

Proyecto "Mejora de la Eficiencia y de la Competitividad de la Economía Argentina" Argentina / INTI – Unión Europea

SEMINARIO "MEJORA DE LA EFICIENCIA Y DE LA COMPETITIVIDAD DE LAS PYMES QUESERAS ARGENTINAS" Junio 2007

LA CALIDAD DE LA LECHE

. Aspectos relacionados con la calidad en la producción de quesos

Laura Robert INTI LÁCTEOS

REQUISITOS FISICO-QUIMICOS PARA LECHE DE VACA SEGÚN CODIGO ALIMENTARIO ARGENTINO

REQUISITO	VALOR NORMAL	METODO DE ANALISIS
MATERIA GRASA (g/100ml)	Mín. 3,0	ISO 2446: 1976 (E) pipeta 11ml
PROTEINAS TOTALES (g/100g)	Mín. 2,9	ISO 8968-2-IDF 20-2:2001 (E)
DENSIDAD (15 ° C g/cm3)	1.028 a 1.035	AOAC 15° Ed. 925.22
ACIDEZ (g Ácido Láctico/100 ml)	0,13 a 0,18	AOAC 15 Ed. 947.05
EXTRACTO SECO NO GRASO (g/100g)	Mín. 8,2	FIL-IDF 21B:1987 e ISO 2446: 1976 (E)
DESCENSO CRIOSCOPICO (m°C)	Máx512	Norma ISO 5764-IDF 108: 2002 (E).
PRUEBA DE ALCOHOL	Estable	FIL-IDF 48: 1969
PRUEBA DE EBULLICION	Estable	GODET y MUR (1966)

CALIDAD 500 HIGIÉNICO SANITARIA

RODEOS LIBRES DE BRUCELOSIS Y TUBERCULOSIS

MASTITIS CONTROLADA

(menos de 400.000 celulas/ml)

RECUENTOS DE BACTERIAS AEROBIAS MESÓFILAS MENOR A 100.000 UFC/ml

¿QUE DETERMINA LA CALIDAD DE LECHE?

-CONTEO DE BACTERIAS:

< 100.000 UFC/ml

-CELULAS SOMÁTICAS:

< 400.000 Cel/ml

-AUSENCIA DE:

ANTIBIÓTICOS

HORMONAS

Contaminantes Químicos

Agregado de agua

-COMPONENTES:

Proteínas (Caseína)

Minerales

Enzimas

MASTITIS

AUMENTA EL CONTEO DE CELULAS SOMÁTICAS

MODIFICACIONES EN LA FRACCIÓN PROTEICA

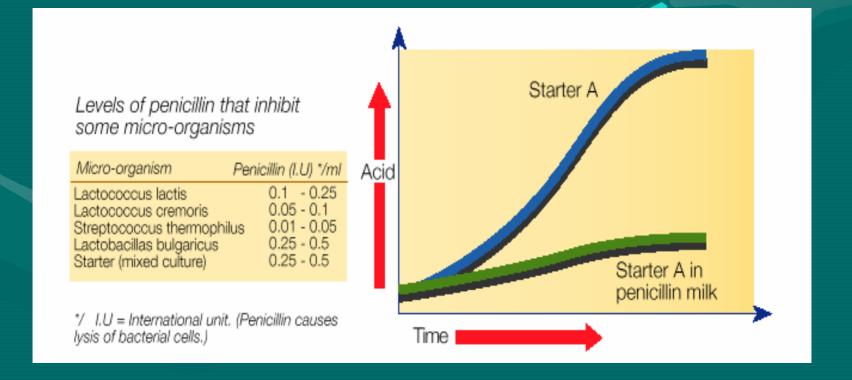
CASEÍNA

† PROTEÍNAS SOLUBLES

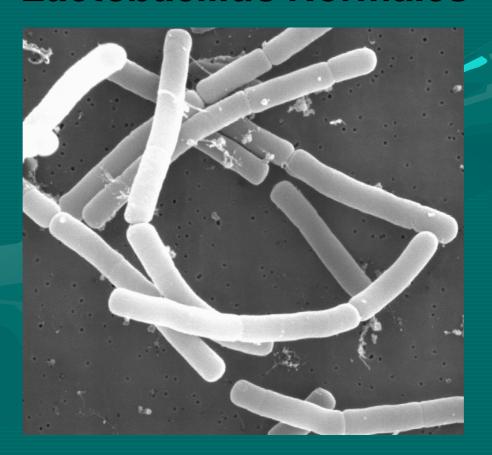
CAMBIOS EN LA COMPOSICIÓN MINERAL:

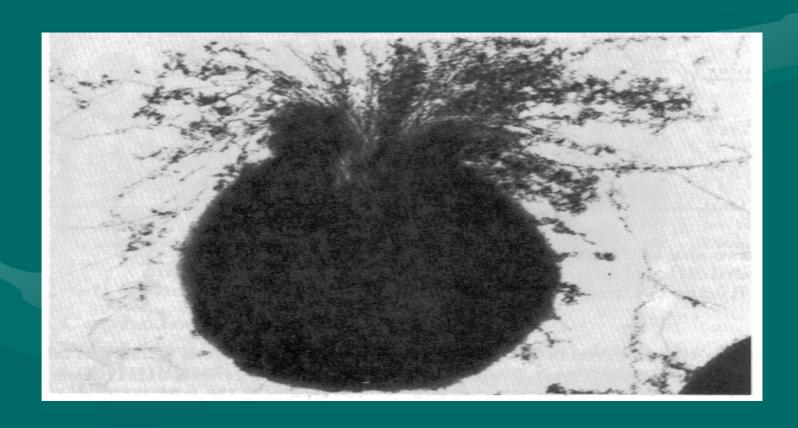
Na y Cl

Ca y K


1 PH y CONDUCTIVIDAD

AUMENTO DE ENZIMAS ASOCIADAS CON LA INFLAMACIÓN


Efectos de la Penicilina en los Cultivos Starter



Lactobacillus Normales

ACCIÓN DE LA PENICILINA

EL CONTENIDO DE MATERIA GRASA Y PROTEINAS DE LA LECHE INCIDE EN EL RENDIMIENTO QUESERO Y DE LECHE EN POLVO

-Ej:

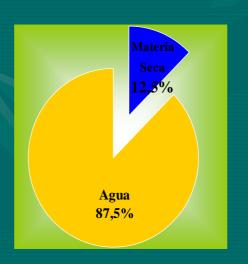
Aumentando 0,05 % el contenido de caseína de la leche

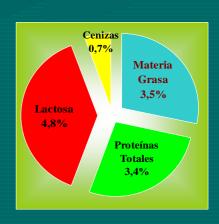
Tendré 2 kg más de queso cada 1000 litros de leche

RECOLECCIÓN y TRANSPORTE

RECIBO

ELABORACIÓN




COMPOSICIÓN DE LA LECHE

-CONTENIDO Y CALIDAD DE PROTEÍNAS

-CONTENIDO Y COMPOSICIÓN DE LA MATERIA GRASA

-MINERALES

VARIABILIDAD DE LA LECHE

VARIACION FISIOLÓGICA

(Fase de lactación Edad del animal, gestación) VARIACION GENÉTICA

(razas, iindividuos)

VARIACION AMBIENTAL

(alimentación, Clima, estrés)

CALIDAD HIGIÉNICA CONSERVACIÓN EN FRÍO

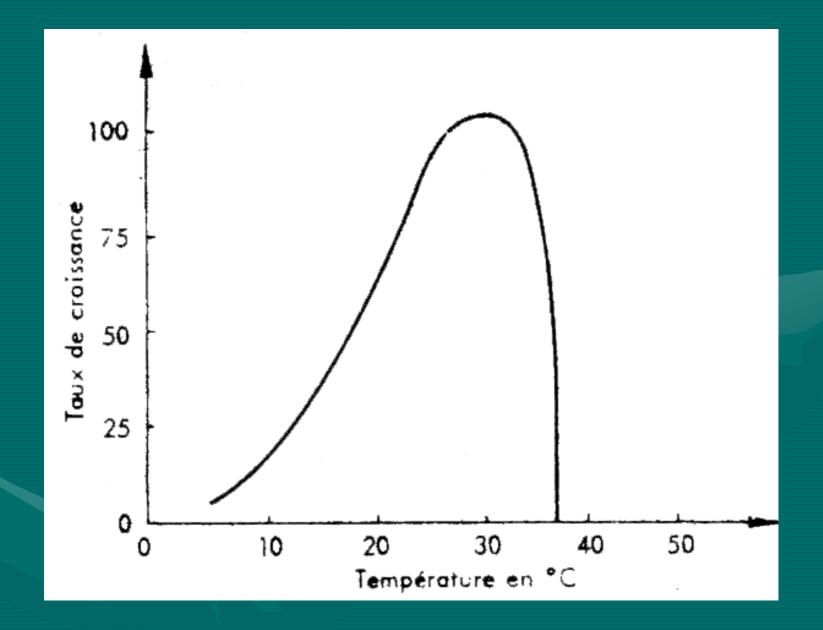
- -La leche contiene una cantidad y calidad de microorganismos, muy variable, tanto de origen intra como extra mamario
- -La incorporación de microorganismos perjudiciales es inevitable, tanto de origen intra como extramamario que se incorporan a la leche, y es necesario controlar todo lo posible su incorporación

Tabla 1 - Importancia de los contaminantes de la leche (CHATELIN, 1973)

Origen de la contaminación	Cantidad relativa de bacterias
Interior de la ubre	1 a 5
Animal	20 a 200
Tambo	1 a 10
Material para ordeñe mecánico	1000 a 10000

Influencia de la esterilización de utensilios sobre la contaminación de la leche

(ALAIS, 1975)


	Número de bacterias aerobias mesófilas por ml de leche		
Tambo	Equipos de ordeñe no esterilizados	Equipos de ordeñe esterilizado	
A	116.400	10.700	
В	15.000	4.700	
C	187.000	3.600	
D	77.100	2.000	
E	35.000	2.100	
F	49.200	3.000	

LA MAYOR PARTE DE LAS BACTERIAS PRESENTES EN LECHE CRUDA, SON:

- -Bacterias coliformes
- -Pseudomonas
- -Microccus y Staphilococcus
- -Esporulados (Clostridium, bacillus)

Que se encuentran en la leche debido a:

- -problemas de higiene de la ubre o del equipamiento
- -contaminación del ambiente

Influencia de la temperatura sobre el crecimiento de las bacterias mesófilas (%). (Riviere)

Microorganismos	Temperatura de crecimiento en °C		
	Minima	Optima	Maxima
Psicrófilos	- 5	+ 5 a + 10	+ 20
Mesófilos	+ 10	+ 30 a + 40	+ 45
Termófilos	+ 40	+ 50 a + 60	+ 75

LA CON SERVACIÓN EN FRIO PUEDE SER:

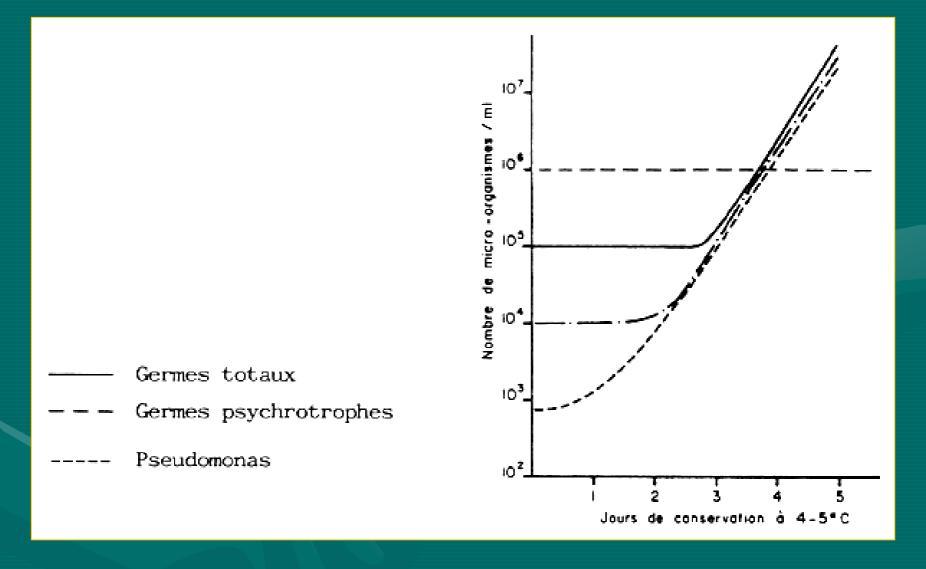
FACTOR QUE FAVORECE LA CONSERVACIÓN DE LA LECHE Y CONTROLA EL DESARROLLO MICROBIANO

CAUSANTE DE UNA SELECCIÓN DE BACTERIAS EN LA LECHE, POR FAVORECER EL DESARROLLO DE BACTERIAS "PSICRÓTROFAS"

• EL DESARROLLO DE BACTERIAS PSICRÓTROFAS EN LA LECHE ESTÁ ACOMPAÑADO DE UN INCREMENTO DE ENZIMAS PROTEOLÍTICAS Y LIPOLÍTICAS, RESISTENTES A LA TEMPERATURA DE PASTERIZACIÓN

LA ACCIÓN DE ESTAS ENZIMAS SE VERÁ EN EL PRODUCTO ELABORADO DEBIDO A QUE PUEDEN SER CAUSA DE DEFECTOS Y ALTERACIONES

PRESENCIA DE BACTERIAS PSICRÓTROFAS EN LECHE


FALTA DE
HIGIENE Y
DESINFECCIÓN

<u>Tabla 5</u> - Influencia de la corrosión del material del equipamiento Sobre la contaminación de la leche (CHATELAIN et RICHARD, 1981)

	Número de bacterias aerobias mesófilas/ ml		
Ordeñe	12 hs despues		
N°	Sin corrosión	Con corrosión	
1	6.500	250.000	
2	14.000	230.000	
3	15.000	240.000	
4	16.000	640.000	
5	10.000	630.000	
6	6.500	210.000	
Media	11.000	370.000	

-EFECTO DE LA CONTAMINACION DEL EQUIPAMIENTO DE ORDEÑE CON B. PSICRÓTROFAS SOBRE LA LECHE REFRIGERADA, CONSERVADA 72 HORAS ENTRE 3 Y 5 °C (D'après THOMAS)

	Número de bacterias psicrótrofas/ ml		
Tambo	Recien ordeñada	Después de conservación 72 hs entre 3 y 5°C	
Material limpio y desinfectado			
1	0	400	
2	7	104	
3	70	7.000	
4	204	5.600	
Material no desinfectado			
5	580	4.640.000	
6	1.500	7.300.000	
7	6.400	14.700.000	
8	9.600	29.000.000	

Evolución de la flora microbiana de la leche refrigerada conservada a 5°C (Richard y Auclair, 1984)

MATERIA GRASA

ACCIÓN DEL FRÍO (favorece la ruptura de la membrana, retracción del glóbulo graso con desprendimiento de "aceite" y posterior acción de lipasas – prod. ác. Grasos libres- y del oxígeno)

EFECTOS MECÁNICOS (bombas no adecuadas, agitadores que generan turbulencias fuertes, etc)

CONSECUENCIAS TECNOLÓGICAS:

La alteración de la membrana protectora del glóbulo de grasa, permite el contacto entre la grasa y las lipasas, generando defectos organolépticos (lipólisis o enranciamiento)

PROTEÍNAS

LA ACTIVIDAD PROTEOLÍTICAS DE NUMEROSAS BACTERIAS PSICRÓTROFAS SE MANIFIESTA A BAJAS TEMPERATURAS. LA PRODUCCION DE PROTEASAS ES MAYOR A TEMPERATURAS DE REFRIGERACIÓN.

(Ej. Pseudomonas fluorescens tiene una actividad 6 veces mayor a 3°C que a 30°C)

ENZIMAS PROTEOLÍTICAS SON RESISTENTES A LA TEMPERATURA DE PASTERIZACIÓN POR LO TANTO SU ACTIVIDAD CONTINÚA EN EL PRODUCTO

AL MANTENER LA LECHE A BAJA TEMPERATURA SE FAVORECE LA SOLUBILIZACIÓN DE UNA PARTE DE LAS CASEINAS.

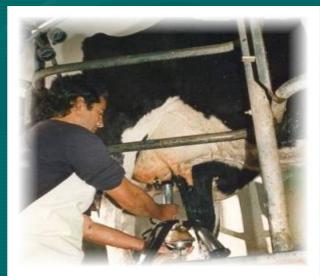
Modificación del EQUILIBRIO SALINO Y DE LAS MICELAS

SOLUBILIZACIÓN DE UNA PARTE DEL FOSFATO DE CALCIO ASOCIADO A LAS CASEÍNAS

Manteniendo la leche 48 hs a 3 - 4°C, 10 a 20 % del calcio y 8 a 10 % del fosfato pasan a la fase acuosa

ESTOS EFECTOS TIENEN CONSECUENCIAS TECNOLÓGICAS, FUNDAMENTALMENTE EN LA ELABORACIÓN DE QUESOS

PUEDO CONSERVAR EN FRIO LECHES DE


BUENA CALIDAD – obtenidas higiénicamente

MUCHAS VARIACIONES SUCEDEN DEBIDO A QUE LA LECHE CAMBIA DESPUES DE OBTENIDA.

No es un sistema en equilibrio y por eso cambia aun cuando:

- se conserva en las mismas condiciones que en la mama.

- -Tiene lugar la contaminación
- -Se expone al aire y a la luz
- -Se modifica la temperatura

CAMBIOS EN LA LECHE

FISICOS

- Agregación de glóbulos grasos (aglutinación en frío),
- -cristalización de parte de la grasa al enfriarse
- -Incorporación de burbujas de aire
- -Aumento de la viscosidad con el enfriamiento

QUIMICOS

- -Incorporación de O2 (oxidación de algunos Lípidos y otras sust. Como vitamina C) y N2
- -Pérdida de anhidrido carbónico
- -Variación de comp. Salina y pH con la temperatura

CAMBIOS EN LA LECHE

BIOQUIMICOS

Principalmente cambios enzimáticos: lipólisis, proteólisis, hidrólisis)

MICROBIANOS

- -Acidificación (con todas sus consecuencias)
- -A temperatura ambiente: la mayoría de los cambios ocurren en un solo día
- -A 5°C: los cambios suceden a medida que transcurre el tiempo (se observan efectos significativos a mayor tiempo)

La CALIDAD DE LECHE comienza a definirse en EL TAMBO

-RODEO CONTROLADO, LIBRE DE BRUCELOSIS, TUBERCULOSIS, MASTITIS

-IDENTIFICACION Y SEPARACION DE ANIMALES TRATADOS CON ANTIBIÓTICOS O ENFERMOS

ADECUADA ALIMENTACIÓN Y AGUA PARA ELGANADO

CONTROL DE HIGIENE Y DESINFECCIÓN DURANTE EL ORDEÑE

La CALIDAD DE LECHE comienza a definirse en EL TAMBO

MANTENIMIENTO DE LAS INSTALACIONES Y EQUIPOS

REGISTROS:

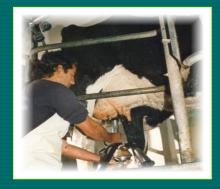
Es imprescindible ANOTAR para que quede registrada la actividad diaria.

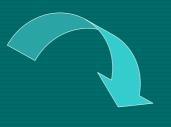
TRANSPORTE

ORGANIZAR LOS RECORRIDOS DE RECOLECCIÓN ADECUADAMENTE

- USAR TRANSPORTES ADECUADOS
- MANTENER EL EQUIPO EN CORRECTAS CONDICIONES DE HIGIENE Y DESINFECCIÓN

RECIBO DE LECHE


CONTROLAR LA CALIDAD DE LECHE QUE SE RECIBE


MANTENER LA CALIDAD DE LECHE RECIBIDA :

- -Manteniendo la higiene del ambiente del recibo, de los equipos y utensilios
- -Cuidando la higiene personal
- -Pasterizar correctamente
- -Evitar la contaminación posterior a la pasterización
- -Conservar la leche en condiciones adecuadas (Temperatura, tiempos, etc)

CLASIFICAR LA LECHE
Y SEPARAR
LA QUE NO CUMPLE
CON LOS
REQUISITOS DE CALIDAD

- REGISTROS

BPG

BPA

POES

RECOLECCIÓN y TRANSPORTE

POES

RECIBO

BPM

POES

ELABORACIÓN

BPM - POES
APPCC

Proyecto "Mejora de la Eficiencia y de la Competitividad de la Economía Argentina" Argentina / INTI – Unión Europea

Muchas gracias

Laura Robert NTI ΛΑΧΤΕΟΣ robertl@inti.gov.ar

<u>www.inti.gov.ar/lacteos</u> www.guesosargentinos.gov.ar