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ABSTRACT

In  this  work,  we  present  an  area  optimized  FPGA
implementation  of  an  IP  core  to  compute  the  base-N
logarithm. Nevertheless, we also discuss the area, speed and
precision trade-offs. We selected an algorithm that could be
implemented  on  any  FPGA  avoiding  vendor  specific
features like block RAMs, embedded multipliers,  etc. We
report the implementation results of a fixed point version of
the  algorithm  using  various  common  configurations  on
Xilinx and Actel devices. This implementation achieved the
required area goals providing a very good speed-area ratio.
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1. INTRODUCTION

The computation of the logarithm is widely used for many
applications  like  digital  filters,  power  computations  (dB)
and logarithmic number systems (LNS), to name a few. This
is  also  a  key  component  of  LNS,  which  offer  good
advantages over traditional floating point systems [1].

This  work is  organized  as  follows: section  two deals
with about the algorithm selection and how it works, section
three  describes  its  implementation,  section  four  briefly
discusses the error introduced by the approximation, section
five shows the results of the implementation and section six
provides the conclusions.

2. ALGORITHM SELECTION AND
DESCRIPTION

The  available  methods  to  compute  the  logarithm  of  a
number using digital  circuits can be divided in two main
groups. On the one hand, we have the look-up table based
algorithms and, on the other,  iterative methods.  The first
approach is faster and straightforward, but only useful for
low precision. This is due to the size of the look-up table.
The second group is slower, but suitable for high precision.
Many  studies  explore  hybrid  implementations  that  take
advantages from both groups  [2] and  [3],  [4],  [5] cited by
Kostopoulos.

Our  project  required  an  algorithm  that  could  be
implemented  on  FPGAs  from any vendor,  including  the

Actel's   RTSX72SU  FPGA.  This  is  a  radiation  tolerant
device and lacks the BRAMs needed to implement big look-
up tables. Therefore, we only evaluated iterative algorithms
that  need  small  look-up  tables.  Moreover,  we coded  the
algorithm using standard VHDL to ensure its portability.

Taylor's  series  expansion  is  among the  most  popular
methods to manually compute logarithms, but it has a slow
convergence and requires slow operations like the division
[6]. Other algorithms like the one proposed by Kostopoulos
[7] use a multiplier inside the iteration; therefore, they are
slow when no embedded multipliers are available. A very
well studied alternative is the multiplicative normalization.
It  just  needs  adders  and  shifters  and  provides  a  fast
convergence [6], [8], [9], consequently it was suitable for our
project.

2.1. Multiplicative Normalization

Based on the following logarithms property

           log a⋅b=log a log b              (1)

Assuming  that  x is  our  variable,  the  multiplicative
normalization uses the following values for a and b

log  x⋅∏
i=m

n

bi=log x ∑
i=m

n

log bi      (2)

Selecting the bi values to get

x⋅∏
i=m

n

bi=1                           (3)

we obtain

log x =−∑
i=m

n

log bi                   (4)

Storing  the  log(bi) values  in  a  small  look-up  table  the
logarithm computation is reduced to sums. 

y i1= yi−log bi                         (5)



The only requirement is (3). To reduce the multiplications
used in (3) to simple shifts we could use

bi=1d i⋅2−i                          (6)

In this way the product computed in each iteration of (3) is

x i1=xixi⋅d i⋅2−i                     (7)

and the logarithm iteration 

y i1= y i−log 1d i⋅2−i               (8)

Now  we  must  select  the di values  to  achieve  (3).  The
function to determine di  is called decision function.

2.2. A Simple Decision Function

The  selection  of  the  decision  function  affects  the
convergence speed and the algorithm precision. Although
high-radix  systems  consume  big  amounts  of  area,  they
provide high speed. However, selecting a simple decision
function we can achieve a small area footprint.

We selected 1 and 0 as the only possible values for  di

and applied the following criterion: if using 1 makes  xi+1

bigger than or equal to 1, then, we simply use 0. As the bi

values are smaller and smaller this method asymptotically
approaches to 1.

The hardware implementation was very simple  because
to determine whether the resulting value is bigger than or
equal to 1 we just need to check one bit in the result. When
this bit becomes 1 the iteration is simply skipped because
(7) and (8) are:

xi1=xi0∧ y i1= y i−log 1             (9)

This function uses only two values and is simpler than the
one described by Koren [6]. Unlike the functions explained
in [6] and [9], this function provides a good convergence of
the approximation for the whole range of values.

2.3. Convergence Radius

Replacing (6) in (3) we obtain

x= 1

∏
i=m

n

1d i⋅2−i
                      (10)

The  smaller  value  we  can  obtain  is  when  the  decision
function  is  always  1  and  the  bigger  when  the  function
always selects 0. 

1

∏
i=m

n

12−i
x1

                      (11)

2.4. Range Extension

As (11)  shows the valid  range  for  the  variable is  small.
This is not a problem for floating point arithmetic where
the  variable  is  normalized.  When  the  values  are  not
normalized, as in the fixed point case, we must reduce them
and,  then,  compensate the reduction at  the output  of  the
approximation. A simple method to achieve this is to find a
number that multiplied by the variable results in a number
that satisfy (11). If we call  z to this value and use (1) we
can write

log  x=log  z⋅x−log  z              (12)

The product computation can be simplified by choosing 

z=2− j                              (13)

where  j is selected, as mentioned above, and the only thing
that we must solve is

log  z =log 2− j                  (14)

These values can be stored in a look-up table. When the
size of the look-up table becomes an issue, we can solve
this as follows: (14) is very simple to compute when the
base of the logarithm is 2

log2 z =log22
− j=− j               (15)

replacing (15) in (12)

log2 x=log22
− j⋅x j   (16)

When we need to compute another base, we could use the
following property

loga  x=
logb x
logba 

                  (17)

applied to (16)

loga  x= 1
log2a

⋅log22
− j⋅x j      (18)

This method replaces the above mentioned look-up table
by a multiplication using a constant.

3. ALGORITHM IMPLEMENTATION

Our  project   used  unsigned  fixed  point  input  values,
whereby, we split (18) in 

N=2− j⋅x                              (19)



A=log2N  j                        (20)

M = 1
log2a

⋅A                        (21)

where we call (19) normalization, (20) approximation and
(21) base selection. 

Note that when using floating point values the mantissa
is already normalized and we can start computing (20) using
the exponent as  j and the next step (21) is the same. The
main difference is that the result of (21) must be normalized
like in (19) achieving a comparable complexity. Moreover,
additional circuitry could be needed to detect values out of
the logarithm domain.

3.1. Normalization

This step must find the value of  j that satisfies (11). When
m=1 and n≥3 we can satisfy (11) using 

0.5≤x1                             (22)

or in binary notation

0.1≤x1.0                           (23)

For an unsigned fixed point value with E integer bits and D
decimal bits we could find the value of  j as follows: we
start with  j=E, then we shift the value to the left until the
most significant bit is 1, decreasing j in each iteration. The
result is a normalized fixed point value with zero integer
bits  and  E+D decimal  bits.  Example:  E=5,  D=3,
x=00100.101
 

x=00100.101 j=5

x=01001.010 j=4

x=10010.100 j=3

The result  is  j=3 and the  normalized  value is  0.100101.
This  algorithm  consumes  up  to ED−1 steps  to
achieve  the  normalization.  Nonetheless,  when  the  input
values  are  chosen  at  random,  half  of  the  values  are
completed in zero steps and only one value in 2ED−1
needs ED−1 steps.

This  process  could  be  implemented  using  a
combinational circuit, but it could consume a much bigger
area.

3.2. Approximation

High-radix  versions  of  the  multiplicative  normalization
could  be  used  for  speed  optimization,  but  for  area
optimization  the  proposed  decision  function  is  more
suitable.

The m value in (4) does not need to be 0,   thanks to the
normalization step, and we can start from 1. The n value is
determined by the number of bits used in the approximation.
As  the log(bi)  values  quickly decrease,   increasing  their
truncation error, we observed that for N bits the value of n
should be  n≤N−2 , where  N is selected to achieve the
desired precision. 

We implemented  the decision function (7)  using  N+1
bits, thus the MSB of xi+1 is used to determine whether the
step is skipped. A barrel shifter was used to implement the
product,  while a serial shifter did not show an important
area saving and slowed down the computation. Fig. 1 (a)
shows the  flow chart,  where   Table contains  the  log(bi)
values and the y variable is the approximation result. Fig. 2
shows a simplified block diagram.

We also incorporated the j addition to this block and an
error  compensation  coefficient  explained  in  section  four
(25). 

3.3. Base Selection

This step is a multiplication by a constant and provides a
base  change.  The  more  common bases  are  2,  e  (natural
logarithms) and 10. In the first case the constant is 1 and
this  step  is  skipped,  the  approximated  constants  for  the
other two cases are 0.6931 and 0.3010.

This block can take advantage of embedded multipliers
when available.  When  optimizing  for  speed,  high  speed
multipliers (i.e. adder tree) can be used. In our case we used
a traditional shift-and-add algorithm.

We optimized the algorithm loading the multiplier with
the result obtained after the first step and all the subsequent
0s. This can be illustrated with the  following example: let
us suppose that we are computing the base 10 logarithm and
that we determined that the constant must be truncated at
the 14th bit to achieve a desired precision

1/ log210≈0.01001101000100

The 0s at the right and at the left can be skipped and we get
10011010001.  We modified the load of  the multiplier  to
load the result obtained after the use of the four LSBs. As a
result, the multiplier only needs to compute the remaining
1001101. In this example, a 14-bit multiplication is reduced
to  a 7-bit multiplication.

Fig.  1  (b)  shows the  flow chart,  where   OPT is  the
number  of  bits  optimized  during  the  load  and  Kap(n)
represents the nth bit of the constant. 

3.4. Interblock Communication

The  above  mentioned  blocks  needs  different  amounts  of
clock cycles to finish their tasks and, which is even worst,
the first step needs a variable number of clock pulses. For
this  reason,  we  implemented  a  simple  handshake
mechanism to communicate the blocks. The protocol uses a
request line to indicate that a new value is available for the



consumer and an acknowledge line to indicate the value was
consumed.

The reported results include the area and clock pulses
needed for the above mentioned handshake. The resulting
core is composed by three independent blocks allowing the
computation of up to three values on the fly.

4. ERROR ANALYSIS

In this section we briefly discuss the error introduced by this
core. Unless otherwise specified all the errors are expressed
in counts of the LSB, known as ulp (units in the last place).
We  only  provide  a  simplified  analysis  to  estimate  the
maximum error, the actual error should be less than or equal
to the estimated one.

4.1. Normalization Error

When  the  total  number  of  input  bits  is  bigger  than  the
number of bits used in the approximation, this block must
truncate the value. In this case, the block introduces an error
in the (-1;0] range. Adding a rounder, the introduced error
is in the (-0.5;0.5] range. However, it does not reduce the
total error, as we will see later.

4.2. Approximation Error

This  error  can be measured by simulation;  we used a C
implementation for that purpose. Table 1 shows the errors
for various sizes.

The  normalization  error  is  processed  by  the
approximation  converting  the  (-1;0]  range  to  an
approximated (-3;0] range, and it  should be added to the
error introduced in this step, shown between parentheses in
Table 1.

4.3. Multiplication Error

This  block  introduces  two  different  errors.  One  is
introduced  when we  truncate  the  constant.  This  error  is
multiplied by the maximum input value, where this is less
than E, when the integer part of x has E bits. If we call K to
the constant and Kap to the approximated value

Etvmax=E⋅Kap−K                 (24)

Note that this error is always negative unless we round the
constant instead of truncate it. Additionally (24) is not valid
when E is 0, in this case we should use -0.5 instead of E.
The other error is the result of the truncation of the output
value and is in the (-1;0] range.

In  addition,  the  errors  from the  previous  blocks  are
affected  by  the  multiplication;  consequently,  they  are
reduced.

4.4. Example 

We will show an example of the error estimation to clarify
the  above  mentioned  components.  Let  us  suppose  the
following  setup:  base  10,  input  values  34.7  (unsigned),

Fig. 1. Flow charts: approximation (a) and multiplier (b)

Fig. 2. Simplified block diagram for the approximation



output decimals 10 and the constant is truncated at the 12th

bit.
From Table 1 we know that the error at the output of the

approximation  step  is  in  the  [-7;5]  range.  The  negative
boundary of the error can be obtained multiplying this error
by  Kap, and then adding  Etv together with the truncation
error. The value of Kap is 

0.010011010001=1233 /4096

and using (24)

Etvmax=34⋅ 1233
4096

− 1
log210 ≈−0.16 ulp

The negative boundary of the error is

−7⋅0.3010−0.16−1=−3.27≈−3

The positive boundary is not affected by the truncation 

5⋅0.3010−0.16=1.35≈1

resulting in an expected range of [-3;1]. 

4.5. Error Balancing 

As the above analysis shows, the core has an unbalanced
error  range.  This  is  because  the  core  truncates  various
values, and we could balance this error adding a constant to
(20)

A=log2N  jEcomp             (25)

In the previous example we could add 3 ulp changing the
error at the output of the approximation from [-7;5] to [-4;8]
obtaining a final error in the [-2;2] range.

This  simple  compensation  reduced  the  maximum
absolute error from 3 to 2 for this example.

5. IMPLEMENTATION RESULTS

In  this  work,  we  selected  some  representative  unsigned
fixed point values (8.16, 16.16, 0.15); the particular case of
our project (34.7 using 10 bits for the approximation) and
the equivalent to a single precision floating point mantissa
(0.24). Furthermore, we selected the decimal logarithm. In
the  0.24  case  we  assumed  an  already  normalized  input
value.

In the Xilinx case we used ISE Webpack 7.1 (7.1.03i
H.41) tool for synthesis, and the Virtex 4 LX (xc4vlx15-12-
ff668) device to measure the speed. We disabled the use of
BRAMs and DSP48 units, selected area optimization and
set the optimization effort to high. We did not use any time
constrain.  Note  that  the  consumed  resources  (FFs  and
LUTs)  for  the  Virtex  4  are  approximately  the  same  for
smaller devices like Spartan II.

Table  2  shows the  error  estimated  using  the  method
described  in  section  four,  the  measured  error  and  the
number  of  clocks  needed  to  compute  the  result.  We
measured the error using 100,000 random values. The first
two values for the clocks are the minimum and maximum
number of clocks needed to compute the result (latency), the
third value is the average number of clock cycles between
output results when the core is constantly fed with random
values (throughput).

Table  3  shows  area  usage  and  maximum  operating
frequency reported by the tool after the place and route. The
values for the area are flip-flops, 4 inputs LUTs, number of
LUTs used as a route-thru and slices.

In the Actel case we used Libero 7.2 (Synplify Pro 8.5F,
Build  001R  and   Actel  Designer  7.2.0.31),   and  the
RT54SX72S-1-208CQFP device. We selected a maximum
fanout of 20 to optimize the used area. Table 4 shows area
usage and maximum operating frequency reported  by the
tool after the place and route. The values for the area are
flip-flops,  combinational  cells  and the percentage of  area
used. Note that Actel devices use a simpler combinational
unit, but they provide two of them for each flip-flop.

Fig. 3 shows the measured error distribution for the 0.24
case,  as mentioned above, it  was obtained using 100,000
random values.  The  bar  for  -4  ulp  can  not  be  observed
because only four values presented this error.

Table 2. Implementation Results
In Out Est.

Error
Meas.
Error

Clocks

8.16 4.16 -4;3 -4;3 33/56/18

16.16 4.16 -4;3 -4;3 33/64/18

0.15 4.15 -3;3 -3;3 28/42/17

34.7 5.10 -2;2 -2;2 23/63/12

0.24 0.26 -5;5 -3;4 50/50/28

Table 1. Approximation Error
Bits Negative

Error (ulp)
Positive

Error  (ulp)

8 3 (6) 5

10 4 (7) 5

12 7 (10) 5

14 8 (11) 6

16 11 (14) 6

26 22 (25) 6



6. CONCLUSION

The proposed algorithm could be implemented on FPGAs
from any vendor.  As a result, it does not rely on specific
resources like BRAMs, embedded multipliers, etc.

The used area was small. For example  when the 8.16
configuration  was  used  for  a  decimal  logarithm,  it  was
around 13% of a 100,000 gates equivalent device and less
than 1/500 of a modern Virtex 4 LX 200.

When we used the selected Virtex 4, this core computed
an average of 9.78 million values per second for the 8.16
configuration  and  over  than  5  million  values,  when  the
output  needed  23  exact  bits.  The  last  case  needed  three
extra bits  and provided the precision needed for a  single
precision floating point number.

The core showed a very good area-speed relationship,
and  for  applications  where  the  speed  requirements  are
bigger more than one core could be used in parallel.
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Fig. 3 Error distribution for the 0.24/0.26 case.

Table 3. Implementation Results (Xilinx)
In Out Area

(FF/LUT/RLUT/Slices)
Max.
freq.

8.16 4.16 150/281/ 8/155 176 MHz

16.16 4.16 158/290/ 8/160 170 MHz

0.15 4.15 128/251/ 8/141 172 MHz

34.7 5.10 138/217/ 5/123 191 MHz

0.24 0.26 166/409/13/221 144 MHz

Table 4. Implementation Results (Actel)
In Out Area

(Reg./Comb./Area%)
Max.
freq.

8.16 4.16 154/500/10,8 % 33 MHz

16.16 4.16 162/505/11,1 % 32 MHz

0.15 4.15 129/446/9,5 % 32 MHz

34.7 5.10 139/372/8,5 % 39 MHz

0.24 0.26 174/747/15,3 % 23 MHz


