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We analyze the thermoelectric cooling properties of a Corbino device in the quantum Hall regime
on the basis of experimental data of electrical conductance. We focus on the cooling power and the
coefficient of performance within and beyond linear response. Thermovoltage measurements in this
device reported in Phys. Rev. Applied, 14 034019 (2020) indicated that the transport takes place
in the diffusive regime, without signatures of effects due to the electron-phonon interaction in a wide
range of temperatures and filling factors. In this regime, the heat and charge currents by electrons
can be described by a single transmission function. We infer this function from experimental data
of conductance measurements and we calculate the cooling power and the coefficient of performance
for a wide range of filling factors and temperatures, as functions of the thermal and electrical biases.
We predict an interesting cooling performance in several parameter regimes.

I. INTRODUCTION

Thermoelectric phenomena in quantum mesoscopic de-
vices is a topic of great interest for some years now[1–4].
The relevant regime takes place at very low temperatures,
typically in the subkelvin range. Besides the interest in
the fundamental physical properties, research in this field
is motivated by the emergent development of quantum
technologies. For instance, all the proposals for imple-
menting quantum computation in solid-state devices rely
on systems that operate at cryogenic temperatures, be-
ing one of such platforms the fractional quantum Hall
system[5, 6]. One of the challenges in this context is the
removal of heat produced in the operation of these de-
vices.

A significant amount of work has been published on
thermoelectricity in quantum coherent systems. Paradig-
matic examples are quantum dots[7–16], nanowires[17,
18] quantum point contacts[19–22] and topological edge
states of the quantum Hall and the quantum spin Hall
regimes[23–35]. In these cases transport takes place
through a few ballistic channels. In two-terminal config-
urations, for very low temperatures, such that electron-
phonon interaction does not play a relevant role, charge
and thermal currents, as well as the thermoelectric re-
sponse are fully characterized by a transmission function
that describes the transport properties of the electrons
through the device [1, 20, 21, 36–39].

Thermoelectricity in the quantum Hall regime in the
Corbino geometry has been investigated theoretically[40,
41] and experimentally[42, 43], as well as in bar
configurations[44, 45]. In a recent work, experimental ev-
idence of a significant thermoelectric response in a quan-
tum Hall Corbino device was presented [46]. The theoret-
ical modeling of this experimental data is consistent with
a diffusive mechanism of the electron transport, free from

FIG. 1. Left panel: sketch of the Corbino ring. The spectrum
of Landau levels define a conductor characterized by a trans-
mission function T (ε) between two biased reservoirs with a
temperature difference ∆T . Applying an external voltage V
a chemical potential difference induced, leading to a cooling
thermal current Jc and an electrical current Jel. Right panel:
equivalent two terminal configuration, characterized by the
same transmission probability and identical temperature and
voltage biases.

the effects of electron-phonon interaction, accounting for
the thermoelectric response within partially filled Landau
levels. This description is based on a single transmission
function, which determines all the transport coefficients
along the radial direction of the Corbino disk, akin the
case of the ballistic regime. Such a simple and successful
interpretation of the experimental data along with the
lack of effects originated in the electron-phonon interac-
tion place the Corbino geometry as an excellent candidate
for the practical implementation of heat–work conversion
mechanism and cooling. In contrast, the bar geometry
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necessarily deals with the longitudinal and transverse
directions, resulting in weaker thermoelectric responses
which are significantly more cumbersome from the point
of view of the theoretical description[40, 44, 45]. In ad-
dition, effects like the phonon drag, which are less con-
trolled than the transport due to electrons, seem to play
a relevant role in quantum Hall bars[47–49].

A necessary ingredient for the thermoelectric heat-
work conversion is the existence of energy filters, imply-
ing spectral properties of the device in which the trans-
port of electrons and holes is asymmetric. This implies
a transmission probability having a profile with rapid
changes as a function of the energy. The mathemati-
cal properties that a transmission function must satisfy
for an efficient thermoelectric performance were analyzed
in several works [20, 21, 33, 35, 38, 50].

The aim of the present contribution is to present a de-
tailed theoretical study of the cooling properties of the
Corbino device investigated in Ref. 46 on the basis of
the transmission function inferred from the experimen-
tal data for the conductance recorded in that work. A
sketch of the considered setup is shown in Fig. 1. The
two-dimensional electron system threaded by an external
high magnetic field is constructed with a circular shape,
hosting a central hot region, as indicated in the left panel.
The system can be electrically biased by means of a volt-
age difference. The electrons in the quantum Hall regime
are accommodated in Landau levels separated by a gap,
which play the role of energy filters defining the thermo-
electric performance. The possibility of realizing ther-
moelectric cooling with the Corbino geometry was pre-
viously suggested in Ref. [51], where the term “Landau
cooling” has been coined. The device effectively behaves
as a two-terminal setup characterized by a transmission
function, as indicated in the right panel of the Figure.
The appealing of using the Landau levels for the thermo-
electric heat–work conversion mechanism is the simplicity
of its implementation in comparison to using edge states,
which requires more complex structures with quantum
point contacts and quantum dots.

The work is organized as follows. In section II we
present the procedure to infer the transmission function
from the data of the conductance and we define the theo-
retical treatment. In section III we analyze the regime for
which cooling is possible. The performance is analyzed
in Section IV and Section V is devoted to summary and
conclusions.

II. THEORETICAL APPROACH

A. Inference of the transmission function from
experimental data

In Ref. [46] measurements for the conductance and the
thermovoltage of a Corbino device with a central heater
were reported. The experimental data was successfully
explained on the basis of calculations of the Onsager

ex
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FIG. 2. Conductance measurement of a Corbino device as a
function of the magnetic field for T0 = 269 mK. Filling frac-
tions ν and Landau levels N are indicated. In the text, we will
refer to the “peak ν” for “the peak before the filling factor
ν”. The measurement shown corresponds to a Corbino sam-
ple of 3.5 mm in diameter, having several concentric ohmic
contacts and a central heater. The particular Corbino ring
measured in this figure being of 600 µm and 1600 µm inner
and outer ring respectively. The sample was grown by molec-
ular beam-epitaxy on a GaAs wafer having a single 2DES.
From van-der-Pauw geometry measurements on test pieces a
mobility of 21× 106 cm2 V−1 s−1 and an electron density of
2.0× 1011 cm−2 was determined at 1.3 K in the dark[46].

transport coefficients in terms of a transmission func-
tion, which was inferred from the conductance. Here,
we will also infer the transmission function following a
similar procedure in order to evaluate the cooling power.
We focus here on the high-magnetic field regime, above
1 T, where the contribution of the different Landau lev-
els is clearly resolved in the data of the conductance. In
Ref. 46 magnetic fields below 1 T –corresponding to fill-
ing factors above ν = 10 for the measured sample– were
also analyzed. In that regime, the transmission function
calculated on the basis of a simple model of Landau levels
with a widening due to disorder[40, 52] was found to re-
produce accurately the data for the conductance and the
thermovoltage. That model failed to accurately repro-
duce the data for lower filling factors, where the trans-
port coefficients show very peculiar structure, which is
very specific of the different filling factors. The particu-
lar features in this case also depend on the sample. The
aim of the present work is to predict as accurately as pos-
sible the cooling properties of the device. Hence, we use
an inference procedure to extract the transmission func-
tion from the data of the conductance Gexp(B, T0), as a
function of the magnetic field B at a low temperature T0.
We summarize here the main steps followed in Ref. [46]
to this end.

In the setup sketched in the left panel of Fig. 1, the
conductance is obtained by measuring the electric current
as a function of the magnetic field with the inner and
outer reservoirs at the same temperature T0. The sys-
tem is biased with a small voltage difference V applied
radially. The experimental conductance Gexp(B, T0) is
directly given by the ratio between this current and V .
As indicated in the right panel of the Figure, the setup
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can be effectively regarded as a two-terminal configura-
tion, where the transport properties are described by the
transmission probability T (ε). Formally, the correspond-
ing conductance at a temperature T is related to this
function through

G(µ, T ) = −e
2

h

∫ +∞

−∞
dε T (ε)

∂f(ε)

∂ε
, (1)

where f(ε) = 1/(e(ε−µ)/kBT+1) is the Fermi-Dirac distri-
bution function, which depends on the reference chemical
potential µ and the temperature T . Deep in the quan-
tum Hall regime, where the contributions of the differ-
ent integer filling fractions are clearly separated one an-
other, the Fermi energy is related to the magnetic field
Bν = neh/eν corresponding to the filling fraction ν as
εF = ~eBν/2m∗, being ne the electron density of the
sample. In a real sample, Landau levels are broadened
and the previous relations extend to a range of magnetic
fields around Bν . On the other hand, for low enough
temperatures, the derivative of the Fermi function can
be approximated as −∂f(ε)/∂ε → δ(ε − µ). Hence,
Eq. (1) can be expressed as G(µ, T ) = (e2/h) T (µ), while
µ = εF . Therefore, assuming that the temperature T0 is
low enough, we can calculate the transmission function
from the experimental conductance Gexp(B, T0) as fol-
lows,

T (ε) =
h

e2
Gexp(B, T0), (2)

with ε = ~eB/2m∗. Experimental conductance results
at a temperature T0 = 269 mK are shown in Fig. 2. We
can see in the figure a profile of several features separated
by an energy gap. Each of these features is associated to
a filled Landau level (identified with a label N), which is
widened as a consequence of disorder in the sample and
split because of the Zeeman interaction. The correspond-
ing integer filling factors are indicated with ν in the fig-
ure. Notice that while this inference of the transmission
function is an exact procedure for a conductance recorded
at T0 = 0, there is a distortion as a consequence of the
finite temperature at which the experiment is performed,
which we will neglect in what follows. The alignment of
the Landau levels to the reservoirs chemical potential is
modified by means of the magnetic field. Hence, it can
be regarded as a knob to tune the transport properties
of the device.

This profile contains features similar to smoothed step
functions separated by wells and also Lorentzian-type
peaks. Since the cooling properties of transmission func-
tions with these characteristics were recently carefully
analyzed in Ref. [35], we will take into account several
insights from that work as a reference for our study.

B. Cooling current and electrical power

We now consider the situation where, in addition to
a voltage bias V , a temperature bias associated to a

thermal load, is radially applied. In order to focus on
a configuration close to the experimental one studied in
Ref. [46], which contained a heater in the center of the
sample, we present in Fig. 1 the hottest reservoir at the
center. However, we stress that the forthcoming analysis
does not depend on whether the hot reservoir is placed
in the central region of the Corbino or in the external
rim. Furthermore, we highlight the fact that the present
configuration can be actually regarded as a two-terminal
setup under the effect of a thermal bias ∆T , and an elec-
trical bias ∆µ = eV , as indicated in the right-hand side
of Fig. 1. In this representation it is clear that the posi-
tion of the cold and hot reservoirs can be exchanged.

Following Ref. [35], we focus on the heat current trans-
ported by the electrons, exiting the reservoir at the lowest
temperature T . In terms of the transmission function, it
reads

Jq = − 1

h

∫ +∞

−∞
dεT (ε)

(
ε− µ− ∆µ

2

)
∆f(ε), (3)

being ∆f(ε) = fc(ε) − fh(ε), the difference between
the Fermi functions corresponding to the cold/hot (c/h)
reservoir at temperatures Tc = T , Th = T + ∆T and
chemical potentials µc = µ+ ∆µ/2 and µh = µ−∆µ/2,
respectively. The heat flux given by Eq. (3) is directly
proportional to the entropy flux entering or exiting the
coldest reservoir due to the particle flux through the de-
vice. In the absence of inelastic scattering processes, the
latter is fully characterized by its transmission probabil-
ity T (ε). The two sources of inelastic scattering in these
systems are electron-phonon and electron-electron inter-
actions. In Ref. 46, no signatures of electron-phonon
interactions in the thermoelectric response up to tem-
peratures as high as 1.5 K where found. Electron-phonon
interaction typically generates the mechanism of phonon-
drag, which has been observed previously in the bar ge-
ometry [47–49], but seems to be absent or very weak in
the Corbino geometry [43, 46]. Electron-electron interac-
tion for large voltage and temperature biases can lead to
non-equilibrium corrections to the transmission function
T (ε) calculated from Eq. (2). These corrections are ex-
pected to be important within the non-linear regime in
situations where the screening is poor [53–57]. We will
neglect these effects here, since we focus on the transport
through partially filled Landau levels, in which case the
screening is expected to be efficient. Furthermore, we
anticipate that the relevant operation regime is at low
electrical and thermal biases, in which case non-linear
effects are not dominant.

The heat flux described by Eq. (3) corresponds to a
cooling process when it exits the coldest reservoir. We
define the cooling power as

Jc ≡ Jq, if Jq ≥ 0, Jc ≡ 0, otherwise. (4)

Similarly to other works, we will consider as a reference
the Pendry quantum bound[20, 21, 58]

Jqb =
π2k2B

6h
T 2, (5)
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FIG. 3. Transmission function inferred from the measured
conductance shown in Fig. 2. Equivalent temperature esti-
mates in kelvin for the gaps (orange), half height width of the
Landau levels Γ/kB (pink), smoothing parameter γ/kB and
associated height parameter D are indicated. These will im-
pact the cooling range as well as the the optimal operational
conditions (see text).
Inset: (a) Well-like transmission function Tw (grey) including
the Fermi functions fh for the hot (red) and the cold fc (blue)
reservoirs. The width of the well is εw. (b) Lorentzian-like
transmission function TL of width Γ and height D = 1.

which defines the maximum heat current that can be
transported through a quantum channel of unitary trans-
mission.

The thermal and electrical biases induce an electron
flux Jel, and have an associated electrical power P , which
are given by

Jel = − 1

h

∫ +∞

−∞
dε T (ε)∆f(ε), P = ∆µJel. (6)

We stress that Eqs. (4) and (6) do not assume linear
response. Hence, we will analyze the response for a wide
range of electrical and thermal biases. We will also in-
clude a discussion on the performance within the linear-
response regime for comparison.

C. Cooling performance

It is natural to quantify the efficiency of the cooling op-
eration in terms of the coefficient of performance, defined
as

COP =
Jc
P
, (7)

with the definitions of the cooling power and the in-
vested electrical power given by Eqs. (4) and (6), re-
spectively. This quantity is bounded by the Carnot limit
ηC = T/∆T .

D. Linear-response regime

A particular important regime corresponds to small
amplitudes of the thermal and electrical biases, where

∆T/T and ∆µ/kBT are small enough to justify an ex-
pansion up to linear order in these quantities in the ex-
pressions of the heat and charge currents defined, respec-
tively, in Eqs. (3) and (6). The result is(

Jel/e
Jq

)
=

(
L11 L12

L21 L22

)(
∆µ/kBT
∆T/kBT

2

)
. (8)

where L̂ is the Onsager matrix, with elements calculated
from the transmission function as follows

Lij = −T
∫
dε

h

∂f(ε)

∂ε
(ε− µ)

i+j−2 T (ε). (9)

Notice that L12 = L21, since the present device effec-
tively behaves like a usual two-terminal one, as sketched
in Fig. 1.

In this regime, the quantity characterizing the maxi-
mum COP for a fixed value of ∆T is parametrized by the
figure of merit ZT = L2

21/DetL̂ through[1]

COP = ηC

√
ZT + 1− 1√
ZT + 1 + 1

. (10)

Hence, the ideal Carnot limit is achieved for ZT →∞.
The usual situation in thermoelectricity is that devices

for which the COP is high, the cooling power is low and
viceversa [1, 20, 21, 33, 35, 38, 50]. Therefore, we will
analyze separately the following aspects: (i) under which
conditions is cooling possible in the device, (ii) the con-
ditions for which a large cooling power is expected and
(iii) the conditions for a large COP.

E. Conditions for cooling

Before going to the concrete analysis of the cooling
properties of the sample for which the conductance is
reported in Fig. 2, it is useful to summarize the outcome
of Ref. [35] regarding the properties of T (ε) leading to
cooling in transmission functions containing peaks, steps
and well-type features.

The optimal profile leading to the highest cooling
power is a single rigid step function of the form Tstep(ε) =
Dθ(ε − εw). The optimal operational condition corre-
sponds to the chemical potential of the coldest reservoir
coinciding with the onset of the step, µc = εw, and large
electrical bias, with µh as far apart as possible from the
step. This configuration of chemical potentials enables
the thermoelectric compensation of the effect of the heat
flow because of the temperature bias, leading to the max-
imum bound for the cooling power, Jmax

c = DJqb/2.
If, instead of a sharp step, the transmission function

has the shape characterized by a smoothness parameter
γ, such that the θ-function in Tstep(ε) is substituted by

a smoothed step-function Θγ(ε) = 1/(1 + e−ε/γ), the
maximum achievable cooling power decreases in refer-
ence to Jmax

c by a factor DJqb(γ/kBT )2/4, which can
be achieved for T > γ/4kB and similar configurations of
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the chemical potentials as in the case of a sharp step.
Furthermore, for temperatures T < γ/4kB , cooling is
strongly suppressed and it is possible only for small ∆µ.

On the other hand, the cooling operation becomes
strongly limited at high temperatures by the existence of
well-type features. A sketch of such transmission func-
tion, denoted by Tw(ε) and characterized by a typical
energy ∆εw, is indicated in the inset (1) of Fig. 3, along
with the two Fermi functions fc(ε) and fh(ε). In such
cases, starting from a situation where the chemical po-
tential µc is fixed at one of the step functions, the am-
plitude of the bias voltage –applied to compensate the
thermal bias– is limited by the existence of the mirror
step function. Hence, the cooling operation in this case
is limited by Th, Tc ∼ ∆εw/kB . The inset of Fig. 3
shows a configuration with the chemical potential of the
cold reservoir selected at the step with positive slope, in
which case ∆µ = µc − µh > 0. An identical result can
be obtained when µc is placed at the step with negative
slope (the mirror-related step) and ∆µ = µc − µh < 0.

In the case of sharp peaks (Lorentzian-like) features,
there are other limiting properties in the operation. An
example of such a transmission function is sketched in the
inset (b) of Fig. 3, denoted by TL(ε) and characterized
by a width Γ. In the present case, cooling can also be
achieved for µc placed at the positive slope of the peak
and ∆µ = µc−µh > 0 applied to compensate the thermal
bias or, equivalently, when µc is placed at the negative
slope of the peak and ∆µ = µc − µh < 0 applied. The
cooling operation is limited in this case to the regime
where Tc, Th < Γ/4kB and is possible only for small
values of |∆µ|.

III. COOLING POWER

In Fig. 3, the parameters characterizing the different
features of the transmission function T (ε) are indicated.
In particular, widths of the main peaks and wells, respec-
tively Γ and ∆εw are indicated in units of temperature
in order to facilitate the comparison of these properties
with the thermal width entering the function ∆f in Eq.
(4), which we consider to be ∼ 4kBT . The height D of
each feature can be simply read in the vertical axis.

At high temperatures, the main limitation for the cool-
ing range is the width of gaps between the different Lan-
dau levels. If the gap between two consecutive Landau
levels is of the same order of magnitude of the transport
window, cooling is no longer possible.

The cooling power normalized by the quantum bound,
Jc/Jqb, as a function of µ and ∆µ in a range of tempera-
tures 200 mK < T < 800 mK is shown in Fig. 4 for a fixed
ratio ∆T/Th = 0.1. In this Fig. we can identify different
regions of values of chemical potentials and voltages for
which cooling is possible in the device within this tem-
perature regime. We see that they are localized close to
values of energies for which T (ε) has rapid changes and
the profile of T (ε) is similar to well-type Tw and peak-like

FIG. 4. Contour plots for the cooling power normalized by
the quantum bound, Jc/Jqb as a function of µ/(~e/2m∗) and
∆µ/(~e/2m∗) at a fixed relation ∆T/Th = 0.1. T (ε) within
the same range of energies is shown as a reference in the bot-
tom panel. Note that the color scale changes on each panel.
We indicate in the top panel three points in µ and ∆µ space
that will be used over the text, having values (in units of
~e/2m∗) of µ(a) = 1.85, ∆µ(a) = −0.064; µ(b) = 2.459,
∆µ(b) = −0.095 and µ(c) = 3.654, ∆µ(c) = −0.144.
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FIG. 5. Similar to Fig. 4 with focus on the low temperature
regime. Contour plots corresponding to the vicinity of ν = 8.
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TL transmission functions discussed before. This takes
place close to the onset and closing of the different Lan-
dau levels. As mentioned in Section II E, the sign of ∆µ
leading to cooling depends on the sign of the correspond-
ing slope of T (µc). For the lowest temperature, shown in
the upper panel, we see that the highest intensity corre-
sponds to the peaks ν = 6, 7 and 8. This is because in this
temperature range, Tc and Th are lower than the width
of these peaks, as well as lower than the gaps between
the peaks ν = 7 and 8 and between ν = 5 and 6. Un-
der these conditions, the features favoring the strength of
the power are the slope (1/γ) and the height (D) of T (ε),
and these two peaks are the optimal ones regarding these
properties. The estimates are γ/4kB ∼ 360 mK, 329 mK
and 190 mK for ν = 6, 7, 8, respectively, while D ∼ 1.2.
On the other hand, as the temperature grows (see top to
bottom panels in the Fig.), the cooling lobes centered on
these filling factors become fainter and disappear when
the temperature becomes comparable to the width of the
gap between neighboring peaks. In the high-temperature
range, the optimal cooling region is shifted towards lower
filling factors (ν = 3, 4). The cooling power is decreased
in comparison to the previous cases since the slopes and
heights are smaller in these cases. However, the range
of µ,∆µ for which cooling is possible is larger for these
lower filling factors, since the widths Γ of the Landau
levels and the gaps ∆εw become larger.

A similar analysis with focus on the low-temperature
regime is presented in Fig. 5. These plots show the cool-
ing power within a range of temperature 25 mK < T <
100 mK. The optimal range of magnetic fields (or equiv-
alent chemical potentials) in this case corresponds to the
one indicated with (a) in Fig. 4 and is centered between
ν = 7 and 8. These peaks of T (ε) have approximately the
same width Γ/4kB ∼ 460 mK and a corresponding slope
γ/4kB ∼ 360 mK. The range of temperatures covered in
Fig. 5 have an associated thermal broadening, ∼ 4kBTc,
which is smaller than γ. This explains the low values
of the cooling power, which shows a decreasing behavior
as the temperature decreases. Notice that the highest
values of Jc are achieved in this region of chemical po-
tentials close to Th ∼ 200 mK (shown in the top panel of
Fig. 4), which corresponds precisely to the regime where
Tc becomes larger than γ/4kB .

We close the analysis of the cooling power with the
results shown in Fig. 6. These correspond to the cooling
power as a function of the temperature of the hot bath Th
and the relative temperature difference ∆T/Th for fixed
vales of µ and ∆µ. These were chosen to coincide with
the ones identified with (a), (b) and (c) in Fig. 4 and
are the ones leading to the highest cooling power close to
ν = 8, 6, 4, respectively. From the information of this Fig.
we see that cooling at low temperatures is possible only
near ν = 8, corresponding to panel (a). This is precisely
the case analyzed in Fig. 5. Similar values of the cooling
power can be achieved for the parameters analyzed in
panel (b). In this case, cooling is only possible above T ∼
100 mK. Hence, the low temperature regime analyzed

0.2 0.8 1.6

0.2 0.4 0.60.1

0.25

0.12

00

0.3

(a) 0.3

0.15

00

0.3

(b)

0.25

0

0.5

0.05

0.1

0

(c)

0.6

FIG. 6. Contour plots for the cooling power normalized
by the quantum bound. The fixed values of µ and ∆µ are
marked in Fig. 4 and correspond (in units of ~e/2m∗) to
µ(a) = 1.85, ∆µ(a) = −0.064; µ(b) = 2.459, ∆µ(b) = −0.095
and µ(c) = 3.654, ∆µ(c) = −0.144.

in Fig. 5 cannot be reached by cooling with the peak
ν = 6. The reason is that the transmission function
peak in the latter case is smoother than in the case (a)
(compare γ/4kB ∼ 625 mK to γ/4kB = 190 mK of the
previous case). On the other hand, cooling is possible up
to higher temperatures in case (b), up to Th ∼ 750 mK.
Since Γ/4kB as well as ∆εw are larger in (b) than in
(a). Similar observations can be done on the cooling
power of the Landau level peak below ν = 4, which is
shown in panel (c). In that case, the range of temperature
for cooling is the largest one, as a consequence of the
large values of Γ and ∆εw associated to this Landau level.
The onset for cooling is at a higher temperature than
in the previous cases, Th ∼ 200 mK as a consequence
of the larger smoothness γ/4kB ∼ 720 mK. The largest
achieved values for the cooling power are a bit lower than
in the previous cases, as a consequence of the smaller
height D of T (ε).

The absolute maximums of the cooling power as a func-
tion of temperature are determined by the smoothness
parameter γ of the different Landau levels and the width
εw of the gap. Therefore, they take place at ν = 8 for
temperatures below 300 mK, at ν = 6 and at ν = 4 for
temperatures above ∼ 600 mK. It is also interesting to
note that the specific values o µ and ∆µ do not change
considerably and the temperature changes. For exam-
ple if we focus on the lobe (a) in Fig. 4 the cooling area
decreases as the temperature increases. However, the
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FIG. 7. Coefficient of performance normalized by the Carnot
efficiency (ηC = Tc/∆T ) versus the cooling power normalized
by the quantum bound (Jqb), for varying ∆µ/(~e/2m∗) from
−0.25 to 0.25. The values of µ/(~e/2m∗) are 1.844, 2.459
and 3.654, corresponding to points (a), (b) and (c) indicated
in Fig. 4, respectively. ∆T/Th = 0.1 in all cases.

values of µ, ∆µ corresponding to the maximum position
remain almost the same until the temperature is high
enough that the maximum cooling power takes place at
the filling factor, indicated with (b). This happens at a
temperature, ∼ 400 mK. For even higher temperatures
∼ 600 mK, a similar effect takes place between the lobes
associated to (b) and (c).

IV. COOLING EFFICIENCY

The usual situation in thermoelectric devices is that
the highest efficiencies are achieved for parameters where
the cooling power is very low and vice-versa and this is
also the case in the present device. For this reason, it is
very useful to represent both quantities at the same time
in the form of the so called “lasso” plots, where COP vs
Jc are represented for a set of parameters.

Fig. 7 shows “lasso” representations of COP vs Jc as
∆µ/(~e/2m∗) changes within a specific interval while µ
correspond to the (a), (b) and (c) positions indicated
in Fig. 4 and ∆T/Th = 0.1 in all cases. As mentioned
before, the largest values of Jc correspond to the smallest
values of COP and vice-versa, but we can see wide ranges
of parameters where both qualifiers achieve interesting

0

6

12

2.5 3.5 4.5 5.5

200
300
500
700
900
1000

(a) (b) (c)

FIG. 8. Figure of merit, ZT in the linear-response regime in-
tercepted by the µ/(~e/2m∗) values of points (a), (b) and (c)
as indicated in Fig. 4. We note that the highest performance
is in the vicinity of the fill factor ν = 4.

values.
So far, we have not introduced any assumption re-

garding the amplitudes of the thermal and electrical bi-
ases. For the case where ∆T/Tc and ∆µ/kBTc are small
enough to justify an expansion up to linear order as in
Eq. (8) the COP is given by Eq. (10).

The corresponding results are shown in Fig. 8. In order
to get cooling, it is necessary to apply a voltage bias with
a positive or negative sign, depending on the properties
of T (ε), which define the behavior of Lij . Crucially, the
sign of the off-diagonal coefficients, L12 = L21 depend on
the sign of the slope of T (µc). Thus, ∆µ > 0 (∆µ < 0) for
positive (negative) slope of T (ε). The different signs are
indicated in Fig. 8: the left side of the peaks correspond
to ∆µ < 0 and the right ones to ∆µ > 0. As already
mentioned in Ref. 46, these values of ZT are remarkably
high.

Note that the values of µ/(~e/2m∗) associated to (a),
(b) and (c) do not correspond to maximum values of ZT ,
while they are perfectly consistent with the results shown
in Fig. 7. Interestingly, the values of the COP calculated
from ZT of Fig. 10 are the same as the maximum ones in
Fig. 7 for ∆T/Th = 0.1. This means that the results of
Fig. 7 are very close to the conditions for linear response
operation.

V. SUMMARY AND CONCLUSIONS

We have used experimental data of the conductance
of the Corbino device studied in Ref. 46 to infer the
transmission function. In that reference, it was experi-
mentally verified that the thermoelectric transport takes
place in the diffusive regime, without effects introduced
by the electron-phonon coupling, implying that it can be
accurately described in terms of the transmission func-
tion so calculated. Here, we have used that transmission
function to evaluate the cooling power and the COP for
cooling.

We have investigated the cooling properties for a wide
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range of electrical and thermal biases, within and beyond
the linear-response regime. According to our analysis, in
the present sample, the cooling power relative to Jqb for
this system is maximum in the vicinity of filling factor
ν = 8, and the resulting value is:

(
Jc/Jqb

)max
= 0.346

at µ/(~e/2m∗) = 1.85, Th = 170 mK, for a thermal load
∆T = 5.5 mK. The chemical potential difference associ-
ated to this case results in a bias voltage of V = −60 µV.
We found that the temperature difference can be in-
creased without a significant decrease in the cooling
power.

We have also analyzed the cooling coefficient of per-
formance, as well as the figure of merit characterizing
the performance in linear response and we found inter-
esting results, corresponding to large COP (∼ 0.3ηC and
larger) for several filling factors, mainly ν = 4, 6, 8 in the
subkelvin regime at a sizable cooling power.

Our estimates, did not include the phononic contribu-
tion of the thermal conductance. According to Ref. 44,
the latter follows a law κph = αphT

3. We expect the
thermoelectric cooling operation to be particularly use-
ful at low temperatures when the electronic cooling power
Jc ∝ T 2 should overcome the phononic one, induced by
the thermal bias.

The specific values obtained from our analysis are asso-
ciated to the specific sample and device of Ref. 46. How-

ever, we have verified that the orders of magnitude of the
different quantities are valid for a wide range of samples
with similar mobility and devices with similar dimen-
sions, including samples doped with Cr, in which case
the phonon conductance is expected to be reduced [59].
Therefore, the present results constitute a proof of prin-
ciple for the applicability of Landau cooling with Corbino
devices in cryogenic conditions. On the other hand, once
the transmission function is inferred, the roadmap of our
analysis, based on the results presented in Ref. 35, can
be also implemented in any other similar particular real-
ization.
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