
USB framework, IP core and related software

Salvador E. Tropea, Rodrigo A. Melo

Electrónica e Informática

Instituto Nacional de Tecnología Industrial

Buenos Aires, Argentina

Email: salvador@inti.gob.ar, rmelo@inti.gob.ar

Abstract—The Universal Serial Bus (USB) is currently the most
common communication mechanism used for personal computer
peripherals. USB replaced the traditional serial (RS-232) and
parallel (IEEE 1284) ports.

In this work we present a USB core that implements most of
the features from the 2.0 specification, but not the isochronous
mode. Additionally, we present the software tools developed to
verify and use the core.

The core was verified in hardware using FPGAs and offers an
ample variety of configurations.

I. INTRODUCTION

Most of today’s personal computers (PCs) does not include

serial and parallel communication ports. USB replaced them

offering better performance, plug and play and other advan-

tages.

Our team develop embedded systems that, in many cases,

works as PC peripherals. Given the fact that USB is currently

the most common communication mechanism we started the

development of a USB core.

In this work we present the features of the developed

core. Additionally, we present the auxiliary tools developed

for verification purposes and to help in the use of the core.

In section II we present the objectives of this project. The

component parts of the core are depicted in section III. Section

IV introduces the tools developed for verification purposes

and the verification methodology. Implementation details and

results are discussed in section V and finally we present the

conclusions in section VI.

It is important to note that this document assumes the reader

is already familiar with the USB terminology.

II. OBJECTIVES

We developed the core with the following goals:

• Sinthetizable for most of the FPGAs available in the

market.

• Low cost, compared with an external solution.

• Allow for very compact configurations with minimal area

and external components requirements.

To achieve a core synthetizable for a wide range of FPGAs,

also opening the possibility to use it for ASICs, we used the

standard VHDL 93 language.

To accomplish the second objective we took as reference the

cost of a complete USB solution. The Cypress EX-USB FX2

line is a widely used USB solution, its cost is comparable

to the cost of a 200,000 equivalent gates FPGA (Spartan 3

200, 3.840 LUTs+FFs). It imposed the first area constraint

and also a limit to the cost of additional external parts needed

to complement the FPGA.

The third objective was added to allow the use of the core

as a tool to verify small peripherals implemented using low

cost FPGAs. In our laboratory we have many Spartan II 100

[1] (2.400 LUTs+FFs) based development boards used for this

purpose. It imposed a second area constraint.

III. LAYERS

To divide the problem into smaller parts that could be

interchanged, and to allow for comparisons between our core

and others, we adopted the following layers layout:

• Electric layer: voltage and/or current level conversion.

• Physical layer or PHY: we adopted the USB 2.0

Transceiver Macrocell Interface (UTMI) specification.

This layer performs the parallel to serial conversion,

encodes the bits to allow for clock synchronization and

signals the start and end of packet. The reception module

performs the reverse tasks.

• Handshake layer or SIE: usually known as Serial Inter-

face Engine (SIE). It performs the basic USB protocol

transactions.

• SIE adaptation layer: this layer adapts the SIE signals

for the upper layer.

• Protocol layer: implements the higher part of the USB

protocol, including the plug and play.

• Application layer: here we put the application, this is

our device.

A. Electric layer

When we evaluate the transmitter point of view, the voltage

levels specified by the USB standard for the lower speeds (low

or LS 1,5 Mb/s and full or FS 12 Mb/s) are compatible with

the levels provided by most FPGAs. On the contrary, when

we do the same from the receptor point of view it is not true

anymore. In laboratory conditions you can connect an FPGA

to a USB host using a few resistors. On the other hand, when

you must comply with the specification an external driver must

be used.

For high speed (HS 480 Mb/s), USB uses currents for

signaling, and hence an external driver is mandatory.



Fig. 1. PHY block diagram.

B. Physical layer or PHY

An UTMI compatible PHY was implemented, Fig. 1 shows

a block diagram for our implementation. Its main features are:

support for LS and FS, 8 and 16 bits interface and 48 MHz

clock for FS (6 MHz for LS). We discarded an implementation

for the HS mode using low cost FPGAs.

This layer performs two different tasks: packet reception

and transmission. The receptor section takes care of clock

recovery and synchronization (DPLL), bits decoding (NRZI

and bitstuffing), serial to parallel conversion and start/end of

packet detection. The transmitter section provides the parallel

to serial conversion, start and end of packet signaling and bits

encoding.

The receptor section detects bitstuffing, aligning and syn-

chronization errors.

C. Handshake layer or SIE

This layer implements the basic USB protocol transactions.

They comprise two or more packet exchanged between the

host (master) and the device (slave). In our implementation

we included the control, interrupt and bulk modes, but not the

isochronous mode.

Our implementation was divided as shown in Fig. 2. The

packer assembles the packets to be transmitted. It supports

the DATA0 and DATA1 data packets and the ACK, NAK,

STALL and NYET handshake packets. A 16 bits CRC (Cyclic

Redundancy Code) is computed for the data packets. The

unpacker disassembles the received packets. This module

supports the IN, OUT and SETUP tokens; DATA0 and DATA1

data packets and ACK, NAK and STALL handshake packets.

Other packet types are discarded. This block also verifies the

CRC, 5 bits for tokens and 16 bits for data. Incomplete packet,

CRC mismatch and wrong packet identifier errors are reported,

not shown in the figure. The main state machine ensures that

transactions are complete and selects the proper reply for each

token. An independent state machine is used to detect the reset

and suspend bus signaling. During the reset, and if the core

was configured for HS, this state machine is in charge of the

negotiation needed to switch from FS to HS. When the host

needs to send data (SETUP and OUT tokens), or when the

SIE is waiting for an ACK, the USB specification defines a

Fig. 2. SIE block diagram.

time-out. The Bus Turn-around T-O block is used to detect

this time-out. The Timers block is used to generate various

timing signals: 2,5 µs (reset), 100 µs and 1 ms (negotiation)

and 3 ms (suspend and negotiation).

The Token Info bus includes information about the received

token (endpoint number, packet type, etc.), EP Control in-

cludes signals to enter/exit to/from the STALL mode, Bus

Status informs about the bus state (idle, reset, active), EP

Status is used to indicate the current endpoint status (available,

STALL, not yet available) and the data packet type (DATA0/1)

that we expect to receive or want to transmit, finally, EP Mode

indicates which modes are supported by the currently selected

endpoint (IN, OUT, SETUP).

Data buses are configurable for 8 and 16 bits. Additionally,

the clock for this module can be configured to be the same or

just half of the clock used for the PHY.

D. SIE adaptation layer

Most of the available USB cores [2] [3] [4] [5] [6] include

control and status registers, along with the buffers used for

the received data and data to be transmitted, in this layer.

This is a very flexible approach when the core is used by a

microcontroller.

We wanted to optimize the use of resources, and determined

that many cases can be solved without the need of a full

CPU. We also found that in many cases the buffers are not

needed, usually when dealing with small or volatile data. For



Fig. 3. Modular architecture for enpoints and requests.

these reasons we simplified this layer to only include the

multiplexers used to route the data for the enpoints.

E. Protocol layer

Among the most important USB features are the plug and

play support, multiple configurations for the same device and

support for more than one functionality. To achieve these

features the host must be able to consult the device. The

host can use requests that are replied by the device with

special structures, called descriptors, containing the needed

information.

The interpretation of the host requests and descriptors

handling can be implemented in software [4] [2]. This method

is very versatile because we do not need to modify the core for

each device, only the software. In other cases a fixed number of

enpoints are provided and this layer is joined with the previous

[3] [6]. This approach simplifies the software, but requires

changes in the core if the provided enpoints does not match

the needs of the device that we are developing.

To achieve small USB implementations we fully imple-

mented this layer in hardware. The supported requests are

device dependent, and we also wanted to avoid limitations

in the number and type of used enpoints. For these reasons

we designed a modular architecture. This approach supports

the addition of modules that implements different request and

enpoints.

To simplify the developing task we identified the most

commonly used requests and encapsulated them in a core (EP0

Base). The user only needs to add the missing requests. Fig. 3

shows a simplified block diagram for the designed modular

architecture.

F. Application layer

This is where the functionality for our device is imple-

mented. It can be implemented in a very compact way thanks

to the hardware implementation of the previous layer. In many

cases this layer only adds a few registers to the hardware that

implement our device. When an endpoint needs data buffering

the buffers can be implemented in this layer, but in any other

case we avoid the implementation of unneeded buffers.

IV. VALIDATION AND COMPLEMENTARY TOOLS

A. Validation tools

USB is complex, and, as mentioned above, composed by

various layers. We developed automatic testbenches to verify

each part of the core separately and then working in conjunc-

tion. To achieve a modular testing approach we used the UNIX

strategy: many small tools that can solve simple tasks, but can

also work together to solve bigger problems.

We developed the tools using C and C++ languages and

pipes for communication between them.

To validate the PHY we developed the following tools:

• gen-dpll-diff: generates a random bit stream, using a

clock with a drift. The maximum deviation for the clock

was adjusted according to the specification. Its output is

differential and was used to verify the DPLL and the

Differential Decoder.

• nrzi_en: encodes the bits in NRZI (Non return to zero,

inverted) format. It is used to verify the NRZI Encoder.

• nrzi_de: decodes the NRZI encoded bits. It is used to

verify the NRZI Decoder.

• bitstuffer: adds the bits indicated by the specification. It

is used to verify the BitStuffer.

• bitunstuffer: removes the bits added by the bitstuffer. It

is used to verify the UnStuffer.

• usb-make-packet: assembles and disassembles USB

packets. It adds or removes the start of packet (SYNC)

and the end of packet (EOP). To properly encode or

decode the bits this tool uses nrzi_en, nrzi_de, bitstuffer

and bitunstuffer. It is used to verify the complete PHY.

For the SIE validation:

• crc: computes the 5 and 16 bits USB CRC.

• usb_to_bits: is used to generate USB transactions. It

interprets an input text where we describe the wanted

transactions, and optionally the errors to be introduced.

It uses usb-make-packet and crc to generate the USB

packets, and is used to verify the Unpacker and the whole

SIE.

B. Tools for validation and development

We developed two more tools that not only helped during

the verification but also during the development of USB

devices:

• hid-report: HID (Human Interface Device) devices can

inform to the host the used data format. HID examples are

keyboards, mouses and joysticks. The HID specification

uses a pseudo-language for the examples to show how



this information is encoded. This program can interpret

the pseudo-language and compile it to the equivalent

descriptor.

• usb-descriptor: descriptors are used to inform various

details to the host. When developing USB devices the

manual creation of such descriptors becomes a complex,

and error-prone, task. The problem is even worst when

we need to modify some detail, like adding an endpoint.

In this case we could forget to modify all the affected

bytes. To simplify this task usb-descriptor can interpret

a high level description of our device and the create the

proper descriptors. For the HID descriptors usb-desciptor

can make use of hid-report. Additionally, this program

generates the VHDL code for the descriptors ROM and

a package containing the memory addresses for each

descriptor.

Using usb-descriptor and usb_to_bits we verified complete

USB devices injecting real world transactions. To create a

complete real world initialization we monitored a USB key-

board using a digital oscilloscope. We used tools like usb-

make-packet to disassemble the captured packets. Finally, we

wrote the complete initialization sequence using the usb-to-

bits and usb-descriptor languages. Using this information we

created realistic transactions for our devices. We also altered

these sequences to verify the behavior of the devices when the

packets contained various kinds of errors.

V. IMPLEMENTATION AND RESULTS

A. Implementation

Our core was implemented using standard VHDL 93, and

avoiding the use of vendor or device specific details. We

used GHDL [7] 0.27 and other tools recommended by the

FPGALibre [8] project for simulation and validation. The

hardware validation was performed using Xilinx’s Spartan

II and Spartan 3 FPGAs and the ISE WebPack 9.2.03i J.39

software.

For LS and FS an ISP1106 driver connected to a Spartan II

was used, its cost is approximately 5% of a complete solution.

We verified that under laboratory conditions, and using a 1.5 m

wire, the FPGA can be connected directly to the host computer.

For HS a Cypress CY7C68000 UTMI connected to a Spartan

3, using a 16 bits bidirectional data bus at 30 MHz, was

used. This component costs approximately 15% of a complete

solution. In both cases the printed circuit board area consumed

by external parts was less than the area needed for a complete

external solution. The HS solution could be implemented using

a Spartan II device, but we have the external UTMI in a

development board for Spartan 3.

As host we used a personal computer running the Debian

[9] GNU [10] /Linux operating system. To control our devices

from the host we created programs using C++ and two

different Linux APIs: hiddev and libusb.

B. Results

We developed the following demonstration devices:

• Analog joystick to USB adaptor: it allows the use of

an old analog joystick with a modern computer. This

device implements the HID and have only one endpoint.

To convert the analog signals we used two external com-

parators and capacitors. The implemented A/D converter

measures the time needed to charge the capacitor through

the potenciomenter of the joystick. This device consumed

708 LUTs and 427 FFs (493 slices) along with one

BRAM. It was verified using GNU/Linux and Windows

XP.

• Generic HID: to experiment with the Linux HID API we

developed a core to control the development board LEDs

and also monitor the board switches and buttons. It has

two enpoints and consumed 692 LUTs and 402 FFs (488

slices) plus one BRAM.

• Generic USB device: to experiment with the Linux libusb

API we developed a similar core, but without implement-

ing the HID details. Additionally, we included a third

endpoint using the bulk mode to read the descriptors

ROM. Three versions of the core were implemented, two

using FS and one HS. The FS version was implemented

using 8 and 16 bits data buses. We obtained the following

results: FS/8 bits 584 LUTs and 349 FFs (418 slices),

FS/16 bits 925 LUTs and 466 FFs (591 slices) and HS

860 LUTs y 347 FFs (511 slices).

• USB to WISHBONE bridge: we use the WISHBONE

bus for most of our peripherals and hence this bridge

was an interesting choice. Using it a PC can control the

WISHBONE bus using the USB. It allows the control of

any WISHBONE peripheral from the PC and is very use-

ful for verification purposes. For demonstration purposes

we connected a small peripheral to the WISHBONE bus.

This small device can be used to control the development

board LEDs and also monitor the board switches and

buttons. We implemented two versions of the core: FS

716 LUTs and 404 FFs (496 slices) and HS 927 LUTs

and 396 FFs (571 slices).

C. Other implementations

To fairly compare the above mentioned results we should

implement the same applications using other cores. This is

time consuming and expensive. We could compare blocks with

the same functionality instead, but this is a partial solution

and not all implementations use the same layers or have

the same functionality. For these reasons we only present an

approximated comparison.

OpenCores’ usbhostslave [5] core includes a mouse im-

plementation. This application can be compared with our

joystick. The usbhostslave synthesis resulted in 2511 LUTs

and 1631 FFs (1704 slices) for a Spartan 3. These values were

corrected to discount 512 LUTs used as dual ported memory,

we estimate this memory could be mapped to one BRAM. This

core includes a PHY, a SIE, interface registers and FIFOs and

the mouse device.

In other cases we did not have full devices and hence

we measured the area for the SIE and the adaptation layer.



Note that this value does not include the PHY, protocol

layer and the device: Xilinx LogiCORE [2] 2340 LUTs and

610 FFs (1235 slices) 4 BRAMs (8 enpoints using Spartan

3 or better, OPB bus interface), OpenCores usb [4] 2899

LUTs and 1712 FFs (1985 slices) using external memory

(16 enpoints using Spartan 3, WISHBONE bus interface) and

Aeroflex/Gaisler GRUSBDC [11] 3500 LUTs and 2 BRAMs

using the minimum configuration (no FFs information, up to

32 enpoints using Spartan 3, Amba bus interface). Another

example is the ComBlock [3] core. It implements the protocol

layer in hardware using a very rigid approach and consumes

1449 LUTs and 620 FFs (854 slices) 5 BRAMs (4 enpoints

using Virtex-2). All the above mentioned cores have support

for HS using an external UTMI chip.

Another core that could be used as reference is the Open-

Cores usb1_fun [6]. It includes a PHY, the SIE and the

protocol layer implemented in hardware. Its protocol layer

supports 6 fixed enpoints. No application example is provided

and the changes needed in order to implement an HID device

are very important. This core does not have HS support and

consumes 978 LUTs and 518 FFs (670 slices) and one BRAM.

VI. CONCLUSIONS

We obtained a compact USB implementation that enables

the use of small FPGAs like Spartan II. A full USB application

consumed only 35% of a Spartan II 100.

The number and cost of external components was reduced

to a minimum thanks to the implementation of a PHY with

LS and FS support. The external support driver needed is

cheap and has a small footprint, i.e. ISP1106. Under laboratory

conditions we verified that an FPGA can be directly connected

to the USB.

The cost of the consumed area is small, 22% of a Spartan

3 200, and consequently provides a better solution, when

compared with a full external solution. The use of the UTMI

standard enabled the use of an HS external PHY for applica-

tions demanding high throughput.

The hid-report and usb-descriptor tools considerably re-

duced the development time for the demonstration applica-

tions. Additionally, the use of small and modular tools enabled

a good code reuse. The development tools and methodologies

proposed by the FPGALibre project proved to be suitable for

this project.

Even when we can not provide a fair comparison with other

implementations, we can conclude that our core allows the

creation of devices with a smaller area consumption. Only one

third of the area is needed if we compare the above mentioned

mouse [5] with our joystick. Even when comparing only a

portion of an application, all the studied cores consume more

area. After an analysis of the architectures we conclude that

the main difference is in the layers between the SIE and the

application. Our choice not only saves an important amount

of resources, but also simplifies the application layer.

REFERENCES

[1] D. J. Brengi, S. E. Tropea, and J. P. D. Borgna, “Tarjeta de diseño
abierto para desarrollo y educación,” in 2007 3rd Southern Conference
on Programmable Logic Designer Forum Proceedings, Mar del Plata,
2007, pp. 57–60.

[2] (2008, Dec.) OPB universal serial bus device (v1.00a). Xilinx.
[Online]. Available: http://www.xilinx.com/support/documentation/
ip_documentation/usb_ds591.pdf

[3] (2008, Dec.) USB 2.0 interface user manual. ComBlock. [Online]. Avail-
able: http://www.comblock.com/ download/USB20_UserManual.pdf

[4] R. Usselmann. (2008, Dec.) USB 2.0 function core. OpenCores.org.
[Online]. Available: http://www.opencores.org/projects.cgi/web/usb

[5] S. Fielding. (2008, Dec.) USB 1.1 host and
function ip core. OpenCores.org. [Online]. Available:
http://www.opencores.org/projects.cgi/web/ usbhostslave

[6] R. Usselmann. (2008, Dec.) USB 1.1 function ip core. OpenCores.org.
[Online]. Available: http://www.opencores.org/projects.cgi/web/
usb1_funct/overview

[7] T. Gingold. (2008, Dec.) A complete VHDL simulator. [Online].
Available: http://ghdl.free.fr/

[8] S. E. Tropea, D. J. Brengi, and J. P. D. Borgna, “FPGAlibre: Herramien-
tas de software libre para diseño con FPGAs,” in FPGA Based Systems.
Mar del Plata: Surlabs Project, II SPL, 2006, pp. 173–180.

[9] I. Murdock et al. Debian gnu/linux operating system. [Online].
Available: http://www.debian.org/

[10] R. M. Stallman et al. The GNU project. [Online]. Available:
http://www.gnu.org/

[11] (2008, Dec.) USB 2.0 device controller. Aeroflex / Gaisler. [Online].
Available: http://www.gaisler.com/


