
FPGA IMPLEMENTATION OF BASE-N LOGARITHM

Salvador E. Tropea

Electrónica e Informática
Instituto Nacional de Tecnología Industrial

Buenos Aires, Argentina
 email: salvador@inti.gov.ar

ABSTRACT

In this work, we present an area optimized FPGA
implementation of an IP core to compute the base-N
logarithm. Nevertheless, we also discuss the area, speed and
precision trade-offs. We selected an algorithm that could be
implemented on any FPGA avoiding vendor specific
features like block RAMs, embedded multipliers, etc. We
report the implementation results of a fixed point version of
the algorithm using various common configurations on
Xilinx and Actel devices. This implementation achieved the
required area goals providing a very good speed-area ratio.

Keywords: logarithm, FPGA, area optimized,
multiplicative normalization

1. INTRODUCTION

The computation of the logarithm is widely used for many
applications like digital filters, power computations (dB)
and logarithmic number systems (LNS), to name a few. This
is also a key component of LNS, which offer good
advantages over traditional floating point systems [1].

This work is organized as follows: section two deals
with about the algorithm selection and how it works, section
three describes its implementation, section four briefly
discusses the error introduced by the approximation, section
five shows the results of the implementation and section six
provides the conclusions.

2. ALGORITHM SELECTION AND
DESCRIPTION

The available methods to compute the logarithm of a
number using digital circuits can be divided in two main
groups. On the one hand, we have the look-up table based
algorithms and, on the other, iterative methods. The first
approach is faster and straightforward, but only useful for
low precision. This is due to the size of the look-up table.
The second group is slower, but suitable for high precision.
Many studies explore hybrid implementations that take
advantages from both groups [2] and [3], [4], [5] cited by
Kostopoulos.

Our project required an algorithm that could be
implemented on FPGAs from any vendor, including the

Actel's RTSX72SU FPGA. This is a radiation tolerant
device and lacks the BRAMs needed to implement big look-
up tables. Therefore, we only evaluated iterative algorithms
that need small look-up tables. Moreover, we coded the
algorithm using standard VHDL to ensure its portability.

Taylor's series expansion is among the most popular
methods to manually compute logarithms, but it has a slow
convergence and requires slow operations like the division
[6]. Other algorithms like the one proposed by Kostopoulos
[7] use a multiplier inside the iteration; therefore, they are
slow when no embedded multipliers are available. A very
well studied alternative is the multiplicative normalization.
It just needs adders and shifters and provides a fast
convergence [6], [8], [9], consequently it was suitable for our
project.

2.1. Multiplicative Normalization

Based on the following logarithms property

 log a⋅b=log a log b (1)

Assuming that x is our variable, the multiplicative
normalization uses the following values for a and b

log  x⋅∏
i=m

n

bi=log x ∑
i=m

n

log bi (2)

Selecting the bi values to get

x⋅∏
i=m

n

bi=1 (3)

we obtain

log x =−∑
i=m

n

log bi (4)

Storing the log(bi) values in a small look-up table the
logarithm computation is reduced to sums.

y i1= yi−log bi (5)

The only requirement is (3). To reduce the multiplications
used in (3) to simple shifts we could use

bi=1d i⋅2−i (6)

In this way the product computed in each iteration of (3) is

x i1=xixi⋅d i⋅2−i (7)

and the logarithm iteration

y i1= y i−log 1d i⋅2−i (8)

Now we must select the di values to achieve (3). The
function to determine di is called decision function.

2.2. A Simple Decision Function

The selection of the decision function affects the
convergence speed and the algorithm precision. Although
high-radix systems consume big amounts of area, they
provide high speed. However, selecting a simple decision
function we can achieve a small area footprint.

We selected 1 and 0 as the only possible values for di

and applied the following criterion: if using 1 makes xi+1

bigger than or equal to 1, then, we simply use 0. As the bi

values are smaller and smaller this method asymptotically
approaches to 1.

The hardware implementation was very simple because
to determine whether the resulting value is bigger than or
equal to 1 we just need to check one bit in the result. When
this bit becomes 1 the iteration is simply skipped because
(7) and (8) are:

xi1=xi0∧ y i1= y i−log 1 (9)

This function uses only two values and is simpler than the
one described by Koren [6]. Unlike the functions explained
in [6] and [9], this function provides a good convergence of
the approximation for the whole range of values.

2.3. Convergence Radius

Replacing (6) in (3) we obtain

x= 1

∏
i=m

n

1d i⋅2−i
 (10)

The smaller value we can obtain is when the decision
function is always 1 and the bigger when the function
always selects 0.

1

∏
i=m

n

12−i
x1

 (11)

2.4. Range Extension

As (11) shows the valid range for the variable is small.
This is not a problem for floating point arithmetic where
the variable is normalized. When the values are not
normalized, as in the fixed point case, we must reduce them
and, then, compensate the reduction at the output of the
approximation. A simple method to achieve this is to find a
number that multiplied by the variable results in a number
that satisfy (11). If we call z to this value and use (1) we
can write

log  x=log  z⋅x−log  z  (12)

The product computation can be simplified by choosing

z=2− j (13)

where j is selected, as mentioned above, and the only thing
that we must solve is

log  z =log 2− j (14)

These values can be stored in a look-up table. When the
size of the look-up table becomes an issue, we can solve
this as follows: (14) is very simple to compute when the
base of the logarithm is 2

log2 z =log22
− j=− j (15)

replacing (15) in (12)

log2 x=log22
− j⋅x j (16)

When we need to compute another base, we could use the
following property

loga  x=
logb x
logba 

 (17)

applied to (16)

loga  x= 1
log2a

⋅log22
− j⋅x j (18)

This method replaces the above mentioned look-up table
by a multiplication using a constant.

3. ALGORITHM IMPLEMENTATION

Our project used unsigned fixed point input values,
whereby, we split (18) in

N=2− j⋅x (19)

A=log2N  j (20)

M = 1
log2a

⋅A (21)

where we call (19) normalization, (20) approximation and
(21) base selection.

Note that when using floating point values the mantissa
is already normalized and we can start computing (20) using
the exponent as j and the next step (21) is the same. The
main difference is that the result of (21) must be normalized
like in (19) achieving a comparable complexity. Moreover,
additional circuitry could be needed to detect values out of
the logarithm domain.

3.1. Normalization

This step must find the value of j that satisfies (11). When
m=1 and n≥3 we can satisfy (11) using

0.5≤x1 (22)

or in binary notation

0.1≤x1.0 (23)

For an unsigned fixed point value with E integer bits and D
decimal bits we could find the value of j as follows: we
start with j=E, then we shift the value to the left until the
most significant bit is 1, decreasing j in each iteration. The
result is a normalized fixed point value with zero integer
bits and E+D decimal bits. Example: E=5, D=3,
x=00100.101

x=00100.101 j=5

x=01001.010 j=4

x=10010.100 j=3

The result is j=3 and the normalized value is 0.100101.
This algorithm consumes up to ED−1 steps to
achieve the normalization. Nonetheless, when the input
values are chosen at random, half of the values are
completed in zero steps and only one value in 2ED−1
needs ED−1 steps.

This process could be implemented using a
combinational circuit, but it could consume a much bigger
area.

3.2. Approximation

High-radix versions of the multiplicative normalization
could be used for speed optimization, but for area
optimization the proposed decision function is more
suitable.

The m value in (4) does not need to be 0, thanks to the
normalization step, and we can start from 1. The n value is
determined by the number of bits used in the approximation.
As the log(bi) values quickly decrease, increasing their
truncation error, we observed that for N bits the value of n
should be n≤N−2 , where N is selected to achieve the
desired precision.

We implemented the decision function (7) using N+1
bits, thus the MSB of xi+1 is used to determine whether the
step is skipped. A barrel shifter was used to implement the
product, while a serial shifter did not show an important
area saving and slowed down the computation. Fig. 1 (a)
shows the flow chart, where Table contains the log(bi)
values and the y variable is the approximation result. Fig. 2
shows a simplified block diagram.

We also incorporated the j addition to this block and an
error compensation coefficient explained in section four
(25).

3.3. Base Selection

This step is a multiplication by a constant and provides a
base change. The more common bases are 2, e (natural
logarithms) and 10. In the first case the constant is 1 and
this step is skipped, the approximated constants for the
other two cases are 0.6931 and 0.3010.

This block can take advantage of embedded multipliers
when available. When optimizing for speed, high speed
multipliers (i.e. adder tree) can be used. In our case we used
a traditional shift-and-add algorithm.

We optimized the algorithm loading the multiplier with
the result obtained after the first step and all the subsequent
0s. This can be illustrated with the following example: let
us suppose that we are computing the base 10 logarithm and
that we determined that the constant must be truncated at
the 14th bit to achieve a desired precision

1/ log210≈0.01001101000100

The 0s at the right and at the left can be skipped and we get
10011010001. We modified the load of the multiplier to
load the result obtained after the use of the four LSBs. As a
result, the multiplier only needs to compute the remaining
1001101. In this example, a 14-bit multiplication is reduced
to a 7-bit multiplication.

Fig. 1 (b) shows the flow chart, where OPT is the
number of bits optimized during the load and Kap(n)
represents the nth bit of the constant.

3.4. Interblock Communication

The above mentioned blocks needs different amounts of
clock cycles to finish their tasks and, which is even worst,
the first step needs a variable number of clock pulses. For
this reason, we implemented a simple handshake
mechanism to communicate the blocks. The protocol uses a
request line to indicate that a new value is available for the

consumer and an acknowledge line to indicate the value was
consumed.

The reported results include the area and clock pulses
needed for the above mentioned handshake. The resulting
core is composed by three independent blocks allowing the
computation of up to three values on the fly.

4. ERROR ANALYSIS

In this section we briefly discuss the error introduced by this
core. Unless otherwise specified all the errors are expressed
in counts of the LSB, known as ulp (units in the last place).
We only provide a simplified analysis to estimate the
maximum error, the actual error should be less than or equal
to the estimated one.

4.1. Normalization Error

When the total number of input bits is bigger than the
number of bits used in the approximation, this block must
truncate the value. In this case, the block introduces an error
in the (-1;0] range. Adding a rounder, the introduced error
is in the (-0.5;0.5] range. However, it does not reduce the
total error, as we will see later.

4.2. Approximation Error

This error can be measured by simulation; we used a C
implementation for that purpose. Table 1 shows the errors
for various sizes.

The normalization error is processed by the
approximation converting the (-1;0] range to an
approximated (-3;0] range, and it should be added to the
error introduced in this step, shown between parentheses in
Table 1.

4.3. Multiplication Error

This block introduces two different errors. One is
introduced when we truncate the constant. This error is
multiplied by the maximum input value, where this is less
than E, when the integer part of x has E bits. If we call K to
the constant and Kap to the approximated value

Etvmax=E⋅Kap−K  (24)

Note that this error is always negative unless we round the
constant instead of truncate it. Additionally (24) is not valid
when E is 0, in this case we should use -0.5 instead of E.
The other error is the result of the truncation of the output
value and is in the (-1;0] range.

In addition, the errors from the previous blocks are
affected by the multiplication; consequently, they are
reduced.

4.4. Example

We will show an example of the error estimation to clarify
the above mentioned components. Let us suppose the
following setup: base 10, input values 34.7 (unsigned),

Fig. 1. Flow charts: approximation (a) and multiplier (b)

Fig. 2. Simplified block diagram for the approximation

output decimals 10 and the constant is truncated at the 12th

bit.
From Table 1 we know that the error at the output of the

approximation step is in the [-7;5] range. The negative
boundary of the error can be obtained multiplying this error
by Kap, and then adding Etv together with the truncation
error. The value of Kap is

0.010011010001=1233 /4096

and using (24)

Etvmax=34⋅ 1233
4096

− 1
log210 ≈−0.16 ulp

The negative boundary of the error is

−7⋅0.3010−0.16−1=−3.27≈−3

The positive boundary is not affected by the truncation

5⋅0.3010−0.16=1.35≈1

resulting in an expected range of [-3;1].

4.5. Error Balancing

As the above analysis shows, the core has an unbalanced
error range. This is because the core truncates various
values, and we could balance this error adding a constant to
(20)

A=log2N  jEcomp (25)

In the previous example we could add 3 ulp changing the
error at the output of the approximation from [-7;5] to [-4;8]
obtaining a final error in the [-2;2] range.

This simple compensation reduced the maximum
absolute error from 3 to 2 for this example.

5. IMPLEMENTATION RESULTS

In this work, we selected some representative unsigned
fixed point values (8.16, 16.16, 0.15); the particular case of
our project (34.7 using 10 bits for the approximation) and
the equivalent to a single precision floating point mantissa
(0.24). Furthermore, we selected the decimal logarithm. In
the 0.24 case we assumed an already normalized input
value.

In the Xilinx case we used ISE Webpack 7.1 (7.1.03i
H.41) tool for synthesis, and the Virtex 4 LX (xc4vlx15-12-
ff668) device to measure the speed. We disabled the use of
BRAMs and DSP48 units, selected area optimization and
set the optimization effort to high. We did not use any time
constrain. Note that the consumed resources (FFs and
LUTs) for the Virtex 4 are approximately the same for
smaller devices like Spartan II.

Table 2 shows the error estimated using the method
described in section four, the measured error and the
number of clocks needed to compute the result. We
measured the error using 100,000 random values. The first
two values for the clocks are the minimum and maximum
number of clocks needed to compute the result (latency), the
third value is the average number of clock cycles between
output results when the core is constantly fed with random
values (throughput).

Table 3 shows area usage and maximum operating
frequency reported by the tool after the place and route. The
values for the area are flip-flops, 4 inputs LUTs, number of
LUTs used as a route-thru and slices.

In the Actel case we used Libero 7.2 (Synplify Pro 8.5F,
Build 001R and Actel Designer 7.2.0.31), and the
RT54SX72S-1-208CQFP device. We selected a maximum
fanout of 20 to optimize the used area. Table 4 shows area
usage and maximum operating frequency reported by the
tool after the place and route. The values for the area are
flip-flops, combinational cells and the percentage of area
used. Note that Actel devices use a simpler combinational
unit, but they provide two of them for each flip-flop.

Fig. 3 shows the measured error distribution for the 0.24
case, as mentioned above, it was obtained using 100,000
random values. The bar for -4 ulp can not be observed
because only four values presented this error.

Table 2. Implementation Results
In Out Est.

Error
Meas.
Error

Clocks

8.16 4.16 -4;3 -4;3 33/56/18

16.16 4.16 -4;3 -4;3 33/64/18

0.15 4.15 -3;3 -3;3 28/42/17

34.7 5.10 -2;2 -2;2 23/63/12

0.24 0.26 -5;5 -3;4 50/50/28

Table 1. Approximation Error
Bits Negative

Error (ulp)
Positive

Error (ulp)

8 3 (6) 5

10 4 (7) 5

12 7 (10) 5

14 8 (11) 6

16 11 (14) 6

26 22 (25) 6

6. CONCLUSION

The proposed algorithm could be implemented on FPGAs
from any vendor. As a result, it does not rely on specific
resources like BRAMs, embedded multipliers, etc.

The used area was small. For example when the 8.16
configuration was used for a decimal logarithm, it was
around 13% of a 100,000 gates equivalent device and less
than 1/500 of a modern Virtex 4 LX 200.

When we used the selected Virtex 4, this core computed
an average of 9.78 million values per second for the 8.16
configuration and over than 5 million values, when the
output needed 23 exact bits. The last case needed three
extra bits and provided the precision needed for a single
precision floating point number.

The core showed a very good area-speed relationship,
and for applications where the speed requirements are
bigger more than one core could be used in parallel.

7. ACKNOWLEDGMENTS

We would like to thank to Gustavo Sutter (UAM, Spain),
he contributed valuable ideas and references.

8. REFERENCES

[1] M. Haselman, M. Beauchamp, A. Wood, et al, “A
Comparison of Floating Point and Logarithmic Number
Systems for FPGAs,” Proc. of the 13th Annual IEEE Symp.
on Field-Prog. Custom Comp. (FCCM'05) 0-7695-2445,
Jan. 2005.

[2] Y. Wan and C. L. Wey, “Efficient algorithms for binary
logarithmic conversion and addition,” IEE Proc.-Comp.
Digit. Tech., vol. 146, no. 3, May. 1999.

[3] T. C. Chen, “Automatic computation of exponential,
logarithms rations and square roots,” IBM J. Res. Develop.,
pp. 380–388, Jul. 1972.

[4] H.-Y. Lo and Y. Aoki, “Generation of a precise binary
logarithm with difference grouping programmable logic
array,” IEEE Trans. Comput., vol. C-34, pp. 681–691, Aug.
1985.

[5] S.-Y. Shi, “Shortcut to logarithms combine table lookup and
computation,” Comput. Design., pp. 186–189, May. 1976.

[6] I. Koren, “Computer arithmetic algorithms, 2nd edition,”
ISBN 1-56881-160-8, pp. 225-232.

[7] D. K. Kostopoulos, “An algorithm for the computation of
binary logarithms,” IEEE Trans. on Comp., vol. 40, no. 11,
0018-9340/91, Nov. 1991.

[8] B. Parhami, “Computer Arithmetic Algorithms and
Hardware Designs,” ISBN 0-19-512583-5, pp 378-381.

[9] M. Pascale, “Microcontrollers & CORDIC methods,”, Dr.
Dobb's Journal, http://www.ddj.com/184404244, Jul. 2001.

Fig. 3 Error distribution for the 0.24/0.26 case.

Table 3. Implementation Results (Xilinx)
In Out Area

(FF/LUT/RLUT/Slices)
Max.
freq.

8.16 4.16 150/281/ 8/155 176 MHz

16.16 4.16 158/290/ 8/160 170 MHz

0.15 4.15 128/251/ 8/141 172 MHz

34.7 5.10 138/217/ 5/123 191 MHz

0.24 0.26 166/409/13/221 144 MHz

Table 4. Implementation Results (Actel)
In Out Area

(Reg./Comb./Area%)
Max.
freq.

8.16 4.16 154/500/10,8 % 33 MHz

16.16 4.16 162/505/11,1 % 32 MHz

0.15 4.15 129/446/9,5 % 32 MHz

34.7 5.10 139/372/8,5 % 39 MHz

0.24 0.26 174/747/15,3 % 23 MHz

