10.07 11.71 13.43 14.97 16.66 1.71 2.55 3.39 4.23 5.069 6.793 8.430 10.07 14.41 15.93 16.65 1.71 2.55 3.39 4.23 5.069 6.793 8.10 9.732 11.40 17					4.29	5.145	6.860	8.516	10.21	11.89	13.58	15.27	16.95
2.57 3.43 4.26 5.105 6.793 8.477 10.16 11.83 13.51 15.17 16.87 1.72 2.57 3.41 4.25 5.099 6.771 8.465 10.14 11.81 13.43 15.08 16.72 1.72 2.55 3.40 4.25 5.099 6.771 8.431 10.07 11.77 13.43 15.08 16.75 1.72 2.55 3.40 4.24 5.073 6.773 8.413 10.07 11.71 13.35 14.97 16.58 1.71 2.55 3.40 4.24 5.073 6.773 8.413 10.07 11.71 13.23 14.97 16.58 1.71 2.55 3.40 4.24 5.073 6.773 8.413 10.07 11.71 13.23 14.97 16.59 1.71 2.55 3.39 4.23 5.066 6.773 8.213 9.777 14.23 16.16 1.70 2.55 3.39 4.23 <td>2.57 3.43 4.26 5.105 6.793 8.477 10.16 11.81 13.51 15.17 16.69 1.72 2.57 3.41 4.25 5.090 6.771 8.465 10.11 11.78 13.43 15.08 16.77 1.72 2.55 3.40 4.25 5.090 6.771 8.446 10.11 11.77 13.43 15.08 16.77 1.72 2.55 3.40 4.24 5.073 6.779 8.431 10.07 11.71 13.35 14.97 16.56 1.71 2.55 3.40 4.24 5.073 6.779 8.436 10.07 11.71 13.35 14.97 16.56 1.71 2.55 3.40 4.23 5.069 6.779 8.330 9.978 11.77 13.33 14.97 16.58 1.71 2.55 3.39 4.23 5.061 6.779 8.330 9.978 11.41 15.93 16.61 1.77 2.55 3.39 4.23 5.061 6.573 8.310 9.773 11.71 1</td> <td>2.57 3.43 4.26 5.105 6.793 8.477 10.16 11.83 13.51 15.17 16.64 1.72 2.57 3.41 4.25 5.099 6.774 8.465 10.11 11.78 13.48 15.14 16.79 1.72 2.55 3.40 4.25 5.090 6.771 8.413 10.07 11.71 13.33 15.08 16.73 1.72 2.55 3.40 4.24 5.077 6.739 8.431 10.07 11.71 13.33 14.97 16.59 1.71 2.55 3.40 4.24 5.077 6.739 8.332 10.07 11.71 13.33 14.90 16.59 1.71 2.55 3.39 4.23 5.066 6.739 8.302 9.475 11.37 12.30 14.40 15.93 1.70 2.55 3.39 4.23 5.066 6.779 8.302 9.475 11.40 15.93 15.63 1.70 2.55 3.39 4.21 5.025 6.533 8.110 9.627 14.40 1</td> <td></td> <td></td> <td>2.57</td> <td>3.43</td> <td>4.29</td> <td>5.145</td> <td>6.807</td> <td>8.497</td> <td>10.18</td> <td>11.87</td> <td>13.55</td> <td>15.22</td> <td>16.90</td>	2.57 3.43 4.26 5.105 6.793 8.477 10.16 11.81 13.51 15.17 16.69 1.72 2.57 3.41 4.25 5.090 6.771 8.465 10.11 11.78 13.43 15.08 16.77 1.72 2.55 3.40 4.25 5.090 6.771 8.446 10.11 11.77 13.43 15.08 16.77 1.72 2.55 3.40 4.24 5.073 6.779 8.431 10.07 11.71 13.35 14.97 16.56 1.71 2.55 3.40 4.24 5.073 6.779 8.436 10.07 11.71 13.35 14.97 16.56 1.71 2.55 3.40 4.23 5.069 6.779 8.330 9.978 11.77 13.33 14.97 16.58 1.71 2.55 3.39 4.23 5.061 6.779 8.330 9.978 11.41 15.93 16.61 1.77 2.55 3.39 4.23 5.061 6.573 8.310 9.773 11.71 1	2.57 3.43 4.26 5.105 6.793 8.477 10.16 11.83 13.51 15.17 16.64 1.72 2.57 3.41 4.25 5.099 6.774 8.465 10.11 11.78 13.48 15.14 16.79 1.72 2.55 3.40 4.25 5.090 6.771 8.413 10.07 11.71 13.33 15.08 16.73 1.72 2.55 3.40 4.24 5.077 6.739 8.431 10.07 11.71 13.33 14.97 16.59 1.71 2.55 3.40 4.24 5.077 6.739 8.332 10.07 11.71 13.33 14.90 16.59 1.71 2.55 3.39 4.23 5.066 6.739 8.302 9.475 11.37 12.30 14.40 15.93 1.70 2.55 3.39 4.23 5.066 6.779 8.302 9.475 11.40 15.93 15.63 1.70 2.55 3.39 4.21 5.025 6.533 8.110 9.627 14.40 1			2.57	3.43	4.29	5.145	6.807	8.497	10.18	11.87	13.55	15.22	16.90
1.72 2.57 3.41 4.25 5.099 6.771 8.465 10.14 11.81 13.43 15.08 16.72 1.72 2.55 3.40 4.25 5.090 6.771 8.445 10.11 11.78 13.43 15.08 16.72 1.72 2.55 3.40 4.24 5.084 6.751 8.445 10.07 11.71 13.33 14.97 16.68 1.72 2.55 3.40 4.24 5.073 6.739 8.433 10.07 11.71 13.35 14.97 16.68 1.71 2.55 3.40 4.24 5.073 6.739 8.392 10.07 11.71 13.33 14.97 16.58 1.71 2.55 3.39 4.23 5.061 6.779 8.302 9.978 11.41 15.93 16.65 1.71 2.55 3.39 4.21 5.061 6.779 8.313 9.732 11.43 12.93 16.65 1.70 2.55 3.39 4.21 5.025 6.533 8.110 9.527	1.72 2.57 3.41 4.25 5.099 6.784 8.465 10.14 11.81 13.43 15.08 16.73 1.72 2.56 3.40 4.25 5.090 6.7711 8.446 10.11 11.78 13.43 15.08 16.67 1.72 2.55 3.40 4.24 5.094 6.761 8.431 10.07 11.71 13.33 14.97 16.53 1.72 2.55 3.40 4.24 5.073 6.739 8.392 10.07 11.71 13.33 14.97 16.53 1.71 2.55 3.40 4.24 5.073 6.773 8.392 10.07 11.71 13.33 14.97 16.53 1.71 2.55 3.39 4.23 5.061 6.773 8.300 9.946 11.71 13.33 14.80 16.53 1.71 2.55 3.39 4.23 5.061 6.773 8.130 9.783 11.61 14.63 15.53 1.70 2.55 3.39 4.23 5.061 6.734 7.93	1.72 2.57 3.41 4.25 5.099 6.784 8.465 10.14 11.46 15.14 16.75 1.72 2.256 3.40 4.25 5.090 6.771 8.445 10.11 11.78 13.43 15.08 16.75 1.72 2.255 3.40 4.25 5.090 6.771 8.441 10.07 11.71 13.35 14.07 16.75 1.72 2.255 3.40 4.24 5.073 6.779 8.431 10.07 11.71 13.35 14.07 16.56 1.71 2.255 3.40 4.24 5.073 6.779 8.309 9.413 10.07 11.71 13.35 14.97 16.56 1.71 2.255 3.39 4.23 5.061 6.779 8.36 9.978 11.37 12.97 14.63 16.15 1.70 2.255 3.39 4.23 5.061 6.779 8.319 9.722 11.41 13.29 14.41 15.93 1.70 2.55 3.39 4.21 5.025 6.539 9.475 <			2.57	3.43	4.26	5.105	6.793	8.477	10.16	11.83	13.51	15.17	16.84
1.72 2.56 3.40 4.25 5.090 6.771 8.446 10.11 11.78 13.43 15.08 16.76 1.72 2.55 3.40 4.24 5.077 6.750 8.413 10.07 11.71 13.35 14.97 16.68 1.72 2.55 3.40 4.24 5.073 6.739 8.392 10.07 11.71 13.35 14.97 16.68 1.71 2.55 3.30 4.23 5.069 6.739 8.392 10.07 11.71 13.35 14.97 16.58 1.71 2.55 3.30 4.23 5.061 6.739 8.392 10.07 11.71 13.33 14.80 16.53 1.71 2.55 3.39 4.23 5.061 6.739 8.313 9.732 11.41 15.93 16.65 1.70 2.55 3.39 4.21 5.025 6.593 8.110 9.675 14.16 14.59 15.63 1.70 2.55 3.39 4.21 5.025 6.593 8.110 9.675 14.16 14	1.72 2.56 3.40 4.25 5.090 6.771 8.445 10.11 11.78 13.43 15.08 16.67 1.72 2.55 3.40 4.24 5.076 6.761 8.413 10.07 11.71 13.35 14.97 16.56 1.72 2.55 3.40 4.24 5.073 6.750 8.413 10.07 11.71 13.35 14.97 16.58 1.71 2.55 3.40 4.24 5.073 6.739 8.392 10.07 11.71 13.35 14.97 16.58 1.71 2.55 3.39 4.23 5.061 6.704 8.300 9.466 11.37 12.299 14.41 15.93 1.70 2.55 3.39 4.23 5.061 6.704 8.300 9.466 11.37 12.89 14.41 15.93 1.70 2.55 3.39 4.22 5.061 6.704 8.300 9.465 11.37 14.23 14.41 15.93 1.70 2.55 3.39 4.21 5.025 6.593 8.110 9	1.72 2.56 3.40 4.25 5.090 6.771 8.446 10.11 11.76 13.43 15.08 16.65 1.72 2.55 3.40 4.24 5.077 6.750 8.413 10.09 11.75 13.33 14.97 16.56 1.71 2.55 3.40 4.24 5.077 6.750 8.413 10.07 11.71 13.35 14.97 16.56 1.71 2.55 3.40 4.24 5.073 6.739 8.392 10.007 11.71 13.33 14.97 16.56 1.711 2.55 3.40 4.24 5.073 6.739 8.392 10.07 11.71 13.33 14.90 16.59 1.711 2.55 3.39 4.23 5.061 6.704 8.300 9.466 11.37 12.99 14.61 15.93 1.70 2.55 3.39 4.21 5.061 6.704 8.300 9.466 11.37 12.99 15.62 1.70 2.55 3.39 4.21 6.434 7.953 9.475 11.409 <t< td=""><td></td><td>1.72</td><td>2.57</td><td>3.41</td><td>4.25</td><td>5.099</td><td>6.784</td><td>8.465</td><td>10.14</td><td>11.81</td><td>13.48</td><td>15.14</td><td>16.79</td></t<>		1.72	2.57	3.41	4.25	5.099	6.784	8.465	10.14	11.81	13.48	15.14	16.79
1.72 2.55 3.40 4.24 5.084 6.761 8.431 10.09 11.75 13.39 15.03 16.66 1.72 2.55 3.40 4.24 5.077 6.730 8.413 10.07 11.71 13.35 14.97 16.58 1.71 2.55 3.40 4.24 5.073 6.739 8.392 10.07 11.71 13.35 14.97 16.58 1.71 2.55 3.39 4.23 5.069 6.729 8.368 9.978 11.37 12.90 16.53 1.70 2.55 3.39 4.23 5.061 6.704 8.300 9.846 11.41 15.93 16.15 1.70 2.55 3.39 4.23 5.061 6.704 8.300 9.846 11.41 15.93 1.70 2.55 3.39 4.21 5.025 6.593 8.110 9.672 14.11 14.29 15.61 1.70 2.55 3.38 4.21 5.025 6.593 8.110 9.675 14.05 15.40 1.70 2.54<	1.72 2.55 3.40 4.24 5.084 6.761 6.431 10.09 11.75 13.39 15.03 16.66 1.72 2.55 3.40 4.24 5.077 6.750 8.413 10.07 11.71 13.35 14.97 16.59 1.71 2.55 3.40 4.24 5.073 6.739 8.392 10.07 11.71 13.35 14.97 16.59 1.71 2.55 3.39 4.23 5.069 6.729 8.368 9.978 11.37 12.89 14.41 15.93 1.70 2.55 3.39 4.23 5.061 6.704 8.300 9.866 11.37 12.89 14.41 15.93 1.70 2.55 3.39 4.23 5.061 6.704 8.300 9.866 11.37 12.89 14.41 15.93 1.70 2.55 3.39 4.21 5.025 6.533 8.110 9.677 11.15 12.49 15.67 14.41 15.93 1.70 2.54 3.36 4.163 7.933	1.72 2.55 3.40 4.24 5.084 6.761 8.431 10.09 11.75 13.39 15.03 16.66 1.72 2.55 3.40 4.24 5.077 6.750 8.413 10.07 11.71 13.35 14.97 16.58 1.71 2.55 3.40 4.24 5.073 6.739 8.392 10.03 14.61 15.35 14.97 16.58 1.71 2.55 3.39 4.23 5.069 6.729 8.368 9.978 11.57 14.61 15.93 1.70 2.55 3.39 4.22 5.061 6.704 8.302 10.03 14.61 15.93 16.15 1.70 2.55 3.39 4.22 5.061 6.704 8.302 11.27 12.89 14.41 15.93 1.70 2.55 3.39 4.21 5.055 6.533 8.110 9.627 14.41 15.93 15.67 1.70 2.56 3.36 6.434 7.933 9.475 11.43 15.43 15.46 1.77		1.72	2.56	3.40	4.25	5.090	6.771	8.446	10.11	11.78	13.43	15.08	16.72
1.72 2.55 3.40 4.24 5.077 6.750 8.413 10.07 11.71 13.35 14.97 16.58 1.71 2.55 3.40 4.24 5.073 6.739 8.392 10.07 11.71 13.33 14.80 16.53 1.71 2.55 3.39 4.23 5.069 6.729 8.368 9.978 11.37 12.80 14.41 15.93 1.70 2.55 3.39 4.23 5.061 6.729 8.368 9.978 11.37 12.89 14.41 15.93 1.70 2.55 3.39 4.23 5.061 6.739 8.313 9.732 11.67 14.29 15.93 1.70 2.55 3.39 4.21 5.025 6.533 8.110 9.627 14.11 14.29 15.62 1.70 2.54 3.56 4.315 6.434 7.953 9.475 14.01 14.29 15.72 1.70 2.55 3.39 4.21 6.535 6.434 7.953 9.475 14.05 15.46	1.72 2.55 3.40 4.24 5.077 6.750 8.413 10.07 11.71 13.35 14.97 16.58 1.71 2.55 3.40 4.24 5.073 6.739 8.392 10.07 11.56 13.23 14.80 16.58 1.71 2.55 3.39 4.23 5.069 6.729 8.368 9.978 11.55 13.10 14.63 16.53 1.70 2.55 3.39 4.23 5.061 6.704 8.300 9.846 11.37 12.89 14.41 15.93 1.70 2.55 3.39 4.23 5.061 6.704 8.302 9.072 11.27 12.89 14.41 15.93 1.70 2.55 3.39 4.21 5.025 6.593 8.110 9.627 11.15 12.42 15.42 1.70 2.54 3.36 4.16 4.733 6.305 7.833 9.475 11.00 13.93 15.46 1.70 2.54 3.36 4.733 6.305 7.833 9.475 1	1.72 2.55 3.40 4.24 5.071 6.750 8.413 10.07 11.71 13.35 14.97 16.58 1.71 2.55 3.40 4.24 5.073 6.739 8.392 10.07 11.71 13.33 14.90 16.35 1.71 2.55 3.40 4.24 5.073 6.739 8.300 9.466 11.37 11.63 16.15 1.70 2.55 3.39 4.23 5.061 6.704 8.300 9.466 11.37 11.63 16.15 1.70 2.55 3.39 4.22 5.061 6.704 8.300 9.466 11.37 11.63 15.93 1.70 2.55 3.39 4.22 5.061 6.704 7.933 9.732 11.15 11.73 14.43 15.93 1.70 2.55 3.36 4.16 4.923 6.434 7.953 9.475 14.13 14.93 15.77 1.70 2.54 3.36 4.16 6.663 8.110 9.675 14.05 15.67 1.60		1.72	2.55	3.40	4.24	5.084	6.761	8.431	10.09	11.75	13.39	15.03	16.66
1.71 2.55 3.40 4.24 5.073 6.739 8.392 10.03 14.64 13.23 14.80 16.35 1.71 2.55 3.39 4.23 5.069 6.729 8.368 9.978 11.57 13.10 14.63 16.15 1.70 2.55 3.39 4.23 5.061 6.774 8.300 9.466 11.37 12.89 14.41 15.93 1.70 2.55 3.39 4.22 5.047 6.663 8.213 9.732 11.25 12.77 14.29 15.62 1.70 2.55 3.38 4.21 5.025 6.593 8.110 9.627 11.15 12.77 14.29 15.62 1.70 2.54 3.36 4.16 4.923 6.434 7.953 9.475 11.19 14.61 15.72 1.70 2.54 3.36 4.16 4.923 6.434 7.953 9.475 11.00 12.64 15.46 1.69 2.50 3.27	1.71 2.55 3.40 4.24 5.073 6.739 8.392 10.03 14.64 13.23 14.80 16.15 1.71 2.55 3.39 4.23 5.069 6.729 8.368 9.978 11.55 13.10 14.63 16.15 1.70 2.55 3.39 4.23 5.061 6.7704 8.300 9.466 11.37 12.99 14.41 15.93 1.70 2.55 3.39 4.22 5.047 6.663 8.213 9.732 11.27 12.99 14.41 15.93 1.70 2.55 3.38 4.21 5.025 6.593 8.110 9.627 11.12 14.29 15.72 1.70 2.54 3.36 4.21 5.025 6.533 8.110 9.627 11.12 14.23 15.72 1.70 2.54 3.36 4.21 5.025 6.733 9.775 11.00 12.52 14.05 15.72 1.70 2.54 3.36 4.72	1.71 2.55 3.40 4.24 5.073 6.739 8.392 10.03 14.64 13.23 14.80 16.35 1.71 2.55 3.39 4.23 5.069 6.729 8.368 9.978 11.55 13.10 14.63 16.15 1.70 2.55 3.39 4.23 5.061 6.704 8.300 9.466 11.37 12.89 14.41 15.93 1.70 2.55 3.39 4.22 5.047 6.633 8.213 9.732 11.25 12.77 14.29 15.93 1.70 2.555 3.38 4.21 5.025 6.533 8.110 9.627 11.15 12.67 14.19 15.72 1.70 2.54 3.36 4.721 6.434 7.953 9.475 11.00 12.52 14.05 15.77 1.69 2.50 3.277 4.02 4.731 6.305 7.830 9.475 11.00 12.67 14.19 15.76 1.69 2.50 3.27 4.02 4.721 6.305		1.72	2.55	3.40	4.24	5.077	6.750	8.413	10.01	11.71	13.35	14.97	16.58
1.71 2.55 3.39 4.23 5.069 6.729 8.368 9.978 11.55 13.10 14.63 16.15 1.70 2.55 3.39 4.23 5.061 6.704 8.300 9.946 11.37 12.89 14.41 15.93 1.70 2.55 3.39 4.22 5.047 6.663 8.213 9.732 11.25 12.77 14.29 15.82 1.70 2.55 3.38 4.21 5.025 6.593 8.110 9.627 11.15 12.67 14.41 15.93 1.70 2.54 3.36 4.16 4.923 6.434 7.953 9.475 11.00 12.57 14.05 15.72 1.69 2.50 3.27 4.02 4.783 6.305 7.830 9.355 10.08 12.40 15.46 1.67 2.44 3.20 3.27 4.02 4.783 6.305 7.830 9.355 14.05 15.46 1.67 2.44 3.20 <td>1.71 2.55 3.39 4.23 5.069 6.729 8.368 9.978 11.55 13.10 14.63 16.15 1.70 2.55 3.39 4.23 5.061 6.704 8.300 9.846 11.37 12.99 14.41 15.93 1.70 2.55 3.39 4.22 5.047 6.663 8.213 9.732 11.25 12.77 14.29 15.82 1.70 2.55 3.38 4.21 5.025 6.593 8.110 9.627 11.15 12.67 14.19 15.72 1.70 2.55 3.38 4.21 5.025 6.593 8.110 9.627 11.15 12.67 14.19 15.72 1.70 2.54 3.36 4.16 4.923 6.434 7.953 9.475 11.00 12.52 14.05 15.77 1.69 2.50 3.20 4.783 6.305 7.830 9.355 10.88 12.41 13.93 15.46 1.67 2.44 3.20 3.96 4.771 9.296 <</td> <td>1.71 2.55 3.39 4.23 5.069 6.729 8.368 9.978 11.55 13.10 14.63 16.15 1.70 2.55 3.39 4.23 5.061 6.704 8.300 9.846 11.37 12.89 14.41 15.93 1.70 2.55 3.39 4.22 5.047 6.663 8.213 9.732 11.25 12.77 14.29 15.63 1.70 2.55 3.38 4.21 5.025 6.593 8.110 9.627 11.15 12.67 14.19 15.72 1.70 2.55 3.38 4.21 5.025 6.533 8.110 9.627 11.15 12.67 14.19 15.72 1.70 2.54 3.36 4.16 4.923 6.434 7.953 9.475 11.00 12.52 14.05 15.77 1.67 2.54 3.20 3.96 4.721 6.305 7.830 9.475 10.08 12.41 13.93 15.46 1.67 2.44 3.20 3.96 4.721 6.246</td> <td></td> <td>1.71</td> <td>2.55</td> <td>3.40</td> <td>4.24</td> <td>5.073</td> <td>6.739</td> <td>8.392</td> <td>10.03</td> <td>13.64</td> <td>13.23</td> <td>14.80</td> <td>16.35</td>	1.71 2.55 3.39 4.23 5.069 6.729 8.368 9.978 11.55 13.10 14.63 16.15 1.70 2.55 3.39 4.23 5.061 6.704 8.300 9.846 11.37 12.99 14.41 15.93 1.70 2.55 3.39 4.22 5.047 6.663 8.213 9.732 11.25 12.77 14.29 15.82 1.70 2.55 3.38 4.21 5.025 6.593 8.110 9.627 11.15 12.67 14.19 15.72 1.70 2.55 3.38 4.21 5.025 6.593 8.110 9.627 11.15 12.67 14.19 15.72 1.70 2.54 3.36 4.16 4.923 6.434 7.953 9.475 11.00 12.52 14.05 15.77 1.69 2.50 3.20 4.783 6.305 7.830 9.355 10.88 12.41 13.93 15.46 1.67 2.44 3.20 3.96 4.771 9.296 <	1.71 2.55 3.39 4.23 5.069 6.729 8.368 9.978 11.55 13.10 14.63 16.15 1.70 2.55 3.39 4.23 5.061 6.704 8.300 9.846 11.37 12.89 14.41 15.93 1.70 2.55 3.39 4.22 5.047 6.663 8.213 9.732 11.25 12.77 14.29 15.63 1.70 2.55 3.38 4.21 5.025 6.593 8.110 9.627 11.15 12.67 14.19 15.72 1.70 2.55 3.38 4.21 5.025 6.533 8.110 9.627 11.15 12.67 14.19 15.72 1.70 2.54 3.36 4.16 4.923 6.434 7.953 9.475 11.00 12.52 14.05 15.77 1.67 2.54 3.20 3.96 4.721 6.305 7.830 9.475 10.08 12.41 13.93 15.46 1.67 2.44 3.20 3.96 4.721 6.246		1.71	2.55	3.40	4.24	5.073	6.739	8.392	10.03	13.64	13.23	14.80	16.35
1.70 2.55 3.39 4.23 5.061 6.704 8.300 9.846 11.37 12.89 14.41 15.93 1.70 2.55 3.39 4.22 5.047 6.663 8.213 9.732 11.25 12.77 14.29 15.82 1.70 2.55 3.39 4.21 5.025 6.593 8.110 9.627 11.15 12.67 14.19 15.72 1.70 2.55 3.36 4.16 4.923 6.434 7.953 9.475 11.00 12.52 14.05 15.77 1.70 2.54 3.36 4.16 4.923 6.434 7.953 9.475 11.00 12.52 14.05 15.77 1.69 2.50 3.27 4.02 4.783 6.305 7.830 9.355 10.08 12.41 13.93 15.46 1.67 2.44 3.20 3.26 4.721 6.246 7.771 9.255 10.08 12.41 13.93 15.46 1.67 2.44 3.20 3.26 4.721 6.246 7.771 9.	1.70 2.55 3.39 4.23 5.061 6.704 8.300 9.846 11.37 12.89 14.41 15.93 1.70 2.55 3.39 4.22 5.047 6.663 8.213 9.732 11.25 12.77 14.29 15.82 1.70 2.55 3.38 4.21 5.025 6.593 8.110 9.627 11.15 12.67 14.19 15.72 1.70 2.55 3.38 4.21 5.025 6.593 8.110 9.627 11.15 12.67 14.19 15.72 1.70 2.54 3.36 4.16 4.923 6.434 7.953 9.475 11.00 12.52 14.05 15.77 1.69 2.50 3.27 4.02 4.721 6.305 7.830 9.355 10.88 12.41 13.93 15.46 1.67 2.44 3.20 3.36 4.721 6.246 7.771 9.296 10.82 12.93 15.46 1.67 2.44 3.20 3.96 4.721 6.246 7.771 <td>1.70 2.55 3.39 4.23 5.061 6.704 8.300 9.846 11.37 12.89 14.41 15.93 1.70 2.55 3.39 4.22 5.047 6.663 8.213 9.732 11.25 12.77 14.29 15.82 1.70 2.55 3.38 4.21 5.025 6.593 8.110 9.627 11.15 12.67 14.19 15.72 1.70 2.54 3.36 4.16 4.923 6.434 7.953 9.475 11.00 12.52 14.05 15.77 1.70 2.54 3.36 4.16 4.923 6.434 7.953 9.475 11.00 12.52 14.05 15.77 1.67 2.50 3.27 4.02 4.721 6.305 7.830 9.475 11.00 12.52 14.05 15.46 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 12.87 15.40 1.67 2.44</td> <td></td> <td>1.71</td> <td>2.55</td> <td>3.39</td> <td>4.23</td> <td>5.069</td> <td>6.729</td> <td>8.368</td> <td>9.978</td> <td>11.55</td> <td>13.10</td> <td>14.63</td> <td>16.15</td>	1.70 2.55 3.39 4.23 5.061 6.704 8.300 9.846 11.37 12.89 14.41 15.93 1.70 2.55 3.39 4.22 5.047 6.663 8.213 9.732 11.25 12.77 14.29 15.82 1.70 2.55 3.38 4.21 5.025 6.593 8.110 9.627 11.15 12.67 14.19 15.72 1.70 2.54 3.36 4.16 4.923 6.434 7.953 9.475 11.00 12.52 14.05 15.77 1.70 2.54 3.36 4.16 4.923 6.434 7.953 9.475 11.00 12.52 14.05 15.77 1.67 2.50 3.27 4.02 4.721 6.305 7.830 9.475 11.00 12.52 14.05 15.46 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 12.87 15.40 1.67 2.44		1.71	2.55	3.39	4.23	5.069	6.729	8.368	9.978	11.55	13.10	14.63	16.15
1.70 2.55 3.39 4.22 5.047 6.663 8.213 9.732 11.25 12.77 14.29 15.82 1.70 2.55 3.38 4.21 5.025 6.593 8.110 9.627 11.15 12.67 14.19 15.72 1.70 2.55 3.36 4.16 4.923 6.434 7.953 9.475 11.00 12.52 14.05 15.72 1.70 2.54 3.36 4.16 4.923 6.434 7.953 9.475 11.00 12.52 14.05 15.72 1.69 2.50 3.27 4.02 4.721 6.246 7.771 9.296 12.61 14.05 15.76 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.88 12.41 13.93 15.46 1.67 2.44 3.20 3.96 4.771 6.246 7.771 9.296 10.82 13.87 15.40 1.67 2.44 3.20	1.70 2.55 3.39 4.22 5.047 6.663 8.213 9.732 11.25 12.77 14.29 15.82 1.70 2.55 3.38 4.21 5.025 6.593 8.110 9.627 11.15 12.67 14.19 15.72 1.70 2.55 3.38 4.21 5.025 6.593 8.110 9.627 11.15 12.67 14.19 15.72 1.70 2.54 3.36 4.16 4.923 6.434 7.953 9.475 11.00 12.52 14.05 15.77 1.69 2.50 3.27 4.02 4.781 6.305 7.830 9.355 10.88 12.41 13.93 15.46 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 12.35 13.87 15.40 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 12.367 13.67 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 1	1.70 2.55 3.39 4.22 5.047 6.663 8.213 9.732 11.25 12.77 14.29 15.82 1.70 2.55 3.38 4.21 5.025 6.593 8.110 9.627 11.15 12.67 14.19 15.72 1.70 2.54 3.36 4.16 4.923 6.434 7.953 9.475 11.00 12.52 14.05 15.77 1.70 2.54 3.27 4.02 4.783 6.305 7.830 9.475 11.00 12.52 14.05 15.77 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 12.87 15.40 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 12.87 15.40 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 12.87 15.40 1.67 2.44 3.20 3.96 4		1.70	2.55	3.39	4.23	5.061	6.704	8.300	9.846	11.37	12.89	14.41	15.93
1.70 2.55 3.38 4.21 5.025 6.533 8.110 9.627 11.15 12.67 14.19 15.72 1.70 2.54 3.36 4.16 4.923 6.434 7.953 9.475 11.00 12.52 14.05 15.77 1.70 2.54 3.36 4.16 4.923 6.434 7.953 9.475 11.00 12.52 14.05 15.77 1.69 2.50 3.27 4.02 4.721 6.305 7.830 9.355 10.88 12.41 13.93 15.46 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 13.87 15.40 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 13.87 15.40 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 13.87 15.40 1.67 2.446 3.20 <td< td=""><td>1.70 2.55 3.38 4.21 5.025 6.593 8.110 9.627 11.15 12.67 14.19 15.72 1.70 2.54 3.36 4.16 4.923 6.434 7.953 9.475 11.00 12.52 14.05 15.57 1.70 2.54 3.27 4.02 4.783 6.305 7.830 9.355 10.08 12.41 13.93 15.46 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 12.31 13.47 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 13.87 15.40 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 12.41 13.93 15.40 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 13.87 15.40</td><td>1.70 2.55 3.38 4.21 5.025 6.593 8.110 9.627 11.15 12.67 14.19 15.72 1.70 2.54 3.36 4.16 4.923 6.434 7.953 9.475 11.00 12.52 14.05 15.57 1.70 2.54 3.27 4.02 4.783 6.305 7.830 9.475 11.00 12.52 14.05 15.57 1.67 2.50 3.27 4.02 4.721 6.246 7.771 9.296 10.88 12.41 13.93 15.40 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 12.87 15.40 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 12.87 15.40 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 12.87 15.40</td><td></td><td>1.70</td><td>2.55</td><td>3.39</td><td>4.22</td><td>5.047</td><td>6.663</td><td>8.213</td><td>9.732</td><td>11.25</td><td>12.77</td><td>14.29</td><td>15.82</td></td<>	1.70 2.55 3.38 4.21 5.025 6.593 8.110 9.627 11.15 12.67 14.19 15.72 1.70 2.54 3.36 4.16 4.923 6.434 7.953 9.475 11.00 12.52 14.05 15.57 1.70 2.54 3.27 4.02 4.783 6.305 7.830 9.355 10.08 12.41 13.93 15.46 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 12.31 13.47 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 13.87 15.40 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 12.41 13.93 15.40 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 13.87 15.40	1.70 2.55 3.38 4.21 5.025 6.593 8.110 9.627 11.15 12.67 14.19 15.72 1.70 2.54 3.36 4.16 4.923 6.434 7.953 9.475 11.00 12.52 14.05 15.57 1.70 2.54 3.27 4.02 4.783 6.305 7.830 9.475 11.00 12.52 14.05 15.57 1.67 2.50 3.27 4.02 4.721 6.246 7.771 9.296 10.88 12.41 13.93 15.40 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 12.87 15.40 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 12.87 15.40 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 12.87 15.40		1.70	2.55	3.39	4.22	5.047	6.663	8.213	9.732	11.25	12.77	14.29	15.82
1.70 2.54 3.36 4.16 4.923 6.434 7.953 9.475 11.00 12.52 14.05 15.57 1.69 2.50 3.27 4.02 4.783 6.305 7.830 9.355 10.88 12.41 13.93 15.46 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 12.35 13.87 15.40 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 12.35 13.87 15.40 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 12.35 13.87 15.40 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 12.35 13.87 15.40 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 13.87 15.40	1.70 2.54 3.36 4.16 4.923 6.434 7.953 9.475 11.00 12.52 14.05 15.57 1.69 2.50 3.27 4.02 4.783 6.305 7.830 9.355 10.68 12.41 13.93 15.46 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 12.35 13.87 15.40 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 12.367 13.87 15.40 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 12.367 13.87 15.40 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 12.43 15.40 1.67 2.44 3.20 3.96 1.700 1 9.296 10.82 12.45	1.70 2.54 3.36 4.16 4.923 6.434 7.953 9.475 11.00 12.52 14.05 15.47 1.69 2.50 3.27 4.02 4.783 6.305 7.830 9.355 10.08 12.41 13.93 15.46 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 12.87 15.40 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 12.87 15.40 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 12.87 15.40 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 12.87 15.40 1.67 2.24 3.20 1.720 1.770 1.720 1.740 1.740 1.740 1.740 1.740 1.740 1.740 1.740 1.740 1.740 1.740 </td <td></td> <td>1.70</td> <td>2.55</td> <td>3.38</td> <td>4.21</td> <td>5.025</td> <td>6.593</td> <td>8.110</td> <td>9.627</td> <td>11.15</td> <td>12.67</td> <td>14.19</td> <td>15.72</td>		1.70	2.55	3.38	4.21	5.025	6.593	8.110	9.627	11.15	12.67	14.19	15.72
1.69 2.50 3.27 4.02 4.783 6.305 7.830 9.355 10.88 12.41 13.93 15.46 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 12.35 13.87 15.40 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 12.35 13.87 15.40 1 1 7 71P0 n P = 4.5 7.71 P = 4.5 10.82 13.87 15.40	1.69 2.50 3.27 4.02 4.783 6.305 7.830 9.355 10.88 12.41 13.93 15.46 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 12.35 13.87 15.40 A TIPO " n " P = 4.5	1.69 2.50 3.27 4.02 4.783 6.305 7.830 9.355 10.88 12.41 13.93 15.46 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 12.35 13.87 15.40 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 12.35 13.87 15.40 1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 12.35 15.40 1 Λ TIPO " n " P = 4.5 P = 4.5		1.70	2.54	3.36	4.16	4.923	6.434	7.953	9.475	11.00	12.52	14.05	15.57
1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 12.35 13.87 15.40 x TIPO " n " $P = 4.5$	1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 12.35 13.87 15.40 λ THPO " n " P = 4.5	1.67 2.44 3.20 3.96 4.721 6.246 7.771 9.296 10.82 12.35 13.87 15.40 λ TIPO"n" P = 4.5		1.69	2.50	3.27	4.02	4.783	6.305	7.830	9.355	10.88	12.41	13.93	15.46
A TIPO " n " P = 4.5	A TIPO" n" P = 4.5	A TIPO " n " P = 4.5		1.67	2.44	3.20	3.96	4.721	6.246	7.71	9.296	10.82	12.35	13.87	15.40
								×	" OTIL	: .	P = 4.5				
									1						

Valores de longitudes de onda para un mínimo de orden P = 4.5 para distintos espesores y distintas concentraciones de dopante en el substrato; para Silicio tipo " n ".

0.5	0.7	1.0	1.5	2.0	2.5	3.0	4.0	5,0	6.0	7.0	8.0	0.6	9
											12.19	13.79	15
									9.141	10.67	12.19	13.74	15.
							6.094	7.617	9.141	10.67	12.18	13.70	15.
					3.81	4.571	6.097	7.618	9,080	10.59	12.09	13.59	15.
6				3.05	3.81	4.571	6.056	7.562	9.063	10.56	12.06	13.56	15.
			2.29	3.05	3.81	4.542	6.045	7.547	9.045	10.54	12.03	13.52	15.
			2.29	3.05	3.79	4.537	6.039	7.537	9.033	10.53	12.01	13.50	14.
			2.29	3.03	3.78	4.531	6.030	7.525	9.015	10.50	11.98	13.46	14.
1. 1. 1.			2.27	3.03	3.78	4.527	6.023	7.515	9,002	10.48	11.96	13.43	14.
1.30			2.27	3.02	3.77	4.522	6.015	7.503	8.985	10.46	11.93	13.39	14.
			2.27	3.02	3.77	4.520	6.011	7.494	8.968	10.43	11.88	13.31	14.
			2.27	3.02	3.77	4.518	6.007	7.484	8.948	10.39	11.81	13.20	14.
			2.27	3.02	3.77	4.515	5.998	7.459	8.883	10.27	11 63	13.00	14.
			2.27	3.02	3.77	4.509	5.981	7.412	8.792	10.16	11.52	12.89	14.
			2.27	3.02	3.76	4.500	5.948	7.329	8.690	10.05	11.42	12.79	14.
			2.26	3.01	3.73	4.452	5.812	7.173	8.540	9.911	11.28	12.66	14.
			2.25	2.96	3.64	4.315	5.683	7.054	8.427	9.800	11.17	12.55	13.
			2.21	2.89	3.57	4.254	5.626	6.999	8.373	9.746	11.12	12.49	ц.
					-								

Valores de longitudes de onda para un máximo de orden P = 5.0 para distintos espesores y distintas concentraciones de dopante en el substrato; para Silicio tipo " n ".

8 REFERENCIAS BIBLIOGRAFICAS

- 1) Spitzer, W. G. and Tanenbaum, M.; "Interference method for measuring the thickness of epitaxally grown films"; Journal of Applied Physics , Vol. 32, N³, pp. 744 745, 1961.
- 2) Kane, P. F. and- Larrabee, G. B.; "Characterization of semiconductors materials"; McGraw-Hill, pp. 226, 1967.
- 3) Runyan, W. R. ; "Semiconductor measurements and instrumentation"; McGraw-Hill, pp.169, 1975.
- 4) Burger, R. M. and Donovan, R.P.; "Fundamentals of Silicon integrated device technology"; Prentice-Hall, Inc., Englewood Cliffs, New Jersey, Vol.I, 1967.
- Severin, P. J.; "On the interpretation of some measurement methods for epittaxially grown layers"; NBS Special Publication 337, pp. 224, 1970.
- Gardner. E. E.; "Silicon epitaxial thickness measurements: Why and How"; Journal of Testing and Evaluation, Vol. I, N^Q, pp. 301-304, 1973.
- 7) Albert, M. P. and Combs, J. F.; "Thickness measurement of epitaxial films by the infrared interference method"; Journal of The Electrochemical Society, Vol.109, N°8, pp. 709-713, 1962.
- 8) Sato, K.; Ishikawa, Y. and Sugawara, K.; "Infrared interference spectra observed in Silicon epitaxial wafers"; Solid State Electronics, Vol.9, pp.771-781, 1966.
- Severin, P. J., "On the Infrared Thickness Measurement of Epitaxially Grown Silicon Layers", Applied Optics, Vol. 9, N
 ^o 10, pp. 2381-2387, 1970
- 10)Schumann, P.A., Jr., "The infrared interference method of measuring epitaxial layer thickness" Journal of The Electrochemical Society, Vol. 116, N^o 3, pp. *409*–413, March 1969.
- 11)Abe, T. and Kato, T., "Infrared Reflectivity of N on N+ Si Wafers", Japanese Journal of Applied Physics, Vol. 4 № 10, pp. 742-751, 1965.
- 12) Severin, P.J.; "Interpretation of the Infrared Thickness Measurement of Epitaxial Layers"; Applied Optics, Vol. 11, N° 3, pp. 691-692, 1972.
- 13) Reichard, T.E.; "Through thick and thin with infrared beams"; Electronics, pp.101-105, March 1968.
- 14) Villa, J. J.; "Additional Data on the Refractive Index of Silicon"; Applied Optics, Vol. 11, N^o9, pp. 2102 -2103, 1972.
- 15) Spitzer, W. G.; Gobeli, G. W.; Trumbore, F. A.; "Effect of Heat Treatment on the Optical Properties of Heavily Doped Silicon and Germanium"; Journal of Applied Physics, Vol. 35, Nº 1 pp. 206-211, 1964.
- 16) "Standard method of test for thickness of epita-layers of Silicon on substrates of the same type by infrared reflectance"; ASTM F95 73.

- 17) Spitzer, W. and Fan, H.Y.; "Infrared Absorption in n-Type Silicon", Physical Review, Vol.108, N^o, pp. 268-271, October 1957.
- 18) Severin, P.J. and Everstein, F.C.; "On the correction to be applied to the thickness of an epitaxial layer measured with infrared multiple interference"; Journal of The Electrochemical Society, Vol.122, N7, pp. 962-964, 1975.
- 19) Schumann Jr., P. A. and Phillips, R. P.; "A theoretical analysis of the optical constants in extrinsic semiconductors in the infrared"; IBM TR 22.167, 1965.
- 20) Born, M. and Wolf, E.; "Principles of optics"; Pergamon Press, 1970.
- 21) Schumann, P. A. and Sakkas, C. M.; "Thickness charts for the infrared interference method of measuring Silicon epitaxial layer thickness"; IBM TR 22.537, 1968.
- 22) Schumann, P.A.; "Phase shift corrections for the .measurement of Silicon epitaxial layers by the infrared interference method"; IBM TR 22.432, 1967.
- 23) Schumann, P.A. and Phillips, R.P.; "Phase shifts for epitaxial layer thickness measurements by the infrared interference method"; IBM TR 22.182, 1965.
- 24) Schumann, Jr., P.A.; "Thickness measurement of very thin epitaxial layers by the infrared reflectance"; NBS Special Publication 337, pp.234, 1970.