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Abstract A computational implementation of modal analysis of continuous systems is presented.

Modal analysis of truss, beam and shaft structures is developed in Matlab®. A numericat and an

analytical method are developed for the computation of mode shapes, natural frequencies and modal
equations of continuous structures using the method of separation of variables. Time domain o
technigues are programmed in modular functions for structural analysis. The functions constitute aset. *..: -
of tools of the Structural Analysis Toolbox {SAT-Lab), developed recently for teaching modelling, .-

analysis and design of structures and mechanical systems. Application examples of the computational-

tools are presented. ” :

Key wards vibrations; modal analysis; continuous parameter; software

Introduction

The vibration of continuous systems is often a subject of study iri.courses'on dynams:: 1. - was
ics of structures for engineering students. Because the method of separation of vari+ .. 77w 1
ables applied to modal analysis of continuous media requires the solutioni-of erdinary: .+ in. U
differential equations for the mode shapes for a specified set of boundary:conditions, - v ioade oo o
textbooks typically cover simple one-dimensional and two-dimensional -structural .~ o7 oo
models, such as a simple bar, a beam, a shaft, a pre-stressed cable;'a membrane-or:sic b+ !
a plate. The computation of mode shapes and natural frequencies. of tridss structures:: . <+ i |
or frames composed of several beams in flexure, torsion and: axial defermations:: ~.ve
using continuous system dynamics remains beyond the scope of-a course on:dynams. -+ . s
ics of structures. Instead, these problems are solved by means of:finiterelement (FE) s, o oo T s e
analysis, through a domain discretisation and classical assembly of stiffness and- i . i
mass matrices. [RERMEEIR S

Although FE methods have widespread use and give versatility to’ structura] mod-:
elling, they require significant computation to achieve reasonable -accuracy.; Exact.i:i -
mode shapes cannot be computed due to the limitation imposed:by-element. shape- . . -
functions, and accuracy in dynamic modelling can be achieved: only using d refined. . -
mesh. o
To introduce real structures as examples for modal analysis in continuous systems,
a set of functions was programmed and appended to SAT-Lab, a:Structural .
Analysis Toolbox developed for Matlab [1]. The scope of these functions is-modal .
analysis of distributed parameter systems composed of constant-section truss, shaft, -
or beam elements, lumped masses or springs. The authors have no knowledge of
similar developments elsewhere. Widespread use, ease of programming, connectiv-
ity, graphical capabilities and other tools readily available were the reasons -for
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Fig. 1 A non-uniform shaft.

choosmg the Matlab environment for the computer 1mplementat1on of modal: analy—
sis of continuous systems. e .
This paper is organised as follows. First, the method of separauon of va.rlables
for continuous system dynamics is revisited using a simple example. Boundary con-~
ditions are emphasised as the main tool for computing mode .shapes. Next; the

‘presented along' with their purpose; and the ‘input and. output variables; Twoiexam-' -
""ples of ‘modal analysis -applied to a beam and a {rame: structure are’ descnbed and
: ~"-analys1s results are presented for these models B L L S A SHEEH S DT

R

" Analysi is of contmuous systems

Pisi o petet : L ih e e

-+ Asan‘example, consider the mechanical system shOWn in‘Fig. I, consisting of ithree.’ -
rigid:discs connected by two continuous shafts of different cross-séctions:and mate-*
‘tial${ The modal analysis of torsional vibratiens of thlS model canbe developed usmg
‘-“-*’the method of separation of variables. A SR R T A

<t niPreg Yibration e I T NPT
Tt '-'~"The equatrons of motion-in free vibration are: e

P0,(0)) PO (x) ”, IR LT P
Gl.ll(_——_ax12 )—pl‘, a 2 —0 LA . (l)

%6, (xs, 920 (xs, 1 S e
GZJZ 2(x2 ") -p2Js 2(’2‘2 o I 2
_ ox} ot , ;

s where Gl(xl, 1) and B,(x,, 1) are the displacement functions (angle of twist) and G;,

- ‘pyand J; represent the shear modulus, mass density and polar moment of inertia of

-element i, respectively. The mass polar moment of inertia of each disc is denoted by
Iy, 1, and I, '
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Modal analysis of continuous dynamic systems 217

The boundary conditions of the problem are:

Moment equilibrium at x; = 0 (node 1):

aﬂl(xl,t) azol(xl, t)
GJ)|—— =l,—5 3
1 II: axl 0 dl atz ( )
Moment equilibrium and compatibility of rotations at the joint (node 2):
0 .t 305, {x,, 1 26,(x,, t
IO ) WA ) AL G
axl =i axZ 220 at
8202 (X2, t)
| =1y o2 4
6,(,,1)=6,(0,¢) s (5)
Moment equilibrium at x, = , (node 3):
R 96, (x2, 1) 3%0,(x1,1)
—G J| ————— =1, ——" 6
. 2 ,ZI: 8 Xs - d3 atz ( )

'The governing partial differential equations of motion, along with the prescribed
'bound'ar'y conditions, are usually referred to as a boundary value problem.

The equauons of motlon can be solved usmg the method' of separatlon of vari-

'abIes proposmg Tyl

Y S e R N )
0 (2, 1) =72 (%2)q(?) S ®

e "Substltutlon of equations 7 and 8 into equations 1 and 2 ylelds ordlnary differential
'equations-for ¥i(x;);, %(x) and g(f). From these we. obtam the followmv solutlons .
for.the mode shape functions 7i(x,) and j/z(xz) SRRt SR

Yl(xl) Cl Sln(n1x1)+Cz COS(Thxl) . » o o I )]
Ng (x2)=6 SlI_l(nzxz) +C, cos(12x;) o o (10)
':.-‘where:, »

. ’ } pl

=i o . _— 11

yh G, ) (11)

. p2 .
= P2, v 12
M2 G, . (12)

- The constants C,, C,, Cs, and C, must be evaluated so as to satisfy the specified
boundary conditions.
- Separating variables and adopting the prime and dot notations to indicate partial
derivatives with respected to x and ¢, respectively:
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el(xla t) =¥1(x)g(t)

L)

Ej=%mmm (13)
90 .

&;=%mM® (14)

Substituting equations 13 and 14 into equation 3:

(G 1)y1(0)g(®) = 1,7, (0)g(6)

(G )Y1(0)+@?1,y,(0)=0 ' (15)
In a similar manner, equation 4 leads to: | ' N
~Gi1)Yi (L) +(Go T2 )y3(0)+ 01, 72(0)=0 (16)
Equation 5 req"uires:m
71)-720)=0 S an
" Finally, equation 6 imposes:
, ‘62-7273(12)"'0)21:137’2(12)=0 . o ¢ .. (18)

Introducmg equatlons 9 and 10 and their partial denvatlves mto equauons 15 18, a
set of linear equatlons on the coefficients C; is obtained: ; .

. c, 0 G ‘
B.] |= : S 19
e o

where B is the boundary condmon matrix, composed of contrlbutlons B(D from the
' N, elements of the structure (two shafts and three discs in this case):-

B, Z BY =

Gljm1 1,0° 0 0
=Gy cos(mh)  GiJym sin(mih) G Jom 0?1,
= sin(m,) cos(ml;) 0 -1 (20)

0 0 -Gy Ja1), COS(Thlz) Gy Sin(nzlz)
+ @2, sin(nl,)  + @2y, cos(nuly)

The existence of non-trivial solutions to equation 20 requires B. to be singular.
Therefore:

det[B. ()] =0 21
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Modal analysis of continuous dynamic systems 219

TABLE 1 Shape functions for simple continuous systems

Type of
Element vibration Mode shape function
Bar Axial é(x) = G sin(fBx) + G, cos(fix) B= \/%a)
Shaft Torstonal  y(x) = C; sin(nx) + C; cos(Nx) n= \/Ea)

3R o

-
e

Bernoulli beam  Transverse  w(x) = G sin(ax)+ C; cos(ax) + G sinh(ox) + C, cosh(ox) o=

Equation 21 is the frequency equation of the continuous model. It has an infinite
number of roots, @, and may be solved using numerical methods.

Mode shape functions, %(x) and 5(x), can be computed, finding the non-zero coef-
- ficients C; that satisfy the linear homogeneous equation B.l,, C = 0 (equation 19) for
each natural frequency. As this simple example illustrates, free vibration analysis of
continuous systems reduces to the definition of shape functions and the assembly of
‘the corresponding boundary condition matrix. Each boundary condition defines a
row in B., whose coefficients depend on the shape itself, its denvatlves defined at
the boundary and mass or stiffness parameters. - '

Shape functions for elements of constant cross-section and umform material prop-
erties have analytical expressions that make the assembly of B, relatively simple .
(see Table 1). The elements in Table 1 may be combined to build relatively complex
- three-dimensional modeis of structures. For example,: copsidér the spatial frame
-..shown in Fig. 2. Every member of the frame is subjected to flexural, axial and tor-
sional deformations and can be modelled using the elements shown in Table 1. This
“approach requires the computation of shape functions for each Kind of deformation.
For instance, for the member connecting nodes 2 and 3, the shape functions corre-
spond to axial vibration, torsional vibration, flexural vibration in the x—y plane and
flexural vibration in the x—z plane.

These functions must satisfy given boundary conditions. For example, force equi-
{ibrium, moment equilibrium, nodal displacement compatibility and nodal rotation
compatibility must be specified at node 2 of the structure. The specification of the
boundary conditions at all nodes of the structure leads to the evaluation of B..

The assembly of B, is the most important operation of the present formulation
and can be systematised through an assembly process, similar to the computation of
mass or stiffness structural matrices in classical FE techniques.

The authors have developed a procedure for the assembly of B. in structures made
of bars, beams and shafts of constant section and uniform material properties, which
may include additional lumped masses and springs. Once B, is obtained, the process
of computing natural frequencies and vibration modes is straightforward.
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Fig. 2 Spatial frame.

Forced vibration

Vibration modes can be used to solve forced vibration problems, by means of the
modal superposition method, also known as modal analysis. Modal analysis relies
on a transformation from displacement coordinates to normal or modal coordinates.
In this transformation, we express a general response, u(x,?), as a superposition of
mode shapes ¢,(x), each multiplied by a generalised time-varying coordinate, ¢,(2):

u(x, )= Y 0. (). ®) @
n=0
Although a continuous system has an infinite number of mode shapes, enough accu-
racy can be achieved using only a set of mode shapes associated with the lower
natural frequencies. C
It can be shown [2] that orthogonality relations of mode shapes in continuous
systems imply a series of uncoupled equations of motion for each modal coordinate:

M,§(6)+ 0> M,q(t) = F,(1) (23)
where M, is the generalised mass associated with ¢,(x):

M, = [ [$, ] peAGIx 24)
and P,(?), is the generalised loading associated with ¢,(x):

P = [ 9 ()l 1)dx (25)

Equations 23-25 hold for longitudinal or transversal vibrations of a single-member
structure of length [, cross-sectional area A(x) and mass density p(x). In structure
models of several elements, including axial, torsional and flexural deformations, this
computation requires an assembly process over each element of the structure [3].
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Modal analysis of continuous dynamic systems 221

Computer implementation

Time domain tools for the analysis of continuous systems were implemented using
the Matlab programming language [4]. The result was a set of subroutines or func-
tions that can be used to solve free and forced problems of three-dimensional struc-
tures, and which have been included in the Structural Analysis Toolbox (SAT-Lab)
[11.

These functions use the symbolic computation capabilities of Matlab’s Symbolic
Math Toolbox and implement the procedure outlined in Fig. 3.

The functions are Matlab programs, defined as Function M-files. These functions
accept input arguments and return output arguments. For example, the function fun
uses the arguments M, N, O, H, J and returns A and B:

[A, B] = fun (M, N, O, H, J)

In the remainder of this paper we will focus our attention on the software func-
tionality, that is, the description of the purpose, input and output variables.

Free vibration example

Consider a typical textbook example such as the uniform beam shown in Fig. 4. The
SAT-Lab code required to obtain the first four natural frequencies and vibration
modes of this model is described below. A detailed description of the variables and
functions utilised is given afterwards. ~

% 1- Structural model definition:

1 = 6; % Beam length [m]

XYZ = [0 0O 0; 1 O 0]; % Nodal coordinate matrix
EDICT.elname = ‘csbeam’; ‘% Element dictionary
EDICT.cstype = ‘b’;

EDICT.mode = ‘phibeam’;

E = 2e011; % Young Modulus [Pal

A = 0.01; % Cross sectional area [m"2]
I = (0.1%)/12; % Moment of inertia about

local y-axis [m"4]
rho = 7800; Mass density [kg/m3]
nc = 4; p = [0 1 0];
PROPERTIES = [nc E A rho I pl;
ELEMENTS = [1 2 1 1];
DOF01 = [0 0 0 0 O O; -001000]; % Degrees of
freedom matrix
% 2- Assembly of the boundary-condition matrix
[Bc, nc, ndofs, cpt] = csbc(XYZ, ELEMENTS, EDICT,
PROPERTIES, DOFO01)
% 3- Computation of natural frequencies
po = 0.1; dp = 1; np = 4; tol = [le-07 100];
csom(Bc, po, dp, np, tol)
% 4- C coefficients: the matrix CC

o\

Q
3
Ii
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Structural model definition: geometry and
properties

Assemble the boundary condition matrix B,

v

Compute n, natural frequencies, solving: det(B.) =0

v

Compute C coefficients, for each natural frequency,
solving:”

(BC)(A)IC:O

v

Assemble mode shape functions

v v

Compute mass and stiffness Compute the load influenc
matrices: vector: :

Mq’Kq L

v v

Solve n, uncoupled single-degree-of-freedom equations:

9w

M, )+ qu(t) = qu w(t)
where w(t) is the excitation

v

Superpose solutions to get the total
response:

ux,) =Y 6, (0g, (¢)
i-1

Fig. 3 Modal analysis procedure.
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Fig. 4 Beam.
CC = cscc{Bc,om);
% 5- Vibration ‘modes
[phi] = csmodes (ELEMENTS, EDICT, PROPERTIES, CC, om,

cpt) ;

Structural model definition
As we can see in the script presented in the previous section, the construction of a
SAT-Lab structural model requires the specification of a set of variable, usually
matrices and data structures, which provide information about the mode] geometry,
element types, element properties, etc. These variables are input arguments of most
SAT-Lab functions.

The Cartesian coordinates of the structure nodes are associated with rows of the
nodal-coordinate matrix XYZ:

XYZ=|x y; 2z |¢ (row icorresponds to element I)

Information about the elements of the structural model is contained in the data struc-
ture EDICT, which has the fields shown in Table 2. Element names are stored in the
field elname. They refer to SAT-Lab functions, which compute element contribu-
tions to B, as described in Table 3.

There are four possible types of boundary condition:

(1) force equilibrium;

(2) moment equilibrium;

(3) nodal displacement compatibility;
(4) nodal rotation compatibility.

The field cstype in EDICT refers to the kind of boundary condition that the
element can contribute to B, as described in Table 4.

The field mode in EDICT refers to functions that compute element mode shapes,
as explained in Table 5.

International Journal of Mechanical Engineering Education 33/3
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TABLE 2 Fields of EDICT

Field Information
elname Element name

cstype Type of continuous element
mode Mode-shape function name

TABLE 3 SAT-Lab continuous elements

Function name Purpose

cstruss Boundary conditions of a continuous truss element

csbeam Boundary conditions of a continuous Bernoulli beam element
csshaft Boundary conditions of a continuous shaft element

TABLE 4  Types of continuous elements

Field cstype Possible boundary condition types Elements of this type

t 1-3 Truss element
1-2-3-4 Bernoulli beam

s 2-4 Shaft

TABLE 5 Mode shape functions

Mode shape function Corresponding element
phitruss ‘cstruss’
phibeam *csbeam’
phishaft ‘csshaft’

Mechanical properties are specified in the matrix PROPERTIES. Each row of this
matrix describes a different property type.

The first property to be specified in each continuous element is the number, nc,,
that indicates the quantity of coefficients Ci of the element vibration mode. Mode
shape coefficients determine the dimension of the boundary condition matrix B..

In general, the matrix PROPERTIES has the following types of rows:

2 E A p 0 0 0 O]« (Continuous truss elements)
PROPERTIES=|2 G A p J 0 0 0 |« (Continuous shaft elements)
4 E A p I, P. P, P |« (Continuous beam elements)

International Journal of Mechanical Engineering Education 33/3
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where:

E = Young’s modulus;

G = shear modulus;

A = cross-sectional area;

p = mass density;

J = polar moment of inertia;

I, = cross-sectional moment of inertia about local y axis;

[P., P,, P,] = orientation vector of local y axis in global coordinates.

A row of the matrix ELEMENTS defines the nodes I and J connected by the
element, the type of element (pointer to an element of the data structure EDICT)
and the property type (pointer to a row of the matrix PROPERTIES):

ELEMENTS=(I J Elementtype number Property number

The kinematic conditions of nodal displacements are specified in the matrix
DOF01. Row i of DOFOL indicates the kinematic conditions of the displacements
of node I in the six possible directions. Degrees of freedom are identified with a 1
(one) in DOFO01, while restrained displacements are indicated with a O (zero).

DOFOl=|x; ¥ 2z 6a 0Oy 64

The degree-of-freedom matrix (DOFS) is obtained by labelling or numbering degrees
of freedom in DOFO1.

If lJumped masses and rotational inertias are present in some nodes of the struc-
ture, the matrix MASSES must be specified. In general:

MASSES=|I M, M, M, I, I, I,

where I indicates the node number in the structure in which the lumped mass
is found. The remaining elements in a row of MASSES represent the mass
properties.

Assembly of B,
Once the model has been built, the symbolic boundary condition matrix is assem-
bled. This task can be performed using csbc:

[Bc,nc,ndofs,cpt]l =csbc(XYZ, ELEMENTS, EDICT, PROPERTIES,
DOF01,MASSES)

The input variables of this function define the structural model and were explained
in the previous section. The output variables of csbc are:

International Journal of Mechanical Engineering Education 33/3
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(1) the boundary condition matrix B;

(2) the number of mode shape coefficients of the structure (nc);
(3) the number of degrees of freedom of the structure (ndofs);
(4) pointers to element mode shape coefficients (cpt).

The authors have found, that in plane and spatial continuous structures, nodal dis-
placements must be considered as problem unknowns [3]. For the sake of general-
ity, nodal displacements are always taken as unknowns in the formulation. Thus, it
follows from the preceding argument that the dimension of B, is (nct+ndofs X
nc+ndofs).

Computation of natural frequencies
Once B, is obtained, natural frequencies can be computed using csom, which solves
det(B,) = 0, using the bisection method:

fom] =csom (Bc, po, dp, nw, tol)

This function returns a column vector om, which contains nw natural frequencies.
Given a point (po) at which to begin the iteration, the program evaluates det(B,)
at dp intervals, until a change of sign is detected. In this way, a root is bracketed in
an interval of length dp, where the bisection method can be used to obtain a precise
value of the root. This process is repeated until the desired number of natural fre-
quencies (nw), is computed.
The following convergence criterion is taken:

abs[det(B,)]|<e (26)

where ¢ is the absolute error. Since sometimes the condition given by equation 26
is unachievable, the program quits after a given number of iterations. The absolute
error (€) and the maximum number iterations are specified in the input variable tol.

Computation of C; coefficients

A set of C; coefficients includes the mode shape coefficients and nodal displacements
associated with a vibration mode. The task of computing these coefficients can be
performed using cscc:

[CC] =csce (Be, om)

The output of this function is a matrix CC, whose column i contains the set of coef-
ficients associated with mode 1.

Assembly of vibration modes
Once the C; coefficients are obtained, element mode shape functions can be assem-
bled, using:

[phi] =csmodes (ELEMENTS, EDICT, PROPERTIES, CC, om, cpt)

This function returns, the modal function matrix phi. For a structure made of k con-
tinuous elements, phi is of the following form:

International Journal of Mechanical Engineering Education 33/3
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[phi®  phi® - .- phi{]

phig) phl(22) :
phi =| phi{’

[ phii”  phii” phi”

where the element phi{’ represents the mode shape function in element j associated
with the ith natural frequency.

Example results
The first four natural frequencies of the beam shown in Fig. 4 computed are:

22.71

The following mode shape functions were obtained:
phi; (x) = phi(1,1) =sin(0.3942x) ~1.0178 cos(0.3942x)

—5inh(0.3942x) +1.0178cosh(0.3942x)
phi, (x) = phi(1,2) =sin(0.9163x) — c0s(0.9163x) —sinh(0.9163x) + cosh(0.9163x)
phi;(x) =phi(1,3) =5sin(1.4399x) — cos(1.4399x) — sinh(1.4399x) + cosh(1.4399x)
phis(x) =phi(1,4) =sin(1.9635x) — cos(1.9635x) —sinh(1.9635x) + cosh(1.9635x)

A plot of these vibration modes is shown in Fig. 5.

Forced vibration example

Suppose that the uniform beam analysed in the previous section is subjected to a
central pulse function loading, as described in Fig. 6. To compute the response once
modes and natural frequencies have been computed, we proceed as follows.

The following SAT-Lab code is a continuation of the code described above for
the beam and shows how to a carry out a modal analysis of this model, using the
first four vibration modes of the beam as normal coordinates, in order to get an
approximation of the dynamic response.

% 6- Mass and stiffness matrices for modal analysis
[Mg, Xgl=csmk(om,phi,XYZ,ELEMENTS, PROPERTIES, EDICT) ;
% 7- Load-influence vector

LOAD. ldtype=2; % Concentrated load
LOAD.elnum=1;

LOAD. ldparam=[-40 0.5]

[Lgw] =cslgw (LOAD, XYZ, ELEMENTS, phi, nc, CC)

% 8- Input Signal (SAT-Lab function sggen)

International Journal of Mechanical Engineering Education 33/3
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phiy(x)

phix(x)

phiz(x)

p.hi4(x)

Fig. 5 Beam vibration modes.

1s time

Fig. 6 Beam under a central pulse function loading.
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type=4 % Rectangular pulse

W=1; % Intensity of pulse

tw=1 % length of pulse (one second)
paramsg=[W tw];

to=0; % initial time

tf=3 % final time

h=0.01 % sampling time

tparam={to tf h];
[w, t] =sggen (type, paramsg, tparam) ;
% 9- Numerical integration using the Newmark method
(SAT-Lab function: lvnewmk)
Cg=zeros (nw, nw) % No damping
go=zeros (nw, 1) ; % Displacement initial condition
gdo=zeros (nw,1); % Velocity initial condition
h=0.01; % Sampling time
beta=1/4;
gamma=1/2;
param=[h beta gammal;
nsteps=301;
[g, gdl=1lvnewmk (Mg, Cq,Kqg,Lgw,w,go,gdo,param,nsteps); %
Integration using Newmark method
% 10- Superposition of modes coordinates
for t=1l:nsteps
u(t)=phi*qg(:,t);
end

Mass and stiffness matrices for modal analysis
The elements of the mass matrix M, can be evaluated vsing:

[Mij]=csmij (i,j,phi,XYZ, ELEMENTS, PROPERTIES, EDICT,
MASSES, DOF01,nc, CC)

Where i and j are the indices of the mass matrix element to be calculated. The
remaining input variables have been computed in previous stages of this procedure
(free-vibration analysis). The orthogonality of vibration modes with respect to mass
distribution can be verified when different indices i and j are specified (i # j =
M@, j)=0).

If M, is the mass matrix and £) is the natural-frequency matrix:

My, ()

My (1))
M, = N , Q=

@,
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the stiffness matrix K, has the following expression:
K, =M, Q?
Both M, and K, can be evaluated directly using:

[Mg, Kg] =csmk (om, phi, XYZ, ELEMENTS, PROPERTIES, EDICT,
MASSES, DOF01,nc, CC)

Load influence vector
The utilisation of modal coordinates involves a series of uncoupled single-degree-
of-freedom equations of motion for each modal coordinate:

M,i")+K,q() =L, w()

Where L,, is the load influence vector and w(z) the excitation. The load influence
vector may be calculated for simple load patterns using cslgw:

[Lgw] =cslqgw (LOAD, XYZ, ELEMENTS, phi, nc, CC)

where LOAD is a data structure, which contains information about the loads applied
in the structural model.

Example results
The following single-degree-of-freedom equations, corresponding to each modal
coordinate, were obtained:

M, +K,q@) =L, w()

where:
484.82 0 0 0
0 4680314 0 0
M=l 0 46801 0
0 0 0 468
00025 0 0 0
0 00705 0 0
K, =10:08 0 04299 0
0 0 0 14863
~35.1401
~54.8340
L, =
21.1156
52.1519

These equations were numerically solved, using the SAT-Lab function 1vnewmk,
which uses the Newmark method [1].
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x10"

Fig. 7 Beam deformed configuration.

Then, these solutions were superposed to obtain the total response. A plot of the
deformed configuration from ¢t = Os to ¢ = 0.26s, at 0.02s intervals is shown in
Fig. 7. The response can be visualised as a movie using functions available in the
Toolbox.

Frame example
Let us analyse the model of a three-dimensional frame subjected to a pulse loading,
F(9), applied at node 4, as described in Fig. 8 and Table 6.

As discussed above, in the section on free vibration, every member of this model
includes axial, torsional and flexural deformations; therefore, a frame member can
be modelled superposing a continuous truss element (cstruss) for axial
deformation, a continuous shaft element (csshaft) for torsional deformation, a
continuous beam element (csbeam) for flexural deformation in the xz plane, and a
continuous beam element (csbeam) for flexural deformation in the xy plane.

The first four natural frequencies were computed and compared with those
obtained using FE analysis tools available in SAT-Lab. As Table 7 shows, when the
FE mesh is refined, the solution approaches to the result obtained using continuous
elements.

Making use of the lower four vibration modes, an approximation of the forced
vibration response was obtained. Vertical displacement, z(¢), of node 4 obtained is
plotted in Fig. 9.
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V4
Fig. 8 Frame under pulse loading.
TABLE 6 Frame properties
Mechanical properties : Value in example
Young’s modulus (E) 7.355¢10 Pa
Cross-sectional area (4) 0.0314m?
Mass density (p) 2700kg/m’
Cross-sectional moment of inertial (I, = I.) 4.9087e-066m*
Polar moment of inertia 8.33¢-06m*
Intensity of pulse loading 40N
Duration of pulse 3s
TABLE 7 Frame natural frequencies
Method employed w, (rad/s) , (rad/s) ; (rad/s) @, (rad/s)
Finite element mesh of 3 elements 1.9349 2.0941 5.3228 5.8449
Finite element mesh of 15 elements 1.9317 2.1208 5.8413 6.2019
Continuous elements (time domain) 1.9314 2.1216 5.8389 6.2348
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Fig. 9 Displacement of node 4.

Numerical implementation

Modal analyses of large models lead to the assembly of boundary condition matri-
ces of considerable dimensions. The manipulation of large symbolic objects is a
time-consuming process in Matlab. This motivated the development of a numerical
implementation of the modal analysis procedure. This implementation works with
standard numerical Matlab commands and does not require the utilisation of
Matlab’s Symbolic Math Toolbox. The numerical functions programmed have
similar input and output variables to those described in this paper [1].

These functions proved to be significantly better in computer efficiency than their
symbolic counterparts. For example, the computation of natural frequencies in the
frame example (Fig. 8) took 465 seconds on a personal computer (1200 MHz Athlon
processor) using the analytical method and only 46 seconds using the numerical
implementation.

Concluding remarks

A set of tools developed for modal analysis of three-dimensional continuous struc-
tures has been presented. Two computer implementations were addressed. The
analytical version was found to be very versatile, due to the handling of symbolic
variables and functions in different stages of the modal analysis procedure. However,
it proved to be less computer efficient (slower in computations) than the numerical
version. The authors recommend the use of the analytical version for instructional
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purposes, leaving the numerical version to the analysis of large structures, which
require more computer time.

This software, used as a laboratory for improving the understanding of the dynam-
ics of continuous systems, has proved to be a valuable instructional tool.

Future developments include the analysis of two-dimensional problems, such as
plates or membranes, and a numerical implementation of variable parameter con-
tinuous elements using the technique presented here.

References

[1] J. A. Inaudi and J. C. De la Llera, SAT-Lab Structural Analysis Toolbox, User Manual and Reference
Manual, www.sat-lab.com.

2] R. W. Clough and J. Penzien, Dynamics of Structures (MacGraw-Hill, New York, 1993).

3] A.E. Matusevich, Computational Development for Modal Analysis of Continuous Dynamic Systems
(undergraduate thesis, in Spanish, National University of Cérdoba, 2002).

[4] The Mathworks, Inc., Matlab online documentation, www.matlab.com.

International Journal of Mechanical Engineering Education 33/3



Copyright of International Journal of Mechanical Engineering Education is the property of
Manchester University Press and its content may not be copied or emailed to multiple sites or

posted to a listserv without the copyright holder's express written permission. However, users may
print, download, or email articles for individual use.



