

Universidad de Buenos Aires

FACULTAD DE CIENCIAS EXACTAS Y NATURALES

Departamento de Química Inorgánica, Analítica y Química Física

Fabricación y caracterización de arreglos de electrodos recubiertos con películas delgadas mesoporosas de óxido de silicio y óxidos mixtos de silicio y circonio

Tesis presentada para optar al título de Doctor de la Universidad de Buenos Aires en el Área de Química Inorgánica, Química Analítica y Química Física

Gustavo Giménez

Directores de tesis: Dr. Gabriel Ybarra Dr. Galo Juan de Ávila Arturo Soler Illia Consejero de Estudios: Dr. Darío Estrin

Lugar de trabajo: Centro de Micro y Nanoelectrónica del Bicentenario Instituto Nacional de Tecnología Industrial (INTI-CMNB)

Buenos Aires, 2018

YY

El presente trabajo fue escrito en IATEX. Se usó para las referencias bibliográficas ${\rm BiBT}_{\rm E}{\rm X},$ los gráficos fueron realizados con GNUPlot y los esquemas dibujados en TikZ.

Si Ud. está interesado en obtener los códigos fuentes de este trabajo puede bajarlos de https://github.com/ggustavogmailcom/DrGG o escribir a ggustavo@gmail.com.

The present work was written in IATEX. It was used ${\rm Biff}_{\rm E}{\rm X}$ for the bibliography references, the graphics were made in GNUPlot and the cartoons were drawn with TikZ.

If you are interested to obtain the source code please contact ggustavo@gmail.com or download from https://github.com/ggustavogmailcom/DrGG.

Fabricación y caracterización de arreglos de electrodos recubiertos con películas delgadas mesoporosas de óxido de silicio y óxidos mixtos de silicio y circonio

Los sensores químicos han cobrado importancia en las últimas décadas. En particular, el subgrupo de sensores electroquímicos es uno de los campos que más ha crecido.

Este trabajo de tesis tuvo dos objetivos fundamentales. El primero fue sintetizar y estudiar películas delgadas mesoporososas (PDM) basadas en SiO₂ para utilizar como elemento permeoselectivo para un analito o grupo de analitos. El segundo fue la integración de dichas películas en sensores electroquímicos fabricados con tecnologías de microfabricación, compatibilizando de esta forma los procesos *bottom-up* con los *top-down*.

Durante la primera etapa se sintetizaron PDM sobre electrodos de oro, empleando diferentes surfactantes para regular el tamaño de los poros entre 3 y 10 nm. Dado que la remoción del molde de poros mediante calcinación deteriora los electrodos, se desarrollaron procesos alternativos a la calcinación, permitiendo condensar el SiO₂ por debajo de los 130 °C, minimizando efectos difusivos y ampliando el espectro de sustratos compatibles. Las PDM se caracterizaron mediante elipsoporosimetría ambiental, espectroscopía IR, microscopía óptica, de barrido electrónico y de haz de iones focalizados.

En una segunda etapa se estudiaron los fenómenos de transporte que ocurren a través de las PDM mediante técnicas electroquímicas: voltametría cíclica, voltametría de corriente alterna y simulación por elementos finitos. Los resultaron permitieron obtener información significativa de los sistemas, tanto cualitativa (casos de exclusión, permeación y preconcentración) como cuantitativa (coeficientes de difusión, capacidad de adsorción, distancias entre sitios rédox, etc.). Sin embargo, se observó que las PDM de sílice se disuelven en el término de horas durante las medidas electroquímicas, lo que limita su aplicabilidad en el caso de sensores para uso continuo.

Se fabricaron en forma continua y constante electrodos de Au, optimizando diseños, condiciones de depósito, sustratos y funcionalizaciones superficiales, de forma de mejorar el desempeño electroquímico y aumentar la compatibilidad de las PDM con los electrodos. Ya en una etapa avanzada se incorporó circonio a los soles lo que redunda en un aumento significativo de la estabilidad química de las PDM de sílice frente a la disolución. Finalmente se fabricó un multisensor prototipo funcionalizando las PDM en forma localizada específicamente sobre el área de cada electrodo con la intención de darle una característica distintiva a cada elemento del sensor. Sobre este prototipo se realizó un análisis multivarible de la respuesta electroquímica de cada electrodo de forma de obtener marcas sensoriales especificas para cada sonda utilizada.

Los resultados obtenidos permiten escalar la fabricación de sensores basados en electrodos de oro recubiertos con PDM potencialmente selectivas, químicamente estables, reproducibles y de fácil funcionalización. El conocimiento adquirido es la base que permitirá avanzar en el desarrollo y diseño de multisensores electroquímicos basados en películas delgadas mesoporosas permeoselectivas.

Palabras claves: películas delgadas mesoporosas permeoselectivas, SiO₂, ZrO₂, electrodos de oro, microfabricacion, sensores electroquímicos, multisensores.

Fabrication and characterization of electrodes array with a mesoporous thin film coating based on silicon and zirconium/silicon oxide

Chemical sensors have gained relevance in the last decades, particularly the subgroup of electrochemical sensors is one with the larger growth rate.

This work had two fundamental goals. The first one was to synthesize and study mesoporous thin films (MTF) based on SiO_2 to be used as perm-selective elements for an analyte or group of analytes. The second was the integration of these films in electrochemical sensors manufactured with microfabrication technologies, thus compatibilizing the bottom-up and top-down processes strategies.

During the first stage, MTF were deposited on gold electrodes, using different surfactants to tailor the pore size between 3 and 10 nm . Thermal treatments used for template removal negatively affect the electrode response. Therefore, alternative processes were developed for the calcination, allowing to condense the SiO₂ below 130 °C, minimizing diffusive effects and expanding the spectrum of compatible substrates. The TMFs were characterized by ellipsoporosimetry, IR spectroscopy, optical microscopy, scanning electron microscopy and focused ion beam microscopy.

In a second stage, the transport phenomena that take place through the MTP were studied using electrochemical techniques: cyclic voltammetry, alternatingcurrent voltammetry and simulation by finite elements. The results allowed obtaining significant information of the systems, qualitatively (cases of exclusion, permeation and preconcentration) and quantitatively (diffusion coefficients, adsorption capacity, distances between redox sites, etc.). However, silica MTF dissolve after several electrochemical cycles, thus limiting the use of these systems as continuous sensors.

The main motivation of the thesis was centered in the manufacture of electrochemically based sensors. For this reason, Au electrodes were deposited, optimizing several designs, spinning conditions, substrates and functionalized surface, in order to improve the electrochemical performance and to optimize the adhesion of the MTF to the electrodes. At an advanced stage, Zr(IV) was incorporated into the precursor solutions, which significantly increased the chemical stability of the silicon MTFs against dissolution. Finally, a prototype multisensor was manufactured functionalizing the MTF specifically over the area of each electrode with the intention of giving a distinctive feature to each element of the sensor. A multivariate analysis of the electrochemical response of each electrode was performed for this prototype in order to obtain an specific sensorial sign for each one of used probes.

The results obtained allow scaling the fabrication of sensors based on gold electrodes coated with PDM potentially selective, chemically stable, reproducible and easy to functionalize. The knowledge acquired is the basis for advancing the development and design of electrochemical multisensors based on permeoselective mesoporous thin films.

Keywords: permselective mesoporous thin film, SiO₂, ZrO₂, gold electrode array, microfabrication, electrochemical sensors, multisensors.

Agradecimientos

Esta es la última página que escribo de este documento. Aquí concluyen muchos años de trabajo dedicado a elaborar esta tesis. Ahora me toca agradecer a todos los que aportaron para culminarlo, jespero no olvidarme de ninguno!

A Galo y Gabriel, los directores de este trabajo. A Galo por todas las reuniones las cuales siempre resultaron inspiradoras, por su amplia visión científica, por su mirada integradora del trabajo y por sus correcciones. A Gabi por el apoyo incondicional, la gran dedicación, su avidez para profundizar y discutir resultados, la capacidad de diseñar experimentos concluyentes y por sus comentarios siempre acertados.

Quiero hacer un agradecimiento muy especial a Lili a quien considero un engranaje fundamental de este trabajo. Me dio todas las libertades para hacerlo, las herramientas, me apoyó, me incentivó y me exigió resultados jespero que le guste como quedó!

A Mario Tagliazucchi por el gran y excelente aporte que hizo con las simulaciones electroquímicas y por las mediciones a altas velocidades de barrido, ambas contribuciones cruciales para desatar más de un nudo.

A Cecilia Fuertes y Paula Angelomé porque me iniciaron en la síntesis de películas mesoporosas y por las largas jornadas de mediciones en el elipso.

A Alejandro Wolosiuk por las sugerencias y recomendaciones sobre cómo funcionalizar los electrodos.

A Paula Steinberg y Sebastian Alberti por las comparaciones de resultados y las colaboraciones mutuas.

A Claudia Marchi por las imágenes SEM.

A Matías Calderon por los espectros XPS.

A Alejandra que siempre me sacó todas las dudas, me mando los documentos, resoluciones, comunicados, me orientó con los papeles, etc, etc. ¡Una genia!

A toda la gente y compañeros del INTI, que en más de un sentido contribuyeron a este trabajo, especialmente con los que comparto laboratorio cotidianamente desde hace años y siempre están en el día a día, Mariano, Alex, Laura, Omar, Miji, Pipi, Chelo, Ani, Lea, Lea T. (jsigue siendo del CMNB!), Mati, Charly, Nehuen, Luchito, Kuo, Pao, Sandri, María, Hernán, Lucho, Juli, Eli, Pablo, Fabi, Brunoloti, Bruno, Salva, Diego y Rodrigo.

Al Instituto Nacional de Tecnología Industrial, en el cual trabajo hace más de 10 años, que me brindó los medios materiales, el espacio y que apostó a este proyecto. A este INTI en el que siempre me sentí cómodo y me gustó trabajar, que siempre me ofreció proyectos y me recibió apenas recibido de químico, este INTI que esta atravesando un momento triste de su historia, vapuleado, donde se despide personal sin causa, desfinanciado, desmantelado... a este INTI le quiero agradecer profundamente y espero que sepa sobrevivir mas allá de todos los esfuerzo que están haciendo por llevarlo a su mínima expresión. A la educación pública y gratuita, en la cual me formé desde el jardín de infantes hasta el doctorado. Sin lugar a dudas uno de las mejores baluartes de este país.

También quiero agradecer a los lectores de esta tesis, espero que les sea una lectura inspiradora y de utilidad.

Quiero también hacer algunos agradecimientos en el plano de mi vida personal:

A la banda de amigos con los que hice toda la carrera, Esteban, Tomy, Dami, Coni, Cris, Ani (¡repetida!), Gloria y Ani W.

A Nico ¡compañero de toda la vida!

A mis tíos Julio y Olga, Horacio y Silvia y a mis queridos primos Emilio y Guille.

A mi mamá Mirta y a mi papá Enrique que siempre me dieron lo mejor.

A mis hermanas Vero y Pau y a mi hermano Agus que son el apoyo incondicional en todo momento.

A mis sobrinas y sobrinos ¡More, Juli, Manu, Cande y Rafa!

A ese espacio maravilloso y lleno de magia que es la Quinta.

Y por último quiero dedicarle especialmente este trabajo a Mariana, Gala a Lucía que me bancan siempre y me llenan de alegría día a día.

ÍNDICE GENERAL

_					
Re	esum	n	v		
A	Abstract vii				
A	Agradecimientos ix				
Ín	dice	eneral	xi		
1.	Intr	troducción			
	1.1.	Breve reseña sobre nanotecnología	2		
		1.1.1. Síntesis de nanomateriales y construcción de nanoestruc-			
		turas	5		
	1.2.	Películas delgadas mesoporosas	7		
		1.2.1. Síntesis de óxidos mesoporosos	8		
		1.2.2. Química sol-gel	8		
		1.2.3. Autoensamblado inducido por evaporación (AEIE)	10		
	1.3.	Técnicas electroquímicas	12		
	1.4.	Miniaturización y escalabilidad	13		
		1.4.1. Fotolitografía	14		
		1.4.2. Pulverización catódica (<i>sputtering</i>)	15		
	1.5.	Estado del arte	16		
	1.6.	Motivaciones y objetivos	17		
2.	Mat	riales, Métodos y Procesos	19		
	2.1.	Síntesis de películas delgadas mesoporosas	20		
		2.1.1. Preparación de los soles, reactivos y nomenclatura	20		
		2.1.2. Depósitos de las películas delgadas mesoporosas	22		
		2.1.3. Métodos de condensación y extracción	25		
		2.1.4. Funcionalización de las PDM	26		
		2.1.5. Espectroscopía IR	27		
		2.1.6. Àngulo de contacto	27		
		2.1.7. Elipsometría	28		
	2.2.	Microfabricación de los electrodos	30		
		2.2.1. Diseño e impresión de las máscaras	31		
		2.2.2. Limpieza de los sustratos	32		
		2.2.3. Transferencia de los diseños por fotolitografía	33		
		2.2.4. Depósito de películas delgadas metálicas	35		
		2.2.5. Proceso de $lift-off$	36		
		2.2.6. Modificación superficial	37		
		$2.2.7.$ Encapsulado v corte \ldots \ldots \ldots \ldots \ldots \ldots	- 37		

		2.2.8.	Espectroscopía de fotoelectrones de rayos X	39
	2.3.	Micros	scopías	39
		2.3.1.	Microscopía óptica	39
		2.3.2.	Microscopía electrónica de barrido (MEB)	39
		2.3.3.	Microscopía con iones de galio focalizados (FIB)	41
	2.4.	Medici	iones electroquímicas	42
		2.4.1.	Voltametría cíclica de corriente continua	43
		242	Voltametría cíclica de corriente alterna	44
		2.4.2. 9/1/3	Simulaciones por el método de elementos finitos	11
		2.4.0. 9 4 4	Coldas oloctroquímicas	44
		2.4.4.	Sondog electroquímicas	40
		2.4.3.	2 4 5 i Democrate de forme sierroux de materie	41
			2.4.5.1. Respuesta de ferrocianuro/ferricianuro de potasio	48
			2.4.5.11. Respuesta del cloruro de nexaaminorutenio(111)	49
			2.4.5.111. Respuesta del ferroceno metanol	50
3. Optimización de síntesis de PDM sobre electrodos me		ión de síntesis de PDM sobre electrodos metálicos	53	
	3.1.	Introd	ucción	54
	3.2.	Síntesi	s de películas delgadas mesoporosas	56
		3.2.1.	Control de la homogeneidad y espesor	57
		3.2.2.	Adherencia de PDM sobre electrodos de Au	59
			3.2.2.i. PDM estructuradas con F127	60
			3.2.2.ii. PDM estructuradas con CTAB	61
			3.2.2.iii. Estrategias para mejorar la adherencia	62
	3.3.	Desarr	ollo de métodos de síntesis de PDM a bajas temperaturas .	65
	0.0.	3 3 1	Método de calcinación	66
		0.0.1.	3 3 1 i Análisis de la porosidad	66
			3 3 1 ji Análisis nor FTIR	68
			3 3 1 jij Accesibilidad de las PDM	72
		229	Método simplificado (Sim)	73
		0.0.⊿. २२२	Método prolongado (Dro)	75
		0.0.0. 9.9.4	Método de alto $meio (Vac)$	75
		ป.ป.4. วาะ	Metodo de alto vacio (vac) \ldots \ldots \ldots \ldots	70
		ა.ა.ე. ეე <i>с</i>	$M(t_{1}, t_{2}, \ldots, t_{n}) = M(t_{1}, \ldots, t_{n})$	70
		3.3.0. 2.2.7		10
	9.4	3.3.7. D'	Comparación de resultados de los tratamientos posdeposito	18
	5.4.	Discus	don y comparación sobre los metodos	80
		3.4.1.	Sobre los sustratos	80
		3.4.2.		81
		3.4.3.	Sobre la extraccion	83
		3.4.4.	Sobre la respuesta electroquímica	84
	3.5.	Conclu	isiones	87
4.	Elec	ctroquí	ímica en películas delgadas mesoporosas	89
	4.1.	Introd	ucción	90
	4.2.	Transp	oorte de sondas en PDM. Resultados preliminares	93
		4.2.1.	Caso 1. Sonda con carga negativa: $[Fe(CN)_6]^{4-/3-}$	94
		4.2.2.	Caso 2. Sonda con carga neutra: ferroceno metanol	95
		4.2.3.	Caso 3. Sonda con carga positiva: Ru(NH ₂) ₆ Cl ₂ .	95
	4.3.	Estudi	o detallado de la sonda ferroceno metanol	97
	1.0.	4.3.1	En sistemas mesoporosos calcinados	98
		439	En sistemas mesonoroso sintetizados a baja temporatura	00
		1.0.2.	En sistemas mesoporoso sintetizados a baja temperatura.	53

	4.4.	Estudio de la sonda $\operatorname{Ru}(\operatorname{NH}_3)_6\operatorname{Cl}_3$	100
		4.4.1. Capacidad de preconcentracion	100
		4.4.2. Mecanismo de transporte de carga de sondas adsorbidas .	102
		4.4.5. Simulaciones por elementos mintos	100
		4.4.4. Discusion sobre el electo de K y D_e sobre la medición electroquímica	100
		4.4.5 Estabilidad de las polículas delgadas mesonoreses de SiOe	119
	15	Transporte en PDM mixtas Zr/Si	112
	4.0.	451 Exclusión	114
		4.5.2 Preconcentración v estabilidad	115
		453 Funcionalización	116
		4.5.3.i. Incorporación de DHDP	117
		4.5.3.ii. Incorporación de APTES	119
		4.5.3.iii. Discusión sobre las funcionalizaciones	120
	4.6.	Conclusiones	122
5.	Mic	rofabricación de multisensores electroquímicos	125
	5.1.	Introducción	126
	5.2.	Microfabricación de los multisensores	127
		5.2.1. Consideraciones sobre el diseño	127
		5.2.1.i. Primer diseño \ldots \ldots \ldots \ldots \ldots \ldots	128
		5.2.1.ii. Segundo diseño	129
		5.2.2. Transferencia de los diseños	130
		5.2.3. Películas delgadas de Au	134
		5.2.4. Decapado de la fotorresina o $lift-off$	135
	5.3.	Incompatibilidad top-down/bottom-up	138
		5.3.1. Reestructuración de la superficie de los electrodos	139
	. .	5.3.2. Difusión de contaminantes	140
	5.4.	Multisensores de respuesta selectiva	142
		5.4.1. Respuesta para ARu, FeCN y FcOH sobre multisensores .	143
		5.4.2. Analisis multivariable de la respuesta electroquímica	145
	5.5.	Conclusiones	147
6.	Con	clusiones	149
	6.1.	Conclusiones Generales	150
	6.2.	Perspectivas para futuros trabajos	152
		6.2.1. Integración en circuitos integrados	152
		6.2.2. Multisensores impressos	154
A	nexo	A: información suplementaria	157
Δ	novo	B. siglas v abroviaturas	171
111	псло		
A	nexo	C: publicaciones	173
Re	Referencias		
Ín	Índice alfabético		

Índice

INTRODUCCIÓN

Contenido

1.1. Breve reseña sobre nanotecnología	2
1.1.1. Síntesis de nanomateriales y construcción de nanoestructuras .	5
1.2. Películas delgadas mesoporosas	7
1.2.1. Síntesis de óxidos mesoporosos	8
1.2.2. Química sol-gel	8
1.2.3. Autoensamblado inducido por evaporación (AEIE)	10
1.3. Técnicas electroquímicas	12
1.4. Miniaturización y escalabilidad	13
1.4.1. Fotolitografía	14
1.4.2. Pulverización catódica (<i>sputtering</i>)	15
1.5. Estado del arte	16
1.6. Motivaciones y objetivos	17

1.1. Breve reseña sobre nanotecnología

El 29 de diciembre de 1959, en una conferencia titulada «*There's Plenty of Room at the Bottom*», el físico Richard Feynman, considerado por muchos el padre de la nanotecnología, sugirió que se podría escribir toda la Enciclopedia *Britannica* en la cabeza de un alfiler.¹ Esta presentación fue sin duda más conceptual e inspiradora que estrictamente científica, anterior al uso masivo de las técnicas de microscopía electrónica y al desarrollo de las microscopías de efecto túnel y fuerza atómica.

Algunos años más tarde, en 1974, Taniguchi incorporó por primera vez el término nanotecnología para describir procesos de microfabricación como depósito de películas delgadas o *ion millling* y lo definió como «aquellos procesos de separación, consolidación y deformación de los materiales átomo por átomo o molécula por molécula».² Fue Drexler quién finalmente popularizó el término en su libro «*Engines of Creation: The Coming Era of Nanotechnology*».³

Una definición más actual y consensuada para nanotecnología es la presentada por la National Nanotechnology Initiative (NNI, http://nano.gov/nanot ech-101/what/definition): desarrollo tecnológico de estructuras y sistemas en una escala nanométrica, entre 1 y 100 nm. Se podría, también, establecer una definición funcional: uso e implementación tecnológica de nanociencia. Esta rama de la ciencia se caracteriza fundamentalmente por ser multidisciplinaria y abarcar muchas áreas del conocimiento, ciencia de materiales, química, física y biología (por citar algunas), las cuales interactúan entre sí para generar un espacio sinérgico entre ellas. Cuando los descubrimientos en nanociencia son potencialmente aplicables a productos interviene la nanotecnología, tendiendo un lazo entre la ciencia y la industria para llevar a cabo desarrollos tecnológicos o escalar prototipos que eventualmente puedan acabar en productos de consumo.

Al realizar una búsqueda en la base de datos Scopus[®] (http://www.scopus .com) de las publicaciones que contienen las palabras en inglés para nanotecnología (*nanotechnology*), nanofísica (*nanophysics*), nanoquímica (*nanochemistry*), nanoescala (*nanoscale*) y nanociencia (*nanoscience*) se obtienen los resultados de la figura 1.1.

Del análisis de dicho gráfico se observa que las publicaciones que contiene la palabra nanotecnología en el título, resumen o como palabra clave son mucho mayor que las que contiene nanoescala, nanociencia, nanofísica o nanoquímica. Contrariamente a la evolución histórica de las «ciencia aplicadas», donde primero es el descubrimiento científico y luego el desarrollo tecnológico, la nanotecnología parece presentarse como impulsora, no solo de desarrollos tecnológicos sino también como impulsora de las denominadas «ciencias básicas».

Whitesides y Deutch en su artículo «*Let's get practical*»⁴ opinan que la química, como rama de la ciencia básica y como industria madura, debe reinventarse para acondicionarse a los requerimientos de la sociedad actual y poder seguir respondiendo preguntas fundamentales a la vez que resuelve problemas de índole práctica. Los autores afirman que los «problemas prácticos» son generalmente despreciados por las ciencias básicas. Sin embargo éste no parece ser un problema de la nanotecnología, la cual ha hecho grandes contribuciones al desarrollo científico a pesar de ser una disciplina que en general busca resolver problemas prácticos.

Figura 1.1: Publicaciones científicas por año que contienen la palabra nanotechnology, nanoscale, nanoscience, nanochemistry o nanophysics en el título, resumen o palabras claves.

Este hecho se ve reflejado al agrupar los resultados de la búsqueda por países (figura 1.1), dónde vemos que aquellos que más publicaciones tienen con la palabra nanotecnología son, como es de esperar, los países más desarrollados tecnológicamente ocupando los primeros cinco lugares Estados Unidos, China, Japón, Alemania y Reino Unido. En América Latina, el primero es Brasil con 1453 publicaciones seguido de Argentina con 567 (figura 1.2).

Además de producción científica y desarrollos tecnológicos, la nanotecnología cuenta con patentes internacionales y productos industriales de consumo masivo en el mercado global. Existen bases de datos que registran la actividad del sector creando informes sobre estos productos, patentes, estándares y compañías de

Figura 1.2: Distribución por países del número de publicaciones científicas con la palabra nanotecnología. Datos obtenidos de la base de datos $cons^{\textcircled{B}}$.

base nanotecnológica. Podemos mencionar algunas de ellas como el Nanotechnology Consumer Products Inventory (CPI) (http://www.nanotechproject.org/ cpi/) creada por The Project on Emerging Nanotechnologies en 2005;⁵ la Nanotechnology Products Database (NPD) (http://http://product.statnano.com/) creada con apoyo del Iran Nanotechnology Initiative Council (INIC) en 2010 y The Nanodatabase (http://nanodb.dk), iniciativa desarrollada por DTU Environment, Danish Ecological Council y Danish Consumer Council en 2011. En el gráfico de la figura 1.3 se resumen algunos datos registrados en cada una de ellas, agrupados por cantidad productos con base nanotecnológica, número de empresas que los generan y cantidad países donde se encuentran distribuidas.

Figura 1.3: Registros de empresas y países generadores de productos que incorporan nanotecnología. Extraído de las bases de datos *Nanotechnology Consumer Products Inventory* (CPI), *Nanotechnology Products Database* (NPD) y *The Nanodatabase*.

También existen numerosas patentes que registran productos con nanotecnología. En la figura 1.4 se muestra la evolución desde el año 2001 hasta el 2016 del número de patentes registradas por la *European Patent Office* (EPO) y por la *United States Patent and Trademark Office* (USPTO).

Muchos de estos productos pertenecen al rubro alimenticio y cosmético. Nanopartículas de Ag, TiO_2 o SiO_2 se incorporan en los alimentos o en los envases como conservantes, agentes antimicrobianos, colorantes y antioxidantes. En la industria cosmética el mayor uso de los nanomateriales es para dar color, textura y como filtros solares.

La inclusión de nanomateriales en el mercado, especialmente en estos dos rubros, obliga la incorporación de recomendaciones, estandarización y regulaciones en el campo de la nanotecnología. El documento CEN/TC 352 de abril de 2016 https://standards.cen.eu/dyn/www/f?p=204:7:0::::FSP_ORG_ID:5084 78&cs=1A6FDA13EC1F6859FD3F63B18B98492ED) del European committee for Standardization(CEN), ofrece guías para la identificación, detección y cuantificación de nano-objetos en matrices complejas. La International Organization for Standardization (ISO) creó en 2005 una serie de documentos ISO/TC 223 (https://www.iso.org/committee/381983.html) con el objetivo de definir y establecer el alcance de las nanotecnologías. Define allí una serie de parámetros y descriptores para caracterizar e identificar nanopartículas, tamaño, forma, distribución, composición química, carga superficial, estado de agregación, so-lubilidad y área especifica entre otros.

Este contexto de regulaciones emergentes en el campo de la nanotectnología obliga a los institutos metrológicos de los distintos países (entre ellos el INTI, como Instituto Metrológico Nacional) a generar nanomateriales de referencia y validar las técnicas y procedimientos para su detección y cuantificación.

Hasta el momento se ha hecho una breve introducción sobre la historia y situación actual de la nanotecnología, en la próxima sección se profundiza sobre algunos de los métodos y procesos más populares para la producción de nanomateriales.

Figura 1.4: Número de patentes registradas por año en la oficinas de patentes de los Estados Unidos y Europa. Datos extraídos de http://statnano.com/.

1.1.1. Síntesis de nanomateriales y construcción de nanoestructuras

Existen dos enfoques posibles para obtener estructuras y objetos en la nanoescala. El primero se trata de realizar estructuras por grabado, maquinado o molienda de un material, para reducirlo a dimensiones nano en un proceso de miniaturización. Esta aproximación se denomina «de arriba hacia abajo» más conocida como top-down. La electrónica actual de consumo masivo (incluyendo computadoras y dispositivos móviles) se basa en esta aproximación. El segundo enfoque es aquel denominado «de abajo hacía arriba» o bottom-up, el cual consiste en la construcción de objetos a partir de bloques fundamentales, los cuales pueden ser átomos o moléculas.

La nanotecnología se caracteriza por aprovechar propiedades diferenciales que surgen en esta escala. La mayoría de estos cambios en las propiedades ópticas, eléctricas, magnéticas o mecánicas se descubrieron procesando materiales mediante el enfoque *bottom-up*, impulsando nuevas formas de sintetizar materiales, p. ej. grafeno, nanotubos de carbono o fullerenos. Faraday fue uno de los primeros científicos en sugerir que, en la escala nanométrica, el cambio en las propiedades de la materia está ligado al tamaño, estudiando el cambio de color en coloides de Au.⁶ A este grupo pertenecen las técnicas químicas de síntesis de nanopartículas, nanobarras y películas delgadas, métodos de autoensamblado y química supramolecular; también técnicas de crecimiento en fase vapor: epitaxial, *physical vapour deposition (PVD)*, *chemical vapour deposition* (CVD) y *atomic layer deposition (ALD)*.

Es de esperar que la verdadera revolución nanotecnológica dé un salto de calidad cuando converjan ambos enfoques, aprovechando las ventajas que ofrece cada uno de ellos. Este se trata de un enfoque «funcional», en el cual lo importante es el objetivo, ya sea un trabajo científico, prototipo o un producto.

Soler-Illia expone en su libro «Nanotecnología: el desafío del siglo XXI»⁷ que es en éste período de la historia donde se está llevando a cabo dicha convergencia. En su libro presentan un gráfico esquemático (figura 1.5) donde muestra una evolución histórica y una proyección en el tiempo para ambos enfoques, remarcando el período de convergencia entre ellos.

Figura 1.5: Convergencia temporal de las aproximaciones top-down y bottom-up. Figura extraída de «Nanotecnología: El desafío del siglo XXI».⁷

Esta tesis tiene por objetivo fabricar multisensores utilizando electroquímica como herramienta analítica de detección. La fabricación de los multisensores se realiza en base a procesos *top-down* para escalar y miniaturizar los electrodos y procesos *bottom-up* (química sol-gel y autoensamblado inducido por evaporación) con el fin sintetizar la película activa. El diagrama de de Venn de la figura 1.6 muestran los elementos necesarios para la fabricación de los sensores electroquímicos basados en películas delgadas mesoporosas.

En las siguientes secciones se tratan brevemente los fundamentos teóricos de cada una de las áreas temáticas exploradas para el desarrollo de la plataforma de sensores electroquímicos en base a películas delgadas mesoporosas y hacía el final del capítulo se exponen los objetivos y motivaciones que llevaron a materializar esta tesis.

1.2. Películas delgadas mesoporosas

Figura 1.6: Elementos necesarios para el desarrollo y fabricación de la plataforma de sensores electroquímicos basados en películas delgadas mesoporosas.

1.2. Películas delgadas mesoporosas

El término película delgada o lámina delgada hace referencia a una capa de material cuyo espesor va desde unos pocos nanómetros a algunos micrones, típicamente entre 10 y 1000 nm. El control en el espesor de la película es una etapa fundamental para cualquier aplicación, más aún cuando se trata de controlar las propiedades que surgen debido a la dimensión nanométrica en el espesor (p. ej. fenómenos de interferencia de luz en el rango visible con espesores de unos cientos de nanómetros).

Las películas delgadas son elaboradas a partir de técnicas químicas que utilizan precursores moleculares, típicamente mediante *bottom-up*. Dentro de ellos se pueden nombrar los procesos de autoensamblado molecular, electrodeposición, crecimiento epitaxial, técnicas de deposición químicas o físicas en fase vapor, sol-gel y autoensamblado inducido por evaporación entre las más populares. En particular las películas delgadas mesoporosas (PDM) son aquellas que además de la característica de ser delgadas, son porosas, con arreglos de poros ordenados a largo o corto alcance.^{8–10}

La International Union of Pure and Applied Chemistry (IUPAC) definen los materiales mesoporosos como aquellos que presentan poros monodispersos entre 2 y 50 nm. La Real Academia Española tiene tres acepciones para la palabra «poro». Dos se ellas son «Espacio que hay entre las moléculas de los cuerpos» e «Intersticio que hay entre las partículas de los sólidos de estructura discontinua» (http://dle.rae.es/?id=ThdH0Y9%7CThe6N27%7CThgVys6). Según esta definición todos los materiales presentan poros (excepto por supuesto los átomos o moléculas individuales, pero estos no entran dentro de la definición de material), resulta entonces, indispensable cuantificar la porosidad o la cantidad de poros en un material.

La porosidad es una medida de los espacios vacíos (poros) en un material y se define como la fracción del volumen de poros sobre el volumen total, entre 0 y 1 (o entre 0% y 100%).¹¹ Confiere a los materiales importantes propiedades, como una baja densidad, lo que supone un peso ligero y gran área superficial para almacenar moléculas en los poros. Además, el tamaño del poro puede funcionar como un tamiz para separar moléculas de distintos tamaños.¹²

1.2.1. Síntesis de óxidos mesoporosos

La producción de óxidos mesoporosos (ya sean polvos, películas o xerogeles) se realiza a través de la combinación de precursores inorgánicos y tensioactivos, que actúan como agentes porógenos. Involucra dos procesos concertados: la formación y el autoensamblado de micelas, molde de la estructura de poros, y las reacciones químicas de hidrólisis y condensación del precursor inorgánico que formará el óxido.

Figura 1.7: Esquema general para la formación de un óxido mesoporoso combinando precursores inorgánicos y tensioactivos para la moldear los poros.

En la Figura 1.7 se muestra un esquema de los pasos involucrados en la obtención de óxidos mesoporosos. En una primera etapa se forma un sistema híbrido orgánico-inorgánico que contiene al surfactante rodeado por el óxido (sistema mesoestructurado). En un segundo paso se elimina el surfactante dando lugar a la estructura porosa. La eliminación del surfactante puede ser por calcinación o extracción.

El primer antecedente de una síntesis de sílice mesoporosa se registra en una patente del año 1971. Sin embargo, el campo de los materiales mesoporosos comenzó a desarrollarse de manera explosiva a partir del trabajo del grupo de Mobil. Científicos de esta firma reportaron en 1992 la síntesis en polvo de la familia de sílices mesoporosas conocida como M41S (MCM-41, MCM-48, etc.).^{13,14} Entre 1997 y 1998 se reportaron los primeros trabajos en los cuales se obtuvieron óxidos de silicio mesoporoso en forma de película delgada mediante técnicas de evaporación controlada y *dip-coating.*^{9, 15–17}

A partir de estos trabajos pioneros, el número de publicaciones sobre potenciales aplicaciones y usos creció considerablemente, reportándose síntesis para óxidos de metales de transición, $^{18-20}$ óxidos híbridos, poros de una gran variedad de tamaños, estructuras porosas jerárquicas, etc. 21,22

1.2.2. Química sol-gel

Los procesos tipo sol-gel refieren a una síntesis inorgánica en la cual se parte de un precursor molecular. Mediante reacciones de hidrólisis y de condensación

evoluciona en una dispersión coloidal (sol) hasta la formación de una estructura inorgánica tipo gel o densa del material deseado. Dependiendo del procesamiento del sol, se pueden obtener distintas formas de la materia según las aplicaciones o los usos para los cuales se quieran emplear los productos de la síntesis.⁸ Entre ellas se cuentan: fibras, nanopartículas, polvos, películas delgadas densas o porosas, aerogeles y xerogeles por citar los más utilizados. La figura 1.8 ilustra algunos de estos procesos.

Figura 1.8: Algunas de las posibles formas de procesar un material obtenido mediante química sol-gel. Adaptado de «*Sol Gel Science. The Physics and Chemistry of Sol Gel Processing*».⁸

El control sobre la cinética de tales reacciones permite disponer de formas y estructuras diferentes, tanto en cuanto a la cristalinidad como a la porosidad del cerámico resultante. Las temperaturas involucradas en la fabricación de materiales cerámicos mediante síntesis sol-gel son muy inferiores (≤ 400 °C) a aquellas empleados por los métodos tradicionales (≥ 700 °C).^{8, 23, 24}

La formación de un óxido por el método sol-gel implica conectar centros metálicos mediante puentes oxo o hidroxo para generar (hidroxo)polímeros de metal en solución. Para ello se hace reaccionar un precursor MX_4 con agua, donde M es el elemento del cuál se quiere obtener el óxido, y en el que X es un grupo saliente como por ejemplo un anión inorgánico o un grupo –OR. El primer paso de la reacción es la hidrólisis de un grupo alcóxido (o de un anión) para dar lugar a un hidroxocompuesto, tal como se ejemplifica en la ecuación 1.1 para el caso de un alcóxido.

Luego, la especie hidroxilada puede reaccionar con otros centros metálicos, dando lugar a reacciones de condensación, cuyos productos son oligómeros que eventualmente evolucionan a partículas de óxido. La condensación puede dar lugar a un puente oxo, tal como se muestra en la ecuación 1.2 (oxolación) o un puente hidroxo, tal como se observa en 1.3 (olación).

Las etapas de hidrólisis y condensación son análogos a la activación y la propagación en la polimerización orgánica, por lo que el proceso sol-gel puede calificarse como una polimerización inorgánica controlada. Un manejo adecuado de las variables (concentración de precursores, catalizadores, pH, solvente) y condiciones de síntesis (temperatura, humedad, tiempos de cada etapa de reacción) lleva a sistemas donde se pueden controlar con precisión la estructura inorgánica, la porosidad, la incorporación de funciones orgánicas, la relación de composiciones en óxidos mixtos (MM') y otras características del sistema.

Uno de los pilares de este trabajo fue utilizar óxidos mesoporosos procesados en forma de películas delgadas para obtener membranas permeoselectivas. Para este fin el sol se depositó sobre distintos sustratos y fue fundamental controlar las variables de síntesis antes citadas, ya que definen las características finales de los óxidos, que a su vez establecieron las propiedades permeoselectivas de las películas delgadas mesoporosas.

Para profundizar sobre estos temas se recomienda la lectura de los libros Sol Gel Science. The Physics and Chemistry of Sol Gel Processing²⁴ o Introduction to Sol Gel Processing.²⁵

1.2.3. Autoensamblado inducido por evaporación (AEIE)

El proceso de autoensamblado inducido por evaporación (AEIE) fue introducido por el grupo de Brinker a fines de la década de 1990.^{9,17} Consiste en la formación de estructuras supramoleculares híbridas orgánicas|inorgánicas con organización en la nanoescala. Dichas estructuras son obtenidas mediante la evaporación del solvente en soluciones que contiene al precursor inorgánico, agentes de control para la hidrólisis y condensación y un agente porógeno, el tensioactivo que inicialmente se halla disuelto. Este proceso ocurre cooperativamente con la interacción y condensación de los precursores inorgánicos. En la actualidad, este concepto constituye un método habitual de obtención de PDM ordenadas²⁶ así como micropartículas, monolitos, aerosoles, etc.²⁷

Existen muchas técnicas de depósito de PDM. Las más utilizadas son *spin*coating, dip-coating y spray-coating. En la figura 1.9 se ejemplifica el proceso de AEIE cuando se aplica la técnica de dip-coating. Allí se destacan los principales eventos que ocurren al retirar el sustrato de la solución a velocidad controlada. El sol, en términos generales, está compuesto por un solvente volátil, precursores inorgánicos, agua y el surfactante deseado. A medida que se retira el sustrato, se evapora el solvente y consecuentemente se concentra el surfactante mas allá de la concentración micelar crítica (cmc), formando micelas, que luego se organizarán en un cristal líquido. La estructura de dicho cristal impacta directamente en la estructura final de las PDM. Procesos similares ocurren cuando se obtienen PDM por spin-coating.

En función de la composición inicial del sol, del tipo de surfactante, de la química de los precursores, del sustrato, de las parámetros de depósito y de las condiciones ambientales es posible obtener diferentes entornos que darán lugar a distintos arreglos tridimensionales de poros, que está dado por el organización micelar previa al momento en el cual se elimina el surfactante ya sea por calcinación o extracción.^{26, 28–31}

solución con precursores y surfactante

Figura 1.9: Proceso de autoensamblado inducido por evaporación (AEIE) mediante *dip*coating. La evaporación del solvente favorece la formación de micelas mas allá de la cmc formado el cristal líquido. Un proceso similar ocurre cuando se aplica la técnica de *spin*coating. Adaptado de «Films delgados mesoporosos de óxidos metálicos, mixtos e híbridos. Hacia un diseño racional de nanomateriales funcionales».³²

1.3. Técnicas electroquímicas

Existen numeros as técnicas electroquímicas basadas en mediciones de potencial, corriente, impedancia o conductividad. ^{33-35}

Una de las más difundidas y utilizadas es la voltametría. Ésta técnica se aceleró con las investigaciones sobre polarografía en 1922 por el Premio Nobel de Química Jaroslav Heyrovský.³⁶ En 1942, Hickling construyó el primer potenciostato de tres electrodos, configuración típica de cualquier experimento que involucre una voltametría.³⁷ Durante las décadas del 60 y 70 se hicieron muchos avances en la teoría, la instrumentación y la introducción de sistemas automatizados controlados por computadoras. Estos avances mejoraron la sensibilidad y crearon nuevos métodos analíticos. La industria respondió con la producción de potenciostatos más económicos y diversificados, electrodos de trabajo específicos, electrodos de referencia y celdas utilizadas eficazmente en el trabajo analítico de rutina.³³

Un experimento voltamétrico se fundamenta en medir la corriente que genera una especie electroactiva entre dos electrodos en función de la variación del potencial aplicado sobre un electrodo, denominado electrodo de trabajo. La diferencia de potencial se establece contra un potencial de referencia fijo, el electrodo de referencia. El resultado es un gráfico de corriente versus potencial denominado voltagrama.

La interpretación de los voltagramas y el análisis de datos requiere de consideraciones cinéticas, además de termodinámicas, debido al componente temporal de la voltametría. Relaciones teóricas desarrolladas en los últimos años del siglo XIX, tales como la ecuación de Nernst, consideran sistemas electroquímicos en equilibrio termodinámico y están expresadas independientemente de la componente temporal, por lo tanto son insuficientes por sí mismas para describir los aspectos dinámicos de la voltametría.³⁸

En 1930 Butler y Volmer publican un artículo en el cual desarrollan un expresión conocida como la ecuación de Butler-Volmer (ec. 1.4), una de las más importantes en cinética electroquímica, cuya expresión más general es:³⁹

$$j = j_0 \left[\exp\left(\frac{\alpha z F}{RT} (E - E_{eq})\right) - \exp\left(-\frac{(1 - \alpha) z F}{RT} (E - E_{eq})\right) \right]$$
(1.4)

esta ecuación describe cómo evoluciona la corriente en un electrodo dependiendo del potencial del mismo, considerando tanto la reacción de reducción como la de oxidación, donde j es la densidad de corriente, j_0 la densidad de corriente de intercambio, E el potencial del electrodo de trabajo, E_{eq} el potencial de equilibrio, z el número de electrones involucrados y α es el coeficiente de transferencia de carga. A partir de consideraciones de casos límites para esta expresión y de simulaciones por computadora se pueden explicar numerosas respuestas electroquímicas.

Existen muchos tipos de voltametrías tales como: voltametría cíclica, de barrido lineal, escalonada, de onda cuadrada, de corriente alterna, etc. En la sección 2.4 se amplía la información sobre algunos aspectos de las variantes voltamétricas usadas en esta tesis y se describen cuidadosamente las variables experimentales empleadas. Electrochemical Methods: Fundamentals and Applications³³ y Principles of electrochemistry³⁵ son dos excelentes tratados sobre electroquímica en los cuales se pude profundizar el tema ampliamente, tanto en aspectos teóricos como experimentales.

Comercialmente se producen un gran número de sistemas voltamétricos para la determinación de determinadas especies que son de interés en la industria y la investigación. Estos dispositivos se denominan a veces electrodos, pero son, de hecho, celdas electroquímicas completas y son más conocidas como sensores amperométricos. Muchos de ellos son para detección de O₂, gases tóxicos, glucosa y una gran variedad de analitos tanto orgánicos como inorgánicos. Estos ofrecen ventajas importantes en el análisis multicomponente, entre ellas alta selectividad y sensibilidad, alta relación señal-ruido, bajo límite de detección y miniaturización.^{40–44}

1.4. Miniaturización y escalabilidad

Como se mencionó anteriormente, las técnicas para fabricar electrónica de consumo masivo rentable, a gran escala y de pequeñas dimensiones son las conocidas como «técnicas de microfabricación», basadas en la aproximación top-down.⁴⁵

En el año 1947, los físicos Bardeen, Brattain y Shockley de la compañía Bell Telephone Company, publicaron la fabricación del primer transistor. Dicho invento fue la piedra fundamental de la revolución electrónica de las últimas cinco décadas. Fabricado con germanio y de unos 7 cm de alto estaba muy lejos de convertirse en la unidad básica del cálculo computacional que es hoy en día.⁴⁶

Años más tarde, en 1957, ocho hombres dejaron de trabajar en Shockley Semiconductor Laboratory para formar la compañía Fairchild Semiconductor. A este grupo de personas se los conoce como los «niños de Fairchild». Entre sus miembros se destacaron: Hoerni, quién patentó, en 1959, el primer proceso de fabricación planar basado en procesos difusivos de impurezas sobre discos de silicio monocristalinos; Noyce quién junto con Kilby son considerados como los inventores de los circuitos integrados o microchip; y Moore, cofundador de Intel Corporation, quién publicó un documento en 1965, conocido como Ley de Moore, en el cuál anticipaba que cada año se duplicaría el número de transistores en un microprocesador. En 1975 el propio Moore reformularía su ley extendiendo el período a 24 meses en lugar de $12.^{46-48}$

A partir de estos hitos tecnológicos la industria de los semiconductores se convirtió en una de las más grande a nivel mundial, siendo hoy en día una industria madura, de enormes proporciones y de las más rentables del mundo, productora de computadoras, celulares, tabletas, acelerómetros, giroscópos, sistemas de posicionamiento global, etc. Dicha industria se puede dividir en dos grandes grupos: en la industria de los micro/nano sistemas eléctrico mecánicos (MEMS/NEMS, del inglés *Micro/Nano Electric Mechanicals Systems*) o en la de los circuitos integrados (IC, del inglés *integrated circuit*). Al primer grupo pertenecen dispositivos como sensores, actuadores y controladores y al segundo grupo los microprocesadores y memorias que se basan casi exclusivamente en una unidad mínima de procesamiento compuesta por transistores.^{45, 49, 50}

Mediada la década de los 90 la industria de los semiconductores se sumerge en la nanotecnología, no por las nuevas propiedades que pueden surgir, sino por la necesidad de integración y de hacer dispositivos más densos, con mayor cantidad de componentes por unidad de área. La miniaturización permite obtener dispositivos cada vez más veloces, que funcionan a mayores frecuencias, con menor disipación de potencia y a un menor costo. Todos estos requerimientos o necesidades tecnológicas se fueron materializando en un mercado de un capital enorme, que a su vez, se nutre de la industria, la cual se basa en la evolución de las técnicas y procesos de microfabricación.

1.4.1. Fotolitografía

En términos generales, se pueden resumir la fabricación para tecnologías basadas en silicio en un proceso cíclico que comprende al menos una técnica de depósito y una de transferencia de los diseños, denominada fotolitografía o litografía óptica. El esquema de la figura 1.10 resume y ejemplifica alguna de las etapas que se pueden desarrollar durante la fabricación de un microsistema.

Dentro del proceso de fabricación, la etapa de litografía es una de las más críticas. Además esta etapa es la que define la resolución de línea que se puede obtener. Mientras menor sea la longitud de onda empleada, más pequeños

Figura 1.10: Etapas involucradas en un típico proceso fotolitográfico y algunas de sus posibles aplicaciones en la transferencia de los diseños.

serán los motivos que pueden de ser transferidos. Cada generación de circuitos integrados queda definida por el nodo tecnológico, el cuál hace referencia al conjunto de reglas de procesos que definen los mínimos motivos que pueden ser transferidos. Dichos nodos reciben nombres alusivos (p. ej. 350 nm en 1995, 130 nm en 2001, 45 nm en 2008, 14 nm en 2014) designados por un grupo de expertos de la industria de semiconductores y agrupados en una serie de documentos conocidos como *International Technology Roadmap for Semiconductors* (ITRS, http://www.itrs2.net/).⁵¹

Los equipos comerciales dedicados a investigación y desarrollo (como el que se encuentra en el INTI, ver sección 2.2.3, pág. 33) suelen utilizar lámparas de Hg ($\lambda = 350$ nm) alcanzando resoluciones apenas por debajo del micrón, y los dedicados a producción utilizan fuentes de emisión dentro del UV profundo, iluminando con $\lambda = 193$ nm. Con esta longitud de onda corta, utilizando líquidos de inmersión, corrimiento de máscara y correcciones ópticas se llegan a definir detalles tan pequeños como 14 nm.⁵² En este punto, esta técnica deberá ser reemplazada por una nueva generación de litografía (NGL, del inglés Next Generation Lithography).^{53–57} El siguiente nodo tecnológico es el de 7 nm para el cuál ya existen dispositivos y producciones experimentales y se espera que entren en producción en 2019.^{58, 59}

Existe un consenso general entre los expertos que el nodo de 5 nm terminará con la Ley de Moore. Transistores menores que 7 nm experimentan el fenómeno conocido en mecánica cuántica como «efecto túnel», por este motivo el nodo de 5 nm se espera que tarde más de dos años en producirse debido a los costos asociados al desarrollo, con perspectivas de ser comercializado a partir de 2020 o 2021.^{60,61}

1.4.2. Pulverización catódica (*sputtering*)

La técnica de pulverización catódica, comúnmente denominada por su nombre en inglés *sputtering* se incluye dentro del grupo de procesos conocidos como deposición física en fase vapor (PVD, del inglés *physical vapour deposition*.) Es una técnica muy utilizada en microfabricación, reservada casi exclusivamente para depósito de metales y aplicable a temperatura ambiente. Su uso en la industria microelectrónica se generalizó a partir de mediados de la década del $80.^{62,63}$

La técnica consiste en bombardear un material blanco con un flujo de iones, generalmente de Ar^+ , que luego son depositados sobre el material utilizado como sustrato. Para ionizar el Ar primero se evacúa la cámara del equipo en alto vacío $(1 \times 10^{-5} \text{ mbar})$ y luego se inunda con Ar. Una vez alcanzado el nivel de vacío necesario (típicamente 1×10^{-2} mbar) se establece una diferencia de potencial entre dos electrodos (cátodo y ánodo) suficiente para ionizar el Ar y pasarlo al estado plasma como Ar⁺. El potencial necesario se puede generar con un fuente de corriente continua de alta tensión, utilizada normalmente para blancos metálicos o con una de radiofrecuencia para blancos dieléctricos. Las tensiones en ambos casos oscilan en el orden de 1 kV y en el caso de la fuente de RF la frecuencia óptima para estabilizar el plasma es de 13,6 MHz. La pulverización en sí es causada por la transferencia de momento debido a la colisión entre los iones de Ar⁺, que una vez ionizado son acelerados hacía el cátado transfiriendo el momento a los átomos del blanco y consecuentemente pulverizando el material. El esquema de la figura 1.11 ilustra el proceso que ocurre a nivel atómico.^{64–66}

1. Introducción

Las películas delgadas crecidas por esta técnica se caracterizan por ser sumamente homogéneas a lo largo de extensas superficies y con valores de espesor que van típicamente de unos pocos nanómetros (≈ 10 nm) a unos cientos de nanómetros. En este trabajo ésta técnica se utilizó para depositar películas de oro destinadas a formar los electrodos de los multisensores electroquímicos.

Figura 1.11: Representación esquemática del depósito de una película delgada por el proceso de pulverización catódica o *sputtering*.

1.5. Estado del arte

La principal motivación que impulsó el presente trabajo de tesis fue la de crear multisensores selectivos microfabricados, basados en películas delgadas mesoporosas y con proyección para generar prototipos escalables y transferibles a la industria.

Es por ello que se puso mucho énfasis en las etapas de microfabricación de los electrodos, de diseño, de selección de los materiales tanto de los electrodos como de las películas mesoporosas y de los procesos empleados. La fabricación de los multisensores no surgió como un conjunto de buenos resultados experimentales volcados en un dispositivo y empleados oportunamente como sensores, sino que surgió como un proyecto científico premeditado de índole «aplicada» y orientado en una dirección: la de sentar las bases para producir multisensores.

Como ya se mencionó previamente, entre los años 1997 y 1998 se reportan los primeros trabajos que lograron sintetizar óxido de silicio mesoporoso en forma de película delgada.^{9, 15–17} Walcarius fue uno de los pioneros en reportar y sugerir el empleo de análisis electroquímico sobre materiales basados en sílice mesoporosa. En los *reviews* de 1999⁶⁷ y 2001⁶⁸ argumenta las ventajas de utilizar materiales mesoporosos de sílice y el impacto positivo que podría tener en aspectos analíticos tales como la selectividad, preconcetración y límite de detección entre otros. Desde entonces, muchos grupos de investigación de todo el mundo se interesaron en está perspectiva y trabajan combinando películas delgadas mesoporosas con electroquímica.^{69–77} De hecho, esta tesis tuvo una gran influencia de trabajos en los cuales se depositan dichas películas sobre electrodos de carbono vítreo, de óxidos conductores o metálicos. Algunos de ellos utilizar las películas como membranas permeoselectivas,^{76,78,79} sensores de gases⁸⁰ o sensores en general;^{10,81} y otros para demostrar que son sistemas fácilmente funcionalizables con moléculas^{82–85} o polímeros^{76,86,87} y mediante pruebas de concepto demostrar su potencialidad en el campo de los sensores.^{10,88}

Todos estos trabajos, inspiradores y vanguardistas, tiene puesto el foco en la química superficial y en las propiedades de las películas delgadas mesoporosas: la estructura porosa, la cristalinidad de la pared, los grupos funcionales, el grado de condensación, el índice de refracción, la accesibilidad, etc. y su potencialidad para las más diversas aplicaciones.

Esta tesis buscó cambiar este enfoque para colocar el eje central del trabajo alrededor de tres tópicos: el «aprovechamientos» de las películas delgadas mesoporosas como membranas selectivas, fabricar prototipos de sensores electroquímicos y analizar la respuesta electroquímica con métodos multivariables. De esta forma se introducen temáticas poco exploradas en la literatura especializadas: tales como la compatibilidad de las síntesis sol-gel con procesos de preproducción, el análisis exhaustivo de la respuesta electroquímica, la reproducibilidad en las respuestas y la estabilidad de los multisensores. Todos aspectos fundamentales a la hora de fabricar un dispositivo prototipo basado en películas delgadas mesoporosas. También se exploran en profundidad los aspectos fisicoquímicos sobre el transporte a través de las películas, los factores que influyen en él, y el comportamientos frente a moléculas modelos, sentando las bases para el diseño racional de nuevos prototipos. Hacía el final del trabajo se utiliza un analisis multivarible para generar marcas sensoriales de los analitos a partir de un conjunto de resultados electroquímicos individuales afectados por el entorno de cada electrodo, un concepto análogo al aplicado en las «lenguas electrónicas»,^{43,89,90} en las cuales se obtienen múltiples respuestas que generan una marca sensorial para distintos analitos o familias de compuestos.

1.6. Motivaciones y objetivos

El presente trabajo de tesis se desarrolló en el Instituto Nacional de Tecnología Industrial (INTI), cuyas principales actividades son: certificación de productos, metrología industrial, científica y legal, y generación y transferencia de innovación tecnológica a la industria. Es, dentro de este contexto, que surge el desafío de desarrollar un dispositivo en base nanotecnológica con posibilidad de ser transferido.

El objetivo principal de la tesis es desarrollar una plataforma de multisensores electroquímicos basados en películas delgadas mesoporosas. Las etapas y objetivos intermedios para la fabricación de los sensores se pueden resumir en los siguientes ítems:

- Depositar y condensar películas delgadas mesoporosas de óxidos de silicio estructuradas con los porógenos F127, Brij58 y CTAB sobre silicio, películas delgadas de oro y microelectrodos entre otros.
- Desarrollar métodos para condensar la estructura inorgánica, ya sea de SiO_2 o de $Si_xZr_{1-x}O_2$, y extraer el agente moldeante a temperaturas me-

nores a los 130 °C, de forma de evitar temperaturas de calcinación elevadas.

- Compatibilizar procesos de síntesis *bottom-up* con técnicas de microfabricación tipo *top-down*. Mejorar adherencia, minimizar procesos difusivos y evitar condiciones extremas de condensación.
- Estudio de propiedades de transporte, cálculo de parámetros característicos mediante experimentos de electroquímica y simulación computacional por el método de elementos finitos. Funcionalizar las películas delgadas mesoporosas con el objetivo de modificar las propiedades permeoselectivas.
- Fabricación de un multisensor compacto integrado en un único dispositivo. Estudiar factores de escalabilidad, optimización de los diseños y realizar detecciones electroquímicas funcionales con los dispositivos fabricados realizando un análisis multivariable de la respuesta en función de la marca sensorial que se genera para cada sonda analito.

Finalmente cabe destacar, que este proyecto tiene por propósito, a mediano/largo plazo, fabricar una plataforma de multisensores analíticos selectivos incorporando nanotecnología, portable, integrable en circuitos integrados, de bajo costo y con posibilidades de ser transferido a la industria.

MATERIALES, MÉTODOS Y PROCESOS

Contenido

2.1. Sínt	esis de películas delgadas mesoporosas	20
2.1.1.	Preparación de los soles, reactivos y nomenclatura	20
2.1.2.	Depósitos de las películas delgadas mesoporosas	22
2.1.3.	Métodos de condensación y extracción	25
2.1.4.	Funcionalización de las PDM	26
2.1.5.	Espectroscopía IR	27
2.1.6.	Ángulo de contacto	27
2.1.7.	Elipsometría	28
2.2. Mic	rofabricación de los electrodos	30
2.2.1.	Diseño e impresión de las máscaras	31
2.2.2.	Limpieza de los sustratos	32
2.2.3.	Transferencia de los diseños por fotolitografía	33
2.2.4.	Depósito de películas delgadas metálicas	35
2.2.5.	Proceso de <i>lift-off</i>	36
2.2.6.	Modificación superficial	37
2.2.7.	Encapsulado y corte	37
2.2.8.	Espectroscopía de fotoelectrones de rayos X	39
2.3. Mic	roscopías	39
2.3.1.	Microscopía óptica	39
2.3.2.	Microscopía electrónica de barrido (MEB)	39
2.3.3.	Microscopía con iones de galio focalizados (FIB)	41
2.4. Med	liciones electroquímicas	42
2.4.1.	Voltametría cíclica de corriente continua	43
2.4.2.	Voltametría cíclica de corriente alterna	44
2.4.3.	Simulaciones por el método de elementos finitos	44
2.4.4.	Celdas electroquímicas	46
2.4.5.	Sondas electroquímicas	47
	2.4.5.i. Respuesta de ferrocianuro/ferricianuro de potasio	48
	2.4.5. ii. Respuesta del cloruro de hexaaminorutenio (III) $\ .$	49
	2.4.5.iii. Respuesta del ferroceno metanol	50

2.1. Síntesis de películas delgadas mesoporosas

Las consideraciones teóricas sobre la química sol-gel y el autoensamblado inducido por evaporación (AEIE) ya fueron expuestas en el capítulo 1. También fueron mencionadas las razones por las cuales se eligió SiO₂ como estructura para las películas delgadas mesoporosas y Pluronic F127, Brij58 y CTAB como agente moldeante. Los procedimientos, métodos y proporciones molares para la preparación de los soles se inspiraron en los trabajos de Angelomé³² y Fuertes.⁹¹ El esquema 2.1 resume cada una de las etapas de síntesis de las películas las cuales se desarrollarán con detalle las próximas secciones de este capítulo.

Figura 2.1: Diagrama de flujo para las dos rutas sínteticas utilizadas en la síntesis de películas delgadas mesoporosas: alta temperatura (AT, 350 °C) y baja temperatura (BT, 130 °C).

2.1.1. Preparación de los soles, reactivos y nomenclatura

La síntesis y depósito de las películas delgadas mesoporosas comienzan con la preparación de las soluciones, las cuales deben contener los precursores del óxido (o de los óxidos en el caso de películas mixtas), el moldeante de los poros, el solvente adecuado, agua y ácido clorhídrico⁸ (cada componente cumple una función específica, tal como se explicó en la sección 1.2). Los precursores utlizados fueron tetraetoxisilano (TEOS, Merck) para las películas de sílice pura, y TEOS combinado con cloruro de circonio(IV) (ZrCl₄, Aldrich) para las películas mixtas de silicio/circonio. Las condiciones de hidrólisis y condensación para estos dos reactivos (ya sean solos o combinados) son bien conocidas y llevan a la formación películas delgadas estables y reproducibles de óxidos mesoporosos puros o mixtos.^{29,32,92} El surfactante es el agente que establece el tamaño de los poros y la simetría del sistema. Para ello se utilizaron tres moldes diferentes: el copolímero de bloque Pluronic F127 (F127, Aldrich), bromuro de hexadeciltrimetilamonio (CTAB, Aldrich) y polioxietileno[20] cetil éter (Brij58, Aldrich). Como solvente se utilizó etanol absoluto (EtOH, Sigma). El H_2O es el reactivo para la formación del óxido mediante la conexión de los grupos metálicos M(IV). Por último, el HCl es el encargado de generar el medio ácido que cataliza la hidrólisis y controla la condensación del Si(IV) y/o del Zr(IV). Los reactivos utilizados fueron de calidad proanálisis o superior y el H_2O de $18 M\Omega \,\mathrm{cm}^{-1}$ fue obtenida con un equipo Ultra Clear TWF de la marca Siemens. La nomenclatura, pesos moleculares y estructura química de los reactivos utilizados se pueden consultar en la tabla 2.1.

El preparado de las soluciones se realizó agregando cada reactivo por pesada en balanza analítica. Cada lote de solución fue de aproximadamente 100 ml. Para llegar a este volumen se agregaron, en este orden, 10,417 g de TEOS, 6,911 g de etanol y 0,902 g de HCl $2,77 \times 10^{-3}$ M. En el caso de los soles mixtos (Si|Zr 9:1), se pesaron 9,375 g de TEOS y 1,165 g de ZrCl₄. Esta primera solución, denominada solución de prehidrólisis, se deja envejecer bajo agitación constante durante 48 h a 25 °C, con el objetivo de hidrolizar los precursores metálicos y mantener un bajo grado de condensación.⁹³
2.1.	Síntesis	de	películas	delgadas	mesoporosas
------	----------	----	-----------	----------	-------------

Nombre Nomenclatura	Estructura	Peso molecular $g \mod^{-1}$	Función
tetraetoxisilano TEOS	O O O O O O O O O O O O O O O O O O O	208, 33	precursor del óxido
cloruro de circonio(IV) ZrCl_4		233,04	precursor del óxido
Pluronic F127 F127 он		ы 13800	agente moldeante
bromuro de hexadeciltrimetilamonic CTAB	$\begin{array}{c} CH_3 \\ + \\ N \\ H_1 \\ CH_3 \end{array}$	364,48	agente moldeante
polioxietileno[20] cetil éter Brij58		$_{15}^{\rm CH_3}$ 1124	agente moldeante
ácido clorhídrico HCl	HCl	36, 46	cataliza la hidrólisis
agua H_2O	H ₂ O	18,02	reactivo de hidrólisis
etanol EtOH	CH ₃ CH ₂ OH	46,07	solvente

 Tabla 2.1: Nomenclatura, estructura, peso molecular y función de las moléculas utilizadas en las soluciones para la síntesis de películas delgadas mesoporosas.

Una vez envejecida la solución de prehidrólisis (ya sea de SiO₂ pura o mixta) se pesan 17,146 g y se agregan: 80,184 g de EtOH, el surfactante deseado (3,246 g de F127 o 1,822 g de CTAB o 2,646 g de Brij58) y 7,630 g de HCl $5,5 \times 10^{-2}$ M. De esta forma se obtienen aproximadamente 100 ml de un sol con las relaciones molares de la tabla 2.2. Se conservan en *frezeer* a -18 °C y sólo se retiran a la hora de depositar las películas.

Para facilitar la lectura se utilizará la siguiente nomenclatura, tanto para los soles como para las películas delgadas mesoporosas que se fabriquen con ellos:

- PDM para películas delgadas mesoporosas en general.
- SF para PDM de óxido de silicio estructuradas con F127.
- SC para PDM de óxido de silicio estructuradas con CTAB.
- SZF para las PDM mixtas de óxido de circonio y silicio en relación molar 1:9 y estructuradas con F127.
- SZB para las PDM mixtas de óxido de circonio y silicio en relación molar 1:9 y estructuradas con Brij58.

Todas las soluciones fueron preparadas indistintamente en el Centro de Micro y Nanoelectrónica del Bicentenario del Instituto Nacional de Tecnología Industrial (INTI-CMNB) o en la Gerencia Química, Centro Atómico Constituyentes Comisión Nacional de Energía Atómica (CAC-CNEA).

Componente	Prehidrólisis	\mathbf{SF}	\mathbf{SC}	SZF	SZB
TEOS	$1/0,9^{*}$	1	1	$0,\!9$	0,9
ZrCl_4	$-/0,1^{*}$	-	-	0,1	0,1
EtOH	3	40	40	40	40
F127	-	0,0075	-	0,0075	-
CTAB	-	-	0,1	-	-
Brij58	-	-	-	-	$0,\!05$
H_2O	1	9	9	9	9
HCl	0,00005	0,01	0,01	0,01	$0,\!01$

Tabla 2.2: Relaciones molares para las soluciones utilizadas.

*Los números antes y después de la barra son los utilizados en soluciones de prehidrólisis para películas de óxido de silicio y óxidos mixtos de silicio/circonio respectivamente.

2.1.2. Depósitos de las películas delgadas mesoporosas

Las películas mesoporosas utilizadas en esta tesis fueron depositadas en el Laboratorio de Fotolitografía del INTI-CMNB por *spin-coating*. Dicha técnica consiste en dispensar el sol sobre el sustrato, el cual está sujeto a un portamuestras que a su vez se encuentra acoplado a un cabezal rotatorio. Al hacer rotar el cabezal, se aplica sobre el líquido una fuerza proporcional a la velocidad angular, dispersando el sol para formar un recubrimiento homogéneo sobre la muestra. El espesor del depósito está regulado, entre otras variables, por la velocidad angular y la viscosidad del sol.

Como sustrato para realizar los depósitos se utilizaron vidrio, silicio, oro sobre silicio, microelectrodos y sustratos poliméricos como polimetilmetacrilato (PMMA) y poliestireno de alto impacto (PAI). Cada uno de ellos fue escogido para una función particular (p. ej. sustrato para reacciones electroquímicas) o por alguna característica distintiva (p. ej. transparente en el IR). En la tabla 2.3 se agrupan los sustratos utilizados y se resumen algunas características y funciones destacadas.

Las dimensiones de las muestras fueron típicamente de $1 \text{ cm} \times 1 \text{ cm}$ a $2 \text{ cm} \times 2 \text{ cm}$, aunque la técnica permite depositar películas continuas de hasta 15 cm de diámetro. En la mayoría de los casos, para obtener lotes de 32 o 46 sensores (dependiendo del diseño), se utilizaron obleas de silicio de 10 cm de diámetro. Antes de hacer el depósito, el sol se pasa a través de un filtro de jeringa de nailon de 0,45 µm (*GAMAFIL*) para evitar la presencia de partículas que puedan generar discontinuidades o «cometas» en los depósitos.⁴⁹ Luego, para dispensar el sol en el sustrato, se utilizaron pipetas tipo Pasteur o pipetas automáticas dependiendo del volumen requerido, el cual varió de 80 a $100 \,\mu \text{L cm}^{-2}$.

Las condiciones del laboratorio durante el depósito se mantuvieron en 25 °C y a una HR entre 30 % y 50 %. Una vez dispensado el sol, se da comienzo a la rotación que dispersa la solución de manera homogénea sobre el sustrato y, a su

E H H H H H H H H H H	2.1. Si	ntesis d	e pelicula	s delgadas	mesoporos
------------------------------	---------	----------	------------	------------	-----------

Sustrato Nomenclatura	Observaciones	Limpieza previa*	Función
vidrio Vi	portaobjetos <i>BioTraza</i>	inmersión KOH 40 %	económico para pruebas preliminares de depósito
silicio Si	Si[100] pulido dopado tipo n <i>Addison</i>	inmersión HF 48 $\%$	FTIR, MEB, FIB, PEA
Au sobre silicio Si Au	depositado por pulverización catódica [†]	ultrasonido en $\rm H_2O$	transporte, EQ
$\begin{array}{c} \text{microelectrodos} \\ \mu Elec \end{array}$	sensores, diseño transferido por fotolitografía [§]	ultrasonido en $\rm H_2O$	multisensado, EQ
poliméricos	PMMA y PAI	ultrasonido en H ₂ O	demostrador métodos suaves de síntesis

Tabla 2.3: Sustratos utilizados para el depósito de PDM.

*Ver la sección «Limpieza de los sustratos», tabla 2.5, pág. 32.

 $^\dagger \mathrm{Ver}$ la sección «Depósito de películas delgadas metálicas», pág.35.

[§]Ver la sección «Transferencia de los diseños por fotolitografía», pág. 35.

vez, la evaporación del solvente promueve la formación del cristal líquido por el mecanismo de AEIE. 17

Los mejores resultados se obtienen aplicando al inicio una rampa de velocidad moderada para formar un depósito relativamente grueso y uniforme. Una vez formada esta capa uniforme se acelera hasta la velocidad final para obtener al espesor final requerido y favorecer la evaporación del solvente mediante la corriente de aire generada sobre el depósito. Bajo estas condiciones el espesor puede ser calculado por la ecuación 2.1,⁹⁴ donde d(t) es el espesor en función del tiempo, d_0 es el espesor a t = 0, ρ es la densidad del sol, η la viscosidad y ω la velocidad angular, la cual es para los casos tratados en este trabajo la principal variable para ajustar el espesor de los depósitos.^{95–97}

$$d(t) = \frac{d_0}{\sqrt{1 + \frac{4\rho\omega^2 d_0^2 t}{3\eta}}}$$
(2.1)

En la mayoría de los caso dicha ecuación es difícil de aplicar en la práctica y en general se establece relación empírica entre el espesor resultante y las condiciones experimentales. En este trabajo se optimizaron las rampas de velocidad y aceleración para obtener PDM con espesores entre 150 y 300 nm.^{8,98,99} Los esquemas aplicados se muestran en gráfico de la figura 2.2.

El equipo utilizado fue un Suss MicroTec Delta 20BM, el cual consiste en un cabezal rotatorio con control de aceleración (0 a 1000 min⁻¹ s⁻¹) y velocidad angular (0 a 10000 min⁻¹). Posee portamuestras con entrada de vacío para sujetar las muestras y de diferentes tamaños para adaptarse a sustratos de diversos tamaños y geometrías (figura 2.3).

Figura 2.2: Esquema con las rampas de velocidad de rotación o velocidad angular mas frecuentemente utilizadas para el depósito de PDM. A mayor velocidad y mayor tiempo, menor es el espesor de los depósitos resultantes.

Figura 2.3: Spin-coater ubicado en el Laboratorio de Fotolitografía del INTI-CMNB utilizado para el depósito de las películas delgadas mesoporosas, Marca Suss MicroTec, modelo Delta 20BM.

2.1.3. Métodos de condensación y extracción

Una vez realizado el depósito, se debe conservar la estructura del cristal líquido obtenido y evitar el deterioro durante la eliminación del surfactante. Para ello se estabilizó la película durante 1 h en cámara de humedad controlada a una HR constante de 50%. Para mantener dicho valor de humedad se utilizó una solución saturada de Ca(NO₃)₂.5H₂O (*Biopack*). Controlar la presión parcial de agua (P_{H₂O}) permite optimizar el grado de condensación del óxido y ayuda a la separación de fases entre el agente moldeante y el óxido.¹⁰⁰ El proceso de estabilización y condensación del óxido continúa con un calentamiento en plancha calefactora (*Cimarec*) una hora a 60 °C y una hora más a 130 °C.^{29,100}

Posteriormente a la estabilización de la película se experimentaron varios tratamientos posdepósito para completar el proceso de condensación de la fase inorgánica y extraer el surfactante para dar lugar finalmente a la película mesoporosa. A continuación se enumeran y describen brevemente los métodos ensayados:

- *Calcinación*. Este es el proceso clásico en el cual se somete a la película a una temperatura de 350 °C durante 2 h con una rampa de 1 °C min⁻¹ (Horno *Indef 337*). De esta forma se condensa el óxido, se elimina el surfactante y se minimiza el daño de la estructura tridimensional de la red mesoporosa.¹⁰⁰
- *Condensación ácida*. En este método se busca promover la condensación de la matriz de sílice mediante la exposición de las películas a una atmósfera de vapores de HCl.¹⁰¹ El arreglo para tal fin consiste en sujetar las muestras al fondo de un vaso de precipitados y colocarlo invertido sobre un cristalizador con HCl concentrado (*Biopack*) durante 10 min.
- *Condensación alcalina*. Al igual que el método anterior, se busca promover la condensación del óxido cambiando las condiciones del entorno químico, en este caso someter las películas a una atmósfera de pH alcalino generada con vapores de NH₃ (*Biopack*).^{84,102} El armado experimental fue igual que el descripto para el método ácido.
- *Prolongado a* 130 °C. Esta estrategia de síntesis involucró dejar las muestras en estufa a 130 °C durante 7 días con el objetivo de promover la condensación del óxido.
- Alto vacío. Este tratamiento consiste en dejar las muestras en una cámara de alto vacío a 1×10^{-5} mbar y 130 °C durante 7 días. Para calentar y llegar al vacío necesario se utilizó la cámara de una soldadura de obleas (*EVG 501 Manual Wafer Bonding System*) la cual fue evacuada por una bomba mecánica y una turbomolecular secuencialmente.

En los casos donde fue necesario realizar la extracción del surfactante sin calcinar, las muestras fueron sometidas a un reflujo de 2-propanol a punto de ebullición (*Biopack*) durante 15 min. Luego se enjuagaron con H₂O acidificada con HCl a pH = 2. El siguiente diagrama de flujo resume y agrupa todos los tratamientos realizados sobre las PDM, desde el depósito hasta la extracción del surfactante, incluyendo la nomenclatura utilizada a lo largo de la tesis.

Figura 2.4: Etapas de estabilización y diferentes tratamientos posdepósito utilizados para condensar y extraer el surfactante en las PDM, tanto de óxidos puros como mixtos.

2.1.4. Funcionalización de las PDM

Se realizaron una serie de reacciones químicas con el propósito de funcionalizar las paredes de los poros de la PDM y con el objetivo de conferir a cada electrodo, de un mismo sensor, alguna característica distintiva, p. ej. aumentar carácter el hidrofóbico o hidrofílico, cambiar el estado de la carga eléctrica superficial, etc. Las funcionalizaciones se llevaron a cabo sobre películas mixtas Si_{0,9}Zr_{0,1}O₂ sintetizadas por el método de alto vacío. Esta elección está fundamentada en los buenos resultados obtenidos para estos sistemas, los cuales se discutirán a lo largo de los capítulos 3 y 4.

Las moléculas elegidas para incorporar a las SZF se exponen en la tabla 2.4. Allí se indica la denominación, estructura, concentración y condiciones bajo las cuales se realizaron las reacciones así como la nomenclatura de los sistemas resultantes.

Las funcionalizaciones se llevaron a cabo en una región estrecha del sensor, de forma de abarcar un sólo electrodo para cada reacción. Con el fin de delimitar la zona de reacción se utilizó un recipiente de polipropileno con un sello contra la

Nombre	Estructura	Condiciones	Nomenclatura
dihexadecilfosfato DHDP	$\begin{array}{c} 0 \\ P \\ HO \end{array} \begin{array}{c} 0 \\ 0 \\ 15 \\ 15 \\ 15 \\ 15 \end{array} \begin{array}{c} CH_3 \\ CH_3 \\ 15 \\ 15 \end{array}$	$3\mathrm{mM} 80^{\mathrm{o}}\mathrm{C} 20\mathrm{h}$	SZF_3^P
3-aminopropil		$1\mathrm{mm} 80\ ^{\circ}\mathrm{C} 20\mathrm{h}$	SZF_1^N
trietoxisilano APTES	NH ₂	$10{\rm mm} 80{\rm ^{o}C} 20{\rm h}$	SZF_{10}^N

 Tabla 2.4:
 Moléculas utilizadas para funcionalizar los electrodos, condiciones experimentales y nomenclatura.

PDM, evitando derrames laterales. Las condiciones experimentales fueron adaptaciones de las utilizadas por Angelomé³² y Calvo,¹⁰³ utilizando como solvente tetrahidrofurano(*Sintorgan*) para el DHDP(*Fluka*) y tolueno(*DORWIL*) para el APTES(*Aldrich*). Se normalizó el tiempo y la temperatura de ambas reacciones con el propósito de poder funcionalizar dos o más electrodos en simultáneo. Una vez terminada la reacción se realizó un enjuague con abundante etanol seguido de secado con flujo de aire o N₂.

2.1.5. Espectroscopía IR

La región infrarroja (IR) del espectro electromagnético puede ser divido en tres zonas, según su número de onda: IR lejano (400 a $10 \,\mathrm{cm^{-1}}$), IR medio (4000 a $400 \,\mathrm{cm^{-1}}$), e IR cercano (14000 a $4000 \,\mathrm{cm^{-1}}$). El infrarrojo medio puede ser usado para estudiar las vibraciones fundamentales y la estructura rotovibracional; brinda información acerca de los grupos funcionales orgánicos y la estructura inorgánica a través del análisis de las vibraciones moleculares.¹⁰⁴⁻¹⁰⁶

A lo largo de este trabajo se usó esta porción del espectro IR para analizar los resultados de la extracción de surfactante y estructura inorgánica de las PDM. Las mediciones se llevaron a cabo en la Unidad Técnica de Nanomateriales del Centro de Investigaciones en Procesos Superficiales del INTI (INTI-CIEPS). El equipo es un *Thermo Scientific Nicolet 6700 FTIR* que cuenta con un microscopio para poder focalizar el haz en un área de aproximadamente $0,5 \text{ mm} \times 0,5 \text{ mm}$. Se utilizó la técnica de espectroscopía infrarroja por transformada de Fourier (FTIR) tanto en trasmisión como en reflexión y los espectros fueron tomados con el detector MCT/B (*Wide Band mercury cadmium telluride*) que es de 4 a 10 veces más sensible que los detectores estándar para equipos de espectroscopía FTIR.¹⁰⁷ Las películas destinada a ser caracterizadas por FTIR fueron depositadas sobre Si, por ser éste trasparente en una amplia región del IR medio.

2.1.6. Ángulo de contacto

La medición del ángulo de contacto (AC) de un líquido sobre una superficie permite evaluar la energía superficial (γ) entre ambos. La teoría vincula el AC con γ mediante el análisis del equilibrio químico de tres fases: la fase líquida de la gota, la fase gaseosa del aire y la sólida del sustrato. El valor del AC depende principalmente de la relación que existe entre las fuerzas adhesivas entre el líquido y el sólido y las fuerzas cohesivas del líquido. Se puede, así, cuantificar la mojabilidad de un líquido en aire, en una determinada superficie.¹⁰⁸ Tomando dos caso extremos, cuando la superficie interactúa fuertemente con el líquido y se moja, el AC se aproxima a 0°; en cambio si la superficie y el líquido se repelen, el AC tenderá a 180°. En términos de equilibrio termodinámico, el potencial químico de las tres fases debe ser igual. Quién dió la primera descripción en términos de energías interfasiales fue Young en 1805,¹⁰⁹ donde postuló que la energía superficial líquido-vapor (γ) por el coseno del angulo de contacto(θ) es igual a diferencia de las energías superficiales sólido-líquido γ_{sL} y sólido-vapor γ_{sV} s. Tal relación se la conoce como ecuación de Young (ecuación 2.2).

$$\gamma \cos(\theta) = \gamma_{SL} - \gamma_{SV} \tag{2.2}$$

En este trabajo se utilizaron las medidas de AC entre agua y las superficies de las PDM, para calcular la distribución de los tamaños de poro y cuello de los sistemas porosos aplicando la ecuación de Kelvin.¹¹⁰ En la próxima sección se explica en detalle como se estiman dichas distribuciones. Las medidas de AC se realizaron en la Gerencia Química, CAC-CNEA con un equipo *Ramé-Hart 290* y los datos fueron recogido con el software *DROPImage*.

2.1.7. Elipsometría

La elipsometría es una técnica de análisis óptico que se basa en el cambio del estado de polarización de la luz que incide sobre una o más películas delgadas soportadas sobre un material reflectivo. Dicho análisis es no destructivo y es útil para la determinación de espesores y constantes ópticas (índices de refracción y constante de absorción) de dichas películas.^{111,112} El parámetro medido es el cociente complejo ρ de la amplitud de la reflexión de los componentes paralelo (r_p) y perpendicular (r_s) del haz polarizado incidente. Este cociente se expresa como función de los parámetros elipsométricos $\Delta(\lambda)$ y $\Psi(\lambda)$.

Debido a que las ecuaciones involucradas en el proceso no poseen resolución analítica, es necesario recurrir a modelos que describan el material para obtener las propiedades de interés, es decir, el índice de refracción real, $n(\lambda)$, el espesor, t, y el coeficiente de absorción $k(\lambda)$. Mediante un ajuste iterativo por cuadrados mínimos de $\Delta(\lambda)$ y $\Psi(\lambda)$ (para el cual se proponen valores iniciales para n, k y t de la muestra) se minimiza la diferencia entre el modelo y los datos experimentales. De esta forma se extrae el espesor y el índice de refracción.¹¹¹

Cuando se adapta al equipo una cámara, en la que se puede variar la presión parcial de H_2O , es posible medir los cambios de las propiedades ópticas (p. ej. espesor e índice de refracción) de las PDM durante la adsorción y desorción de H_2O . A esta técnica se la conoce con el nombre de porosimetría elipsométrica ambiental (PEA).¹¹⁰ La figura 2.5 muestra un esquema de los principales componentes de un elipsómetro con cámara de humedad controlada.

Figura 2.5: Esquema de los componentes principales del equipos de elipsometría utilizado para determinar las constantes elipsométricas, $\Delta(\lambda) \ge \Psi(\lambda)$, de las cuales se obtienen el espesor, indice de refracción, coeficiente de absorción, distribución y tamaño de poros y cuellos de las PDM.

El volumen de vapor adsorbido dentro de los poros se determina a partir de la variación de $n(\lambda)$ utilizando aproximaciones de medio efectivo como la de Bruggeman¹¹³ o la de Maxwell-Garnett¹¹⁴ que son simplificaciones de la ecuación Lorentz-Lorentz general.¹¹¹ La aproximación de Bruggeman considera

dos componentes mezclados al azar cuyas fracciones en volumen (f_i) y constante dieléctrica (\mathcal{E}_i) deben cumplir con la ecuación 2.3, donde \mathcal{E}_e es la constante dieléctrica del material compuesto.

$$f_1\left(\frac{\mathcal{E}_1 - \mathcal{E}_e}{\mathcal{E}_1 + 2\mathcal{E}_e}\right) + f_2\left(\frac{\mathcal{E}_2 - \mathcal{E}_e}{\mathcal{E}_2 + 2\mathcal{E}_e}\right) = 0$$
(2.3)

El índice de refracción se define según la ecuación 2.4 donde μ es permeabilidad electromagnética relativa. Para la mayoría de los materiales, y cerca del rango visible, μ es muy cercana a la unidad, por lo tanto es común aproximar $\mathcal{E}_e = n_e^2$.

$$n = \sqrt{\mathcal{E}\mu} \tag{2.4}$$

La aproximación de Maxwell-Garnett considera al material compuesto por al menos dos especies, la matriz y la inclusión. En el caso de los óxidos porosos, la matriz es el óxido y el aire o el surfactante la inclusión. Se deben satisfacer en este caso las ecuaciones 2.5 y 2.6.

$$f_1\left(\frac{\mathcal{E}_1 - \mathcal{E}_2}{\mathcal{E}_1 + 1\mathcal{E}_2}\right) - \left(\frac{\mathcal{E}_e - \mathcal{E}_2}{\mathcal{E}_e + 2\mathcal{E}_2}\right) = 0$$
(2.5)

$$f_2\left(\frac{\mathcal{E}_2 - \mathcal{E}_1}{\mathcal{E}_1 + 2\mathcal{E}_1}\right) - \left(\frac{\mathcal{E}_e - \mathcal{E}_1}{\mathcal{E}_e + 2\mathcal{E}_1}\right) = 0$$
(2.6)

El volumen total ocupado por los poros, V_p , y el volumen de agua adsorbido para cada HR, V_{ads} , se calcularon aplicando indistintamente dichas aproximaciones (ya que para PDM dan resultados equivalentes) a las constantes dieléctricas (o índices de refracción) medidas del film seco y lleno de agua, luego de la condensación capilar.^{32,91,115} Se construye de esta forma una isoterma de adsorción/desorción de H₂O en función del índice de refracción (o volumen poroso) de las películas porosas. Los distintos tipos de isotermas para la adsorción sobre materiales absorbentes porosos fue clasificada por la IUPAC en ocho grupos (Ia, Ib, II, III, IVa, IVb, V y VI) y seis ciclos de histéresis para los tipos IVa y V (H1, H2a, H2b, H3, H4 y H5).¹¹⁶

La figura 2.6a muestra un resultado típico para adsorción de agua en una película de óxido de silicio estructurada con CTAB medida por PEA. La curva resultante corresponde a una isoterma tipo IVa/H2b. El ciclo de histéresis indica la presencia de mesoporos, cuyo llenado se produce por condensación capilar.¹¹⁷ La gran mayoría de las isotermas obtenidas fueron de este tipo (IVa con ciclo H2b) y, consecuentemente, son las más dicutidas y analizadas a lo largo de este trabajo.

Se puede calcular a partir de las ramas de adsorción y desorción de la isoterma la distribución para los diámetros de poros y cuellos respectivamente. Los resultados que se obtienen son similares al ejemplo de la figura 2.6b. Para realizar este cálculo debemos recurrir a la ecuación de Kelvin (ec. 2.7), que describe el equilibrio líquido-vapor considerando el tamaño de la esfera y la energía superficial, donde R es la constante de los gases, T es la temperatura, P es la presión de vapor, P_s es la presión de vapor de saturación, γ es la tensión superficial del líquido, V_m es el volumen molar del líquido y θ es el ángulo de contacto

Figura 2.6: (a) Isoterma de adsorción/desorción de agua para un sistema mesoporosos de SiO_2 estructurado con CTAB. La misma se clasifica según la IUPAC como tipo IVa con ciclo de histéresis H2b; (b) Distribución de tamaño de poro y cuello.

sólido-líquido.
^{110, 118, 119} Para poros esféricos la relación $\partial S/\partial dV$
es proporcional al radio de la esfera, llamado radio de Kelvin.
¹²⁰

$$\ln\left(\frac{P}{P_s}\right) = \frac{2\gamma V_m}{RT}\cos\theta\frac{\partial S}{\partial V} \tag{2.7}$$

Todas las medidas fueron tomadas en la Gerencia Química, CAC-CNEA con un elipsómetro espectroscópico marca SOPRA, modelo GES 5E. El rango espectral del equipo va de 190 a 900 nm, posee una cámara para realizar las mediciones en condiciones de humedad controlada y también permite configuración en modo *micro-spot* que permite reducir el área de medición a una región de aproximadamente 1 mm². El modelado de los parámetros se hizo mediante el *software Winelli II* también de la marca SOPRA.

2.2. Microfabricación de los electrodos

En esta sección se dará cuenta de los detalles experimentales para la fabricación de los electrodos, los cuales son una parte fundamental de los sensores. Es en la superficie de los electrodos donde tienen lugar las reacciones de óxido/reducción de los analitos de interés, y donde se depositaron las diferentes películas delgadas mesoporosas. Por estos motivos resulta fundamental contar con un diseño funcional y compacto y, además, controlar los aspectos superficiales tales como la rugosidad, control de impurezas, espesor, y funcionalización en los casos que sea necesario.

Los electrodos fueron enteramente diseñados y fabricados en los laboratorios del CMNB-INTI.

Las herramientas y técnicas empleadas para la fabricación son propias del sector de la microelectrónica: herramientas de *software* tipo CAD, fotolitografía, pulverización catódica, grabado por vía húmeda, *lift-off*, corte y encapsulado, etc.^{45,49} Cada uno de estos procesos y metodologías se explicarán en las secciones subsiguientes.

El flujo general de trabajo para la transferencia de los diseños en una o más capas se presenta en la figura 2.7.

Figura 2.7: Diagrama general para la transferencia de los diseños y fabricación de una o más capas. Este esquema contempla el uso de las técnicas de *lift-off* o grabado según se requiera dependiendo de las características de los materiales empleados para esa capa.

2.2.1. Diseño e impresión de las máscaras

El primer paso necesario en la fabricación de los sensores es el diseño. Como todo diseño en microelectrónica, se diagramó en función de las tecnologías disponibles, de la calidad de las máscaras y de la aplicación final en la cual se emplearán. Todos estos aspectos ya fueron expuestos en el capítulo 1, por lo que aquí nos remitiremos a describir los detalles técnicos.

Los diseños fueron realizados para obleas de 10 cm de diámetro. El primer diseño se mandó a imprimir en filmina de $13 \text{ cm} \times 13 \text{ cm}$ en una filmadora de películas Agfa Accuset 1000, a una resolución de 3600 dpi, perteneciente a la firma Imacrom. Esto ha permitido obtener resoluciones de línea de 50 µm, muy por encima de la resolución de la tecnología de la cual disponemos (transferencia por UV, $\lambda = 365nm$). El segundo diseño, más completo e integrado, también fue diagramado para obleas de 10 cm de diámetro. Éste contempló la integración del contraelectrodo y el electrodo de referencia, además de incluir 6 electrodos de trabajo. Las máscaras correspondientes a éste diseño se mandaron a imprimir en filminas de 13 cm × 13 cm a la empresa International Phototool Company a una resolución de 48 000 dpi, logrando mejor resolución y líneas más definidas que en el primer diseño, hasta de 7 µm. Todos los diseños se llevaron a cabo con el software CAD electric (http://www.staticfreesoft.com/productsFree.html) de licencia pública general de GNU, https://www.gnu.org/licenses/gpl.html.

En las imágenes de la figura 2.8 se exponen algunos de los muchos diseños con los cuales se fabricaron y se probaron funcionalmente los multisensores. En el capítulo 5 se expondrán las consideraciones que se tuvieron en cuenta a la hora de confeccionar dichos diseños y se discutirán los resultados que se obtuvieron con ellos.

Figura 2.8: Algunos ejemplos de los diseños de los multisensores que se utilizaron a lo largo de este trabajo de tesis. Cada diseño corresponde a un dispositivo que forma parte de un lote de fabricación de al menos 40 unidades.

2.2.2.Limpieza de los sustratos

Una vez terminado el diseño, comienza la etapa de transferencia del mismo. El primer paso es la limpieza de los sustratos para evitar problemas de adherencia y eliminar impurezas superficiales adsorbidas.

Tabla 2.5: Soluciones utilizadas para hacer la limpieza antes de realizar cualquier proceso de fotolitografía o pulverización catódica.^{49,121}

Nombre	Composición	Proporciones	Condiciones	Blanco
KOH*	KOH:H ₂ O	$40\%\mathrm{p/v}$	$25{\rm ^{o}C}/10{\rm min}$	residuos orgánicos
$\mathrm{SC1}^\dagger$	H ₂ O:H ₂ O ₂ :NH ₄ OH	5:1:1	$80{}^{\rm o}{\rm C}/10{\rm min}$	residuos orgánicos
SC2	H ₂ O:H ₂ O ₂ :HCl	6:1:1	$80^{\circ}\mathrm{C}/10\mathrm{min}$	residuos iónicos y metálicos
$_{\mathrm{HF}}$	$H_2O:HF$	50:1	$25{}^{\rm o}{\rm C}/2{\rm min}$	óxido de silicio
iPOH	$(CH_3)_2CHOH$	puro^{\S}	enjuague	residuos grasos
H_2O	$\rm H_2O$ desionizada	$\operatorname{puro}^{\ddagger}$	enjuague	desorción de partículas
Piraña	$H_2SO_4:H_2O_2$	2:1	$25^{\circ}\mathrm{C}/10\mathrm{min}$	residuos orgánicos

*No apta para silicio, reacciona formando Si(OH)₄ y liberando H₂. [†]Crece una capa de SiO₂ de 10 a 15 Å de espesor.

[§]Grado analítico o superior.

[‡]Resistividad de $18 \,\mathrm{M}\Omega \,\mathrm{cm}^{-1}$ o mayor.

La tabla 2.5 resume cuales fueron las soluciones utilizadas para limpieza, su composición y cuál es la finalidad de cada una. Al finalizar cada etapa de limpieza siempre se hace un lavado con H_2O DI seguido de un secado con aire o N_2 .

El porqué de los materiales elegidos para usar de sustratos ya fueron discutidos en el capítulo 1, aquí solo se mencionan los protocolos de limpieza^{49,121} utilizados para cada uno de ellos:

- Vidrio: KOH
- Silicio: SC1, SC2, HF o piraña según el caso
- Sustratos poliméricos: ipOH

2.2.3. Transferencia de los diseños por fotolitografía

La transferencia de los diseños se realizó por fotolitografía, técnica que también se conoce con los nombres de litografía óptica o litografía ultravioleta (UV). La técnica consiste en depositar una resina fotosensible sobre un sustrato, irradiar con luz UV de $\lambda = 365$ nm a través de una máscara y por último revelar la fotorresina. Dependiendo de si la misma es negativa, positiva o de doble exposición, se disolverá la parte expuesta (positiva) o la no expuesta a la luz (negativa).^{45, 49, 122, 123}

Antes de depositar la fotorresina se calienta el sustrato hasta 120 °C con el objetivo de desorber H₂O. Los depósitos de las resinas se realizaron mediante *spin-coating* con el equipo descrito en la sección 2.1.2, pág. 22. Para cubrir una oblea completa de 10 cm de diámetro se necesitan colocar un mínimo de 5 ml de fotorresina *TI35E image reversal* de la marca *Microchemicals*, la cual es de doble exposición, especialmente elegida por formar un perfil negativo, particularmente útil para el proceso *lift-off* el cúal es tratado en detalle en la sección 2.2.5.¹²⁴

El esquema de una típica transferencia con resina de doble exposición se ilustra en la figura 2.9. El proceso comienza con el depósito de la resina mediante *spin-coating* a una velocidad final de 4000 min^{-1} durante 40 s y con una

Figura 2.9: Proceso de fotolitografía para una resina de doble exposición. 1) Depósito de la resina, 2) calentamiento suave, mejora la adherencia y evapora solventes, 3) 1^a exposición, 4) calentamiento para invertir la polaridad de la resina, 5) 2^a exposición sin máscara, 6) revelado, nótese el perfil invertido, especialmente útil para aplicar en procesos de *lift-off*.

aceleración de 400 min⁻¹ s⁻¹. Bajo estas condiciones se obtuvo un espesor final de aproximadamente 4 µm. Luego se realizó un calentamiento durante 2 min a 95 °C para evaporar el exceso de solvente y promover la adherencia de la resina al sustrato. Seguidamente se cargó el sustrato y la máscara en la alineadora de máscaras (*EVG 620*, figura 2.10), la cual cuenta con un microscopio incorporado para hacer la alineación máscara/sustrato y una lámpara de Hg para el sistema de irradiación UV ($\lambda = 365$ nm).

Después de alinear, se realizó la primera exposición con una densidad de energía de 140 mJ cm⁻² y se dejó reposar 10 min para dar tiempo a la difusión de N₂ liberado durante la reacción. Se realizó el calentamiento necesario para invertir el perfil (las zonas expuestas polimerizan volviéndose inerte al solvente) de la resina a una temperatura de 120 °C durante 2 min y se expuso por segunda vez a una densidad de energía de 540 mJ cm⁻², esta vez sin máscara. En esta segunda exposición las partes polimerizadas no se afectan, mientras las no expuestas en la primera iluminación se vuelven solubles en el medio revelador. Para finalizar, se hizo el revelado sumergiendo la oblea en un cristalizador con una solución de revelador AZ General (Microchemicals) y H₂O 1:1. La evolución del revelado se siguió mediante microscopía óptica y se determinó el tiempo óptimo de inmersión en aproximadamente unos 7 min, dependiendo del espesor de la fotoresina. De esta forma los diseños quedaron completamente transferidos.

Figura 2.10: Alineadora de máscaras EVG 620 semiautomática de doble cara, con lámpara de Hg de 350 W y capacidad para obleas de hasta 150 mm .

2.2.4. Depósito de películas delgadas metálicas

En esta sección se describe el proceso de fabricación de las películas delgadas de Au, cuya función es ser usadas como electrodos en los sensores. Las mismas se depositaron utilizando técnica de pulverización catódica, la cual es comúnmente conocida por su nombre en inglés, *sputtering*.⁶⁵ Los fundamentos básicos de la técnica se discutieron en el capítulo 1, pág. 13.

Los sustratos utilizados para depositar los electrodos fueron principalmente obleas de silicio monocristalinas (vírgenes o fotolitografiadas) y portaobjetos de vidrio. Estos soportes fueron elegidos debido a la baja rugosidad de su superficie y por ser materiales que pueden ser sometidos a temperaturas altas, en particular 350 °C que es la temperatura de calcinación para la ruta de síntesis clásica de óxidos mesoporosos. Previo a realizar el depósito, los sustratos fueron tratados con los procesos de limpieza descritos en la sección 2.2.2, pág. 32, y una vez dentro de la cámara se realizó una limpieza por plasma para promover una mayor adherencia del depósito al sustrato.

Cabe destacar que si se trabaja sobre obleas de silicio, estas tienen que estar recubiertas con una capa dieléctrica para que no haya fugas eléctricas a través del silicio. A lo largo de este tesis se utilizó indistintamente obleas que ya venían con capa aislante u obleas a las cuales se le depositó una película delgada de SiO_2 , también mediante pulverización catódica.

Para promover la adherencia del Au, se deposita una capa de al menos 20 nm de espesor, indistintamente de Ti o Cr. Sin ésta capa, el Au no adhiere sobre superficies no metálicas.¹²⁵ Una vez depositada esta capa de adherente y sin romper el vacío de la cámara del equipo, se depositan un mínimo 150 nm de Au, para lograr un electrodo mecánicamente robusto y con buenas propiedades de conducción eléctrica. En los casos que se depositó una capa dieléctrica de SiO₂ se utilizó la fuente de radiofrecuencia (RF) a potencia constante, P=400 W. Mientras que los depósitos de las películas metálicas se realizaron todos con la fuente de corriente directa (DC) también configurada a P=400 W, dejando la tensión y la corriente libre, parámetros que dependen a su vez del vacío en la cámara, de la distancia entre el cátado y el ánodo y el caudal de argón.

Las condiciones óptimas de depósito de cada una de las capas se detallan en las tablas 2.6 y 2.7. La primera contienen las condiciones para las películas metálicas y la segunda para la película de SiO_2 y para el proceso de limpieza

electrodos	ue traba	ւյս.			
$P_{\rm dc}(W)$	T(V)	I(A)	p(mbar)	$Q_{Ar}(sccm)$	$\nu(\mathrm{nmmin^{-1}})$
400	750	$0,\!53$	$1,70 imes 10^{-3}$	5	50
400	453	$0,\!84$	$1,70 imes 10^{-3}$	5	55
400	679	$0,\!56$	$1,35 imes 10^{-3}$	5	44
	$\frac{P_{DC}(W)}{400}$ 400 400	$\begin{array}{c} P_{\rm DC}(W) & T(V) \\ \hline 400 & 750 \\ 400 & 453 \\ 400 & 679 \end{array}$	$\begin{array}{c c} P_{\rm DC}(W) & T(V) & I(A) \\ \hline 400 & 750 & 0.53 \\ 400 & 453 & 0.84 \\ 400 & 679 & 0.56 \\ \end{array}$	P_{DC}(W) T(V) I(A) $p(mbar)$ 400 750 0,53 1,70 × 10 ⁻³ 400 453 0,84 1,70 × 10 ⁻³ 400 679 0,56 1,35 × 10 ⁻³	P_{DC}(W) T(V) I(A) $p(mbar)$ $Q_{Ar}(sccm)$ 400 750 0,53 1,70 × 10 ⁻³ 5 400 453 0,84 1,70 × 10 ⁻³ 5 400 679 0,56 1,35 × 10 ⁻³ 5

Tabla 2.6: Parámetros de depósito de las distintas películas delgadas metálicas para su uso como electrodos de trabajo.

Tabla 2.7: Parámetros de depósito utilizado para el depósito de SiO₂.

Depósito	$P_{\rm \tiny RF}(W)$	$\mathrm{P}_{\mathrm{ref}}(\mathrm{W})$	p(mbar)	$Q_{Ar}(sccm)$	$\nu(\mathrm{nmmin^{-1}})$
SiO_2	400	23	$1{,}23\times10^{-2}$	80	1,18
Limpieza	150	3	$2{,}04\times10^{-3}$	10	-

por plasma previo a los depósitos. Manteniendo las condiciones experimentales constantes se construyó, para cada material, una curva de calibración del espesor en función del tiempo de depósito. De esta forma se obtuvieron las velocidades de depósito que figuran en la última columna en las tablas 2.6 y 2.7, esencial para controlar el espesor de cada películas. Las mediciones de espesores se realizaron mediante microscopía FIB, técnica que se describe en la sección 2.3.

Todos los depósitos fueron realizados en el equipo de *sputtering* del INTI-CMNB. El mismo cuenta, entre sus principales capacidades, con una fuente DC (hasta 1,5 kW) una fuente de RF (600 W a 13,56 MHz), posibilidad de depositar 3 materiales consecutivamente y capacidad para colocar sustratos de hasta 150 mm de diámetro. El mismo es de la marca *Boc Edwards*. En la figura 2.11 se muestra el equipo y un detalle al momento de hacer los depósitos.

Figura 2.11: Foto del instrumental utilizado para realizar los depósitos bicapa Ti|Au o Cr|Au.(A) El equipo *BOC Edwards* completo donde se ve el gabinete de control y la cámara de vacío, (B) foto a través de la ventana al momento de realizar un deposito de Cr y (C) foto a través de la ventana al momento de realizar un deposito de Au.

2.2.5. Proceso de *lift-off*

Una vez finalizados los procesos de fotolitografía y pulverización de cada una de las capas es necesario remover el excedente de material. Este proceso de remoción, que se explica aquí, se conoce por su nombre en inglés *lift-off*.

La bicapa Ti|Au o Cr|Au se pulverizó sobre toda la superficie de la oblea, tanto en las partes donde estaba el silicio descubierto como en las partes donde quedó la fotorresina sin revelar.

De esta forma, al estar el metal sobre la resina, disolviendo ésta, se desvincula la capa Ti|Au del sustrato y queda completa la transferencia de los diseños. La disolución de la fotoresina se lleva a cabo en acetona (Sigma) dentro de un baño de ultrasonido (TESTLAB Modelo tb02) a 22 kHz. En la figura 2.12 se esquematiza todo el proceso completo.

Figura 2.12: Esquema del proceso de *lift-off* en el cual se decapa la fotorresina. 1) Fotorresina transferida en base a un diseño, 2) depósito metálico, 3) disolución de la fotorresina con un solvente adecuado, 4) diseño completamente trasferido.

2.2.6. Modificación superficial

A lo largo del trabajo surgió la necesidad de mejorar la adherencia de las PDM sobre los electrodos de Au. Para lograr ésto, se realizó sobre los electrodos una modificación superficial, de forma de generar puntos de anclaje para promover la adherencia del óxido de silicio sobre la superficie de los electrodos. El proceso consistió en vincular covalentemente una molécula a la superficie de Au y, por otro lado, que ésta misma molécula sea parte estructural de las PDM. Para lograr ésto se preparó una solución 10 mM de 3-mercaptopropil trimetoxisilano (MPTMS) en tolueno (se eligió tolueno de forma de minimizar la hidrólisis y condensación del MPTMS) y se dejó reaccionar durante 2 horas en cristalizador cubierto con un vidrio de reloj.^{126,127} Luego se realizó un enjuague con acetona y se secó en flujo de N₂.

2.2.7. Encapsulado y corte

Sobre los electrodos depositados se deposita una resina negativa, epoxi y fotocurable, SU8-100 de *MicroChemical*.¹²⁴ Dicha resina es ópticamente transparente y de alta viscosidad, lo que permite generar capas de hasta 100 µm de espesor.

Fue utilizada con un doble propósito: proteger mecánicamente los sensores y hacer un reservorio o celda con un volumen $V \approx 2 \,\mu$ l, el cual contendrá la solución con los analitos que se desean detectar.

Para controlar el espesor mediante *spin-coating* se utilizó el esquema de rotación que se presenta en la figura 2.13. Luego se realizó un secado para evaporar solventes a 65 °C durante 1 min y 95 °C durante 10 min. Seguidamente, se expone al UV a través de la máscara con una densidad de energía de 680 mJ cm⁻² para activar los iniciadores de la polimerización sólo en las zonas iluminadas. Se realiza un segundo calentamiento gradual de 1 min a 65 °C y 12 min a 95 °C para incrementar el grado de polimerización y finalmente se lleva a cabo el revelado (revelador para resina SU-8 de *MicroChemical*), el cual requiere un tiempo de 10 min para disolver completamente las partes que no fueron expuestas a la luz UV.

Para concluir la fabricación de los sensores se corta la oblea en cuadrados de $1 \text{ cm} \times 1 \text{ cm}$ con el propósito de obtener así cada dispositivo individual con 6

electrodos de trabajo cada uno. El corte se realiza con un disco de carburo de silicio de la marca *Loadpoint* a con una velocidad de rotación de $44\,000\,\mathrm{min^{-1}}$ y una de avance de $0.5\,\mathrm{mm\,s^{-1}}$. El mismo fue montado en una cortadora de obleas marca *Laser Optics* ubicada en los laboratorios del INTI-CMNB (ver figura 2.14).

Figura 2.13: Esquema de aceleración y velocidad de rotación para el depósito de la fotorresina epoxi SU8.

Figura 2.14: Cortadora de obleas de la marca *Laser Optics*, ubicada en los laboratorios del INTI-CMNB

2.2.8. Espectroscopía de fotoelectrones de rayos X

La técnica de XPS (del inglés, X-ray photoelectron spectroscopy) es una espectroscopía semicuantitativa y de baja resolución espacial que habitualmente se utiliza para caracterizar la estequiometría, estado de oxidación de algún elemento en particular y la estructura electrónica de los elementos en superficie.^{128,129}

Se hizo uso de esta técnica para evaluar estados de oxidación del Au y comprobar difusión de contaminantes hacia la superficie de los electrodos. Los equipos constan de diferentes componentes; una cámara de ultra alto vacío (UHV) con presiones del orden de 1×10^{-9} mbar para disminuir la cantidad de contaminantes superficiales y asegurar a los electrones eyectados un camino libre medio lo suficientemente grande como para alcanzar el analizador. La cámara está construida en acero inoxidable y posee ventanas de vidrio para poder observar su interior. A ella se acoplan diferentes elementos necesarios para el análisis superficial como la fuente de rayos X, el analizador de electrones, el cañón de iones, entre otros.^{130,131}

Las medidas de XPS se llevaron a cabo en el Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA). Se utilizó una fuente de Mg K α (XR50, Specs GmbH) y un analizador hemisferio (PHOIBOS 100, Specs GmbH). La presión dentro de la cámara de UHV fue menor a 1×10^{-9} mbar. El ángulo entre la fuente de rayos X y el eje del analizador está fijado en 54°44′0″. Los valores de sección eficaz de fotoionización están tabulados para esta geometría. Se realizó una calibración de la escala de energía de dos puntos utilizando Au evaporado (E_B de Au $f_{7/2} = 84 \,\text{eV}$) y Cu (E_B de Cu $2_{p3/2} = 932,67 \,\text{eV}$).

2.3. Microscopías

En este apartado haremos un breve resumen de los diferentes técnicas de microscopías utilizadas durante la tesis.

2.3.1. Microscopía óptica

Se utilizó microscopía óptica en modo reflexión, fundamentalmente para evaluar la superficie (homogeneidad, fracturas, grietas, etc), tanto de las películas metálicas como de las mesoporosas. También para determinar la calidad de las máscaras impresas y para establecer los tiempos de revelado en los procesos fotolitográficos. Se hizo uso de un microscopio Olympus modelo BX51 configurado tanto para trasmisión como para reflexión. Como fuente de luz el equipo cuenta con lámpara halógena y, en los casos necesarios, se intercaló un filtro ultravioleta de forma de no exponer las fotorresinas durante la inspección y evaluación de los tiempos de revelado.

2.3.2. Microscopía electrónica de barrido (MEB)

La microscopía electrónica de barrido (MEB) permitió ver y caracterizar las películas delgadas, ya sean los electrodos o las PDM. Tamaño de poro, homogeneidad, tamaño de cristales, microfisuras y espesores son algunas las características que se pudieron evaluar con esta técnica. Además, el equipo utilizado nos permitió hacer análisis por espectroscopía de rayos X dispersiva en energía (EDS, del inglés *Energy Dispersive Spectroscopy*) y tomar imágenes tanto de electrones secundarios como de electrones retrodifundidos.^{132,133} Todas las mediciones e imágenes fueron realizadas con un microscopio de doble haz de la marca *FEI*, modelo *Helios NanoLab 650* equipado con dos columnas, una de iones de galio y otra de electrones. Los iones producen cortes nanométricos y los electrones generan imágenes de alta resolución. La figura 2.15 muestra una fotografía del Laboratorio de Microscopía FIB del CMNB-INTI donde se encuentra instalado el equipo. La fuente de la columna de electrones es un emisor tipo FEG (del inglés *Field Emission Gun*) y como instrumental de detección cuenta con detector de electrones secundarios (SE, del inglés *Secondary Electron*), de electrones retrodifundidos (BSD, del inglés *back scatter detector*) y de inmersión (TLD, *Thought Lens Detector*), ver esquema presentado en la figura 2.16.

Se utilizaron tensiones de trabajo bajas, típicamente entre 1 keV y 5 keV e intensidades del orden de los 25 pA. La justificación de estos valores es que al acelerar los electrones con bajas tensiones, la penetración en la muestra es pobre. Si bien depende del tipo de material, podemos estimar en base simulaciones de trabajos en la literatura especializada que, para oro o silicio, la penetración con los valores de tensión citados es de unos 50 a 200 nm.^{134–136} Por el otro, se utilizó un flujo de electrones también bajo (25 pA), de manera de evitar el apantallamiento debido a la acumulación de carga superficial en la muestra. Todos las imágenes de MEB en este trabajo incluyen las condiciones experimentales utilizadas en la barra de información situada debajo de cada una de ellas. Cuando fué posible se realizaron sobre las microscopías transformadas rápidas de Fourier (FFT, del ingles *fast Fourier transform*) para inferir la estructura del arreglo de

Figura 2.15: Equipo de FIB/SEM utilizados para realizar las observaciones, cortes y caracterizaciones de los sensores. Consta de un microscopio de barrido electrónico de alta resolución y de una fuente de galio líquido para realizar, entre otras cosas, cortes en la micro y nanoescala.

poros. Las mediciones de diámetro de poro presentadas son un promedio sobre una población con N = 100. Tanto medidas como las FFT fueron realizadas con el software de código abierto ImageJ (https://imagej.net/).¹³⁷

2.3.3. Microscopía con iones de galio focalizados (FIB)

El bombardeo con haz focalizado de iones de galio (FIB, del inglés *focused ion beam*) es una técnica que se utiliza fundamentalmente para el análisis de materiales, y en particular para materiales propios de la industria de la microelectrónica, más específicamente para análisis de microsistemas (MEMS, del inglés *Micro Electro Mechanical Systems*) y circuitos integrados (IC, del inglés *Integrated Circuits*).

Consiste en el bombardeo de la muestra con iones de galio para desplazar los átomos de la misma. El Ga[°] (que se almacena en un reservorio en la cabeza de la columna) se licua y se ioniza para dar lugar a los iones de Ga⁺, los cuales mediante un sistema de lentes electromagnéticas (similar al usado en MEB) son acelerados y focalizados sobre la muestra.

El impacto de los iones Ga⁺ desplaza los átomos de la muestra generando así «cortes» sobre la misma. Previo al tratamiento, sin romper vacío y dentro de la cámara del FIB, se deposita sobre la muestra una delgada capa de Pt (~150 nm). La misma actúa como protección de la muestra y para generar un borde de corte más abrupto, ya que la tasa de desplazamiento de los átomos de Pt con iones Ga⁺ es extremadamente baja.^{138,139}

Figura 2.16: (a) Esquema donde se muestra la disposición de las columnas de electrones y de átomos de galio del *Helios NanoLab 650* y los principales eventos que ocurren al impactar los haces sobre la muestra.(b) Corte en sección trasversal de un dispositivo mesoporoso multicapa. (c) Imagen de alta resolución de la sección transversal enmarcada en (b).

La técnica es de especial utilidad para examinar secciones transversales de muestras, calcular espesores, reconstruir volúmenes en 3D, preparar láminas para microscopía electrónica de trasmisión, entre otros tantos ejemplos. El diagrama de la figura 2.16a representa la disposición espacial de las columnas (de iones y electrones), detectores y muestra del equipo. En en el panel (b) de la misma figura se muestra una imagen de electrones secundarios, rotada 52°, de un corte realizado para examinar la sección transversal de un dispositivo. El panel (c) es una imagen de alta resolución de la sección remarcada del panel (b). La muestra es de un compuesto por capas alternadas de películas delgadas mesoporosos de TiO₂ y SiO₂, estructurados con F127 y CTAB respectivamente.¹⁴⁰

Prácticamente en todos los casos se requiere una aceleración de iones de 30 keV para que sea efectiva la transferencia de momento. El flujo de iones varía de acuerdo a una realción de compromiso entre tiempo y calidad de corte, siendo las corriente mas utilizadas entre 2,5 nA y 40 pA.^{141,142}

2.4. Mediciones electroquímicas

Las mediciones electroquímicas constituyen una parte central de este trabajo. Se hizo uso de dos tipos de técnicas voltamétricas: de corriente continua y de corriente alterna, así cómo simulaciones de voltametrías por el método de elementos finitos. En las próximas secciones se introducen algunos principios teóricos sobre las técnicas empleadas y cuál fue su relevancia para el presente trabajo.

En todos los casos (tanto para los experimentales como los simulados) se utilizó la configuración típica para celda de tres electrodos.³³ El electrodo de trabajo (ET) es donde ocurre la reacción electroquímica, para lo cúal se le aplica un potencial variable respecto de otro electrodo de potencial fijo, denominado electrodo de referencia (ER). La corriente resultante de la reacción química circula entre el electrodo de trabajo y el electrodo auxiliar o contraelectrodo (CE). La variación del potencial aplicado y la medición de la corriente se controlan mediante un potenciostato. En la figura 2.17 se presenta el esquema eléctrico empleado para tomar los voltagramas.

Figura 2.17: Esquema eléctrico correspondiente al armado experimental utilizado para realizar las voltametrías cíclicas.

2.4.1. Voltametría cíclica de corriente continua

La voltametría cíclica (VC) consiste en variar, de una manera cíclica, el potencial de un electrodo de trabajo respecto de un electrodo de referencia. Ambos se encuentran inmersos en una solución en reposo y se mide la corriente resultante que circula por el electrodo de trabajo. La señal de excitación es un barrido de potencial lineal con una onda de forma triangular, la cual parte de un potencial E_1 , evoluciona linealmente en el tiempo hasta un potencial E_2 para luego volver a E_1 (figura 2.18). Las velocidades de este barrido pueden variar desde menos de $1 \,\mathrm{mV \, s^{-1}}$ hasta cientos de volts por segundo. En este trabajo en particular se utilizaron principalemente velocidades próximas a los 50 mV s⁻¹, se escogieron estas velocidades para llevar a cabo experimentos de una duración aceptable y evitar el desplazamiento de potenciales para los picos oxidación y/o reducción, debido a limitaciones en la transferencia de carga por altas velocidades de barrido.^{38, 143}

Como ya se dijo anteriormente, se barre el potencial del electrodo de trabajo en dirección de ida y vuelta entre dos valores arbitrarios, E₁ y E₂. Al usar soluciones en base acuosa se debe trabajar en la región de estabilidad electroquímica del H₂O, para evitar reducción u oxidación de la misma, que genera H₂ u O₂ respectivamente. En la gran mayoría de los experimentos presentados en este trabajo se trabajó a un pH~ 5, para el cual el rango de estabilidad del agua es entre -0.5 V y 0,7 V, usando como referencia un electrodo de calomel saturado.¹⁴⁴

En la figura 2.18 se muestra la onda triangular de excitación aplicada y la curva obtenida para una sonda electroquímica idealmente reversible, donde se destacan los parámetros más importantes.

Figura 2.18: Curva de excitación y voltagrama típico para una especie rédox reversible. Se destaca en el voltagrama (derecha) los típicos parámetros que se extraen de la curva, picos máximos de corriente anódica y catódica sus correspondientes potenciales.

La diferencia de potencial entre los picos catódico y anódico es fruto de una combinación entre los diferentes coeficientes de difusión del par rédox y el sobrepotencial necesario para transferir electrones entre la superficie del electrodo y el analito. Para un par rédox reversible, esta diferencia de potencial está relacionada directamente con el número de electrones que interviene en la reacción según la ecuación 2.8.

$$E_{pa} - E_{pc} = 2,218 \, \frac{RT}{nF}$$
 (2.8)

De este modo, a 25 °C, para cuplas rédox en que la transferencia involucre un único electrón (n = 1), la separación teórica debería ser aproximadamente de 57 mV, independiente de la concentración o la velocidad de barrido. A mayor separación de picos se tendrá un proceso cada vez más irreversible mientras que separaciones menores a 57 mV sugieren sitios rédox anclados o sondas adsorbidas.^{33, 34, 143}

Esta técnica se utilizó para evaluar fenómenos de exclusión, permeación y preconcentración. También para determinar concentración de las sondas electroactivas dentro y fuera de los poros, calcular coeficientes de difusión y estimar distancias de sitios rédox así como chequear accesibilidad y estructura de las películas delgadas mesoporosas.

2.4.2. Voltametría cíclica de corriente alterna

La técnica de voltametría cíclica de corriente alterna (VCA) consta en aplicar una oscilación sinusoidal de potencial a la celda electroquímica. A la onda triangular clásica usada en VC se le suma, montando sobre ella, una pequeña onda de corriente alterna. En los experimentos presentados en este trabajo la amplitud de la onda adicionada fue de de 10 mV y la frecuencia de la misma de 1 y 2 Hz. Esta técnica se emplea en conjunto con un analizador de frecuencias para filtrar la componente continua de la alterna, de este modo, ofrece un límite de detección menor e incrementa la sensibilidad respecto de la CV tradicional.^{33,145}

En la figura 2.19 se muestra la onda triangular con la perturbación, y la curva obtenida para una sonda electroquímica idealmente reversible, luego del filtrado de la componente continua.

El propósito de esta técnica fue el obtener el coeficiente de difusión de hexaaminorutenio en sistemas porosos y contrastar con otras técnicas de forma de validar dicho coeficiente y los mecanismos de transporte propuestos.

Figura 2.19: Curva de excitación utilizada en un voltametría de corriente alterna y el típico voltagrama que se obtiene para una especie rédox reversible.

2.4.3. Simulaciones por el método de elementos finitos

Con la finalidad de validar las hipótesis de transporte planteadas en el capítulo 4 y establecer las condiciones en las que se pueden o no observar fenómenos de mediación electroquímica, se llevaron a cabo simulaciones numéricas por computadora de algunos experimentos relevantes para tal fin. Se optó para realizar las simulaciones el método de elementos finitos (MEF). El MEF es un método de cálculo numérico, especialmente orientado a la resolución de ecuaciones diferenciales, de amplia difusión y para el cuál existen una gran cantidad programas con módulos preprogramados orientados para diversas aplicaciones (problemas mecánicos, físicos, químicos, biológicos, etc.). En términos matemáticos, el MEF es una técnica numérica para la resolución de problemas descriptos como un conjunto de ecuaciones diferenciales parciales. Comúnmente la ecuación básica que se necesita resolver para simular fenómenos electroquímicos es la ecuación de difusión, la cual relaciona la concentración D.^{146,147} Se trata de un ecuación de segundo orden en derivadas parciales y se la conoce como la segunda ley de Fick.¹⁴⁸

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} \tag{2.9}$$

Esta ecuación es la base para simular los fenómenos de transporte, a la cual se le suman variables y complicaciones derivadas de las condiciones de contorno de cada sistema que se quiera simular. Convección, reacciones químicos, fenómenos de adsorción son sólo algunas de estas complicaciones que producen cambios en el perfil de concentraciones y en la difusión en sí, agregando complejidad al sistema de ecuaciones diferenciales.

El modelo aplicado en este trabajo utilizaron condiciones de contorno de equilibrio en la superficie del electrodo, descriptas por la ecuación de Nernst. Dichas condiciones se aplicaron tanto para sistemas con una o más sondas en solución cómo para sistemas más complejos donde se pueden observar fenómenos de mediación rédox o permeación, y son válidas siempre y cuando la cinética de electrodo sea suficientemente rápida. Todos los procesos difusivos, ya sean dentro de la película mesoporosa o en la solución, fueron descriptos según la segunda ley de Fick (ec. 2.9). Los coeficientes de cada especie fueron variando en función las condiciones de cada experimento simulado. En los caso en los que se simuló una mediación rédox, la reacción entre la sonda y el mediador fue descripta como una reacción bimolecular de orden uno en cada especie, representando a las moléculas utilizadas en los experimentos que fueron [Ru(NH₃)₆]³⁺ (ARu) y ferroceno metanol (FcOH) como mediador y sonda respectivamente. En ningún

Figura 2.20: Esquema del modelo utilizado para las simulaciones por el MEF y las variables que se emplearon para evaluar fenómenos de transporte y mediación rédox.

caso se considera migración, lo cual es válido siempre y cuando la concentración del electrolito soporte sea suficientemente alta. El modelo asume que el sistema es homogéneo (tanto en la solución como en la película) en planos paralelos al electrodo y por lo tanto solo existen gradientes en la dirección normal al electrodo.

La figura 2.20 es un diagrama esquemático representativo del modelo con las variables químicas y físicas que se tuvieron en cuenta en el caso de un sistema que presenta simultáneamente mediación rédox y permeación a través de la película delgada mesoporosa. Las moléculas (ARu como mediador y FcOH como sonda) y concentraciones utilizadas son reflejo de los experimentos en laboratorio cuyos resultados se discutirá en el capítulo 4. En la tabla 2.8 se resumen las condiciones de contorno impuestas para las simulaciones, los valores de las variables utilizadas y la descripción de cada una de ellas.

Las simulaciones se realizaron en colaboración con el Dr. Tagliasucchi del Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE) con el software *COMSOL Multiphysics*[®] (https://www.comsol.com/) el cual cuenta con un módulo electroquímico (https://www.comsol.com /electrochemistry-module).

Tabla 2.8:	Parametros	y va	lores	de	entrada	usada	s durante	las	simulaciones	de	las
voltametrías	s cíclicas.										

Variable	Valor	descripción
d	$200\mathrm{nm}$	espesor de las películas delgadas mesoporosas
C_{FcOH}	$5\mathrm{mM}$	concentración de FeOH en solución
C_{ARu}	1 M	concentración de ARu en las películas
C_{KCl}	$100\mathrm{mM}$	concentración de electrolito soporte
k	variable	constante de mediación rédox
E°_{ARu}	$-0,\!3\mathrm{V}$ vs ECS	potencial reducción estándar el ARu
E°_{FcOH}	$0,\!3\mathrm{V}$ vs ECS	potencial reducción estándar el FcOH
D_{FcOH}^{pel}	variable	coeficiente de difusión del FcOH en la película
D_{FcOH}^{sol}	variable	coeficiente de difusión del FcOH en la solución
D_e	variable	coeficiente de difusión por <i>electron hopping</i> del ARu en el film
ν	$50\mathrm{mVs^{-1}}$	velocidad de barrido

2.4.4. Celdas electroquímicas

Las mediciones electroquímicas se llevaron a cabo sobre dos ensambles experimentales diferentes. El primero de ellos fue utilizado durante las etapas más tempranas de la tesis, sobre electrodos metálicos no litografiados. Para este armado se preparó una celda fabricada en acrílico, con un volumen aproximado de

Figura 2.21: Fotografía del instrumental que se utilizó a lo largo de la tesis para tomar las medidas electroquímicas. Izquierda: celda de acrílico sobre electrodos de Au recubierto con una PDM utilizando CE y ER externos. Derecha: oblea con 6 ET por sensor, celda fabricada con resina epoxi SU8, CE integrado y utilizando un ER externo.

3 ml, y un orificio en la parte inferior al cual se le pueden adaptar sellos de polipropileno de diferentes diámetros para evitar fugas de la fase líquida. Se utilizó un sello de 1 mm de radio el cual determinó el área geométrica del electrodo en $3,15 \text{ mm}^2$. Una vez puesto en contacto el sello con el electrodo, se llenó la celda por la parte superior con la solución que contiene la sonda electroquímica y se verificó, en cada una de las mediciones, que no se haya perdidas de líquido. Éste montaje experimental precisó utilizar ER y CE externos. En la figura 2.21a se expone una fotografía de este sistema.

En el segundo ensamble experimental, cuya fotografía se muestran en la figura 2.21b, las mediciones se llevaron a cabo sobre electrodos litografiados, en los cuales se encuentran integrados en los multisensores el contraelectrodo y un electrodo de pseudoreferencia. En los casos que no fue posible usar la pseudoreferencia se utilizó un electrodo de referencia externo. En esta configuración el área geométrica quedó determinada por los electrodos, variando desde 0,1 a $0,01 \text{ mm}^2$ según el diseño (consultar sección 5.2.1). En todos los voltagramas presentados en este trabajo, con el objetivo de simplificar las comparaciones, las intensidades fueron normalizados por el área y los potenciales fueron referidos al potencial de un electrodo estándar de calomel saturado (0,248 V contra el electrodo normal de hidrógeno a 20 °C).¹⁴⁹

Las mediciones electroquímicas fueron tomadas con un potenciostato Teq4, o un potenciostato Autolab de la firma Ecochemie para las medidas que se necesitaron velocidades de barrido mayores a 1 V s^{-1} . Como electrodo de referencia se empleó un electrodo de calomel saturado (ECS) de la firma Cole-Parmer y como contraelectrodo (CE) se utilizaron indistintamente electrodos de Au depositados por pulverización catódica o una pieza de Pt de 2 cm^2 de área.

2.4.5. Sondas electroquímicas

En esta sección se dará cuenta de la caracterización electroquímica de los electrodos de Au para cada una de las sondas utilizadas a lo largo de la tesis. Los multisensores basan su principio de detección en reacciones de óxido/reducción, es por ello que es necesario obtener electrodos de respuesta reproducible, confiable y fabricados por un proceso repetible y escalable.

Una vez que los resultados de la fabricación de los sensores fueron óptimos (consultar capítulo 5) se evaluó el desempeño electroquímico de los mis-

mos. Se usaron como sondas electroquímicas ferrocian
uro y ferrician
uro de potasio (K₄Fe(CN)₆ y K₃Fe(CN)₆, FeCN), cloruro de hexa
aminorutenio(III) (Ru(NH₃)₆Cl₃, ARu) y ferroceno metanol (C₁₁H₁₂OFe, FcOH). La elección de estas sondas modelo tiene que ver fundamentalmente con la carga neta de cada una de ellas, y con la reversibildiad de los pares rédox. En la tabla 2.9 se resumen las sondas electroquímicas utilizadas en las mediciones y los reactivos utilizados para preparar las soluciones.

 Tabla 2.9: Reactivos y sondas electroquímicas utilizados para las mediciones electroquímicas.

Reactivo Nombre	Marca	$\begin{array}{c} {\rm Peso \ Molecular} \\ {\rm (g \ mol^{-1})} \end{array}$	Función
K_4 Fe(CN) ₆ .3H ₂ O ferrocianuro de potasio	Sigma	422,41	Sonda
K_3 Fe(CN) ₆ .3H ₂ O ferricianuro de potasio	Sigma	329,27	Sonda
Ru(NH ₃) ₆ Cl ₃ cloruro de hexaaminorutenio(III)	Aldrich	309,61	Sonda
Бе ferroceno metanol	Aldrich	216,06	Sonda
H ₂ O agua	$18\mathrm{M}\Omega\mathrm{cm}^{-1}$	¹ 18,02	Solvente
KCl cloruro de potasio	Biopack	74,56	Electrolito Soporte

2.4.5.i. Respuesta de ferrocianuro/ferricianuro de potasio

En electroquímica este par rédox es frecuentemente utilizado para evaluar la calidad de electrodos. Esto se debe a que se trata de un par rédox cuyas especies oxidada y reducida son económicas, fáciles de conseguir, solubles en solución acuosa y se comportan de forma cuasireversible frente al intercambio electrónico. La reacción que tiene lugar es la siguiente:

$$\operatorname{Fe}(\operatorname{CN})_{6}^{4-} \xrightarrow{\operatorname{oxidación}} \operatorname{Fe}(\operatorname{CN})_{6}^{3-} + e^{-}$$
 (2.10)

Se espera, en la aproximación más simple, que sigan el comportamiento voltamétrico descrito por Randles-Sevcik, donde la corriente de pico (i_p) es proporcional a la concentración (C) y a la raíz cuadrada de la velocidad de barrido v según:

$$i_p = 0.4463nFAC \left(\frac{nFvD}{RT}\right)^{1/2} \tag{2.11}$$

Con el propósito de corroborar este comportamiento, se realizaron experimentos de VC a diferentes concentraciones de la sonda (figuras 2.22a y 2.22b) y

a distintas velocidades de barrido (figuras 2.22c y 2.22d). Resultaron de especial utilidad la curva de calibración y la respuesta frente a distintas velocidades de barrido. Para cualquiera de estás velocidades los voltagramas conservan constantes los valores de E_p , indicativo de una óptima trasferencia de carga entre el electrodo y la sonda. Además se destaca la relación lineal de j_p con $v^{1/2}$ verificando la ecuación de Randles-Sevcik (ec. 2.11) y que el sistema responde a un proceso de difusión lineal semiinfinita, lo cual es esperable para un experimento en el que el electrodo esta en contacto directo con la solución que contiene el analito electroactivo y el electrolito soporte (0,1 m KCl, pH=5,5).^{33,143,150,151}

a. Voltametrías cíclicas para la cupla FeCN a diferentes concentraciones. Todas medidas fueron tomadas a $50\,{\rm mV\,s^{-1}}$.

9

GB

b. Curva de calibración para distintas concentraciones de la cupla FeCN. Valores extraídos de la figura 2.22a.

c. Voltametrías cíclicas de una solución 10 mM de la cupla equimolar FeCN para diferentes velocidades de barrido.

d. Dependencia de la corriente de pico con la velocidad de barrido para FeCN 10 mm. Valores extraídos de la figura 2.22c.

Figura 2.22: (a) Respuesta electroquímica de la cupla equimolar FeCN para distintas concentraciones, (b) curva de calibración para dichas concentraciones. (c) Variación de la densidad de corriente con la velocidad de barrido, (d) dependencia de la densidad de corriente de pico con la raíz cuadrada de la velocidad de barrido. Todos los voltagramas fueron tomadas con contraelectrodo de Pt, en 0,1 M de KCl como electrolito soporte y utilizando como referencia ECS.

2.4.5.ii. Respuesta del cloruro de hexaaminorutenio(III)

El cloruro de hexaaminorutenio(III) se utilizó extensamente en este trabajo debido a la reversibilidad del par rédox y a que ambos estados de oxidación tiene carga positiva. Gran parte de la discusión del capítulo 4 tiene por eje la adsorción de este complejo en las películas delgadas mesoporosas.

Esta molécula se disocia en solución para formar el complejo $[Ru(NH_3)_6]^{3+}$. La reacción rédox que tiene lugar es la siguiente:

$$\operatorname{Ru}(\mathrm{NH}_3)_6^{3+} + e^{-} \xrightarrow{\operatorname{reducción}} \operatorname{Ru}(\mathrm{NH}_3)_6^{2+}$$
(2.12)

El intercambio entre los estados de oxidación $\mathrm{Ru}^{3+}/\mathrm{Ru}^{2+}$ responde a un proceso electroquímico reversible en el cual podemos fácilmente reducir u oxidar el complejo variando el potencial del electrodo de trabajo. Habiendo ya comprobado, con el FeCN, el buen desempeño de los electrodos respecto de la velocidad de barrido, se eligió un valor $50 \,\mathrm{mV}\,\mathrm{s}^{-1}$ para las voltametrías cíclicas (de uso frecuente para este tipo de mediciones). Se llevaron a cabo una serie de VC para varias concentraciones de la sonda, con el objetivo de elaborar la correspondiente curva de calibración para [Ru(NH₃)₆]³⁺. Con estas mediciones se verificó nuevamente el buen desempeño EQ de los electrodos y el modelo de difusión semiinfinita.

a. Voltametrías cíclicas para ARu a diferentes concentraciones.

b. Curva de calibración para la especie ARu. Los valores fueron extraídos de la figura 2.23a.

Figura 2.23: (a) Voltametrías cíclicas para soluciones de ARu de distinta concentración y, (b) curva de calibración para dichas concentraciones. Todos los voltagramas fueron tomados a $50 \,\mathrm{mV \, s^{-1}}$ con contraelectrodo de Pt en una solución 0,1 mM de NaCl y utilizando de referencia ECS.

2.4.5.iii. Respuesta del ferroceno metanol

A diferencia de las sondas anteriores, la especie reducida del FcOH no tiene carga neta, por lo que se puede esperar que no tenga interacciones de tipo electrostáticas con las películas delgadas mesopoporosas, es por ello que resultó especialmente útil para sacar conclusiones y comparar como varía el transporte en sistemas calcinados y sistemas no calcinados. En el capítulo 4 se realizará una discusión detallada sobre este tema. La reacción de oxidación/reducción para esta molécula es la siguiente:

De la misma forma que se realizó para las otras sondas, se confeccionó una curva de calibración para distintas concentraciones de FcOH . En la figura 2.24 sen presenta la respuesta electroquímica correspondiente sobre electrodos de Au.

a. Voltametrías cíclicas para FcOH a diferentes concentraciones, 1 mM, 5 mM y 10 mM.

b. Curva de calibración para la especie FcOH. Los valores fueron extraídos de la figura 2.24a.

Figura 2.24: (a) Voltametrías cíclicas para soluciones de FcOH de distinta concentración y, (b) curva de calibración para dichas concentraciones. Todos los voltagramas fueron tomadas a $50 \,\mathrm{mV \, s^{-1}}$ con contraelectrodo de Pt en una solución 0,1 M de NaCl y utilizando ECS como referencia.

En la tabla 2.10 se resumen las variables rédox para cada una de las sondas modelo utilizadas: 1) estado de carga de los estados reducidos y oxidados y, 2) diferencia de potenciales entre el pico de corriente anódico y catódico. Este último dato resulta útil para evaluar el grado de reversibilidad de la reacción y la capacidad de transferencia electrónica de los electrodos. Durante todo el desarrollo de la tesis se utilizaron estos parámetros con ánimos de comparar resultados sobre transporte y propiedades permeoselectiva sobre los electrodos desnudos y sobre los electrodos recubiertos con películas delgadas mesoporosas.^{35,152,153}

Sonda	Carga especie reducida	Carga especie oxidada	$\Delta E_p(\mathrm{mV})$
$K_4 Fe(CN)_6.3 H_2 O$	4-	3-	150
K_3 Fe(CN) ₆ .3H ₂ O	3-	4-	150
${ m Ru(NH_3)_6Cl_3}$	2+	3+	80
он Fe	0	1+	103

 Tabla 2.10:
 Características de las sondas electroactivas utilizadas a lo largo de la tesis.

Capítulo 2

Optimización de síntesis de PDM sobre electrodos metálicos

Contenido

3.1. Intro	oducción	54
3.2. Sínt	esis de películas delgadas mesoporosas	56
3.2.1.	Control de la homogeneidad y espesor	57
3.2.2.	Adherencia de PDM sobre electrodos de Au	59
	3.2.2.i. PDM estructuradas con F127	60
	3.2.2.ii. PDM estructuradas con CTAB	61
	3.2.2.iii. Estrategias para mejorar la adherencia	62
3.3. Desa	arrollo de métodos de síntesis de PDM a bajas tempera-	
tura	s	65
3.3.1.	Método de calcinación	66
	3.3.1.i. Análisis de la porosidad	66
	3.3.1.ii. Análisis por FTIR	68
	3.3.1.iii. Accesibilidad de las PDM	72
3.3.2.	Método simplificado (Sim)	73
3.3.3.	Método prolongado (Pro)	75
3.3.4.	Método de alto vacío (Vac)	75
3.3.5.	Método ácido (Áci)	77
3.3.6.	Método alcalino (Alc)	78
3.3.7.	Comparación de resultados de los tratamientos pos depósito $\ . \ .$	78
3.4. Disc	usión y comparación sobre los métodos	80
3.4.1.	Sobre los sustratos	80
3.4.2.	Sobre la condensación	81
3.4.3.	Sobre la extracción	83
3.4.4.	Sobre la respuesta electroquímica	84
3.5. Con	clusiones	87

3.1. Introducción

Existen una gran variedad de precursores para controlar la composición y la estructura de películas delgadas mesoporosas de óxidos (PDM). Estas se pueden conformar tanto de óxidos puros, como SiO₂, TiO₂, ZrO₂ o de óxidos de mixtos de metales como Si_xZr_{1-x}O₂ o Si_xTi_{1-x}O₂; en general de óxidos metálicos de formula $M_xM'_{1-x}O_2$ siendo M y M', Si, Ti, Zr, Ce o Hf por enumerar los más utilizados.

También existe una gran variedad de agentes moldeantes para controlar el tamaño y la estructura espacial de los poros (F127, P123, Brij58, CTAB, etc).^{21,154–156} Este trabajo se centró exclusivamente en la síntesis de PDM basadas en óxido de silicio para generar la estructura inorgánica. En la mayoría de los casos se utilizó puro, y en algunos combinado con una fracción del 10 % en masa de óxido de circonio (ZrO₂). Para controlar el tamaño y estructura espacial de los poros se utilizó el copolímero de bloque Pluronic F127, bromuro de hexadeciltrimetilamonio (CTAB) y polioxietileno[20] cetil éter (Brij58). Esta elección no fue arbitraria, sino que se hizo en base a premisas bien fundamentadas:

- 1. El SiO₂ es procesable por técnicas sol-gel a través de diferentes precursores, es económico y fundamentalmente es el óxido mas utilizado en microelectrónica, aspecto fundamental en este trabajo para compatibilizar los procesos top-down y bottom-up.
- 2. Tiene una química rica, bien conocida, forma enlaces covalentes con el carbono y es fácilmente funcionalizable mediante el agregado de una gran variedad de grupos funcionales orgánicos o biológicos. Esta característica resulta fundamental para conferir selectividad de los sensores.
- 3. No presenta absorción en el UV/Vis. Esta propiedad permite generar PDM que no interfieren en eventuales reacciones de polimerización dentro de los nanoporos, en procesos fotoasistidos o con la absorción de luz por moléculas o nanopartículas incluidas en la red porosa por citar algunos ejemplos.
- 4. Como agente moldeante se utilizó CTAB, Brij58 y F127 de forma de obtener PDM con tamaño de poros que van desde los 2 a los 10 nm de diámetro.

Una vez elegidos los componentes esenciales que darán estructura a la película activa, se hizo foco en explorar los distintos soportes posibles para depositar películas delgadas mesoporosas, de forma de poder abarcar un rango amplio de materiales y poder extender el campo de aplicación de los multisensores.

Se depositaron los soles sobre silicio monocristalino, vidrio y películas delgadas de Au con el objetivo de estudiar el comportamiento en cada uno de estos sustratos. Para poder comparar los resultados con la bibliografía^{8, 21} se decidió, en una primera etapa, tratar las películas por la ruta clásica de calcinación, explicada en la sección 2.1.3, pág. 25. Impuestas estas condiciones de temperatura, se eligieron sustratos térmicamente estables:

• *Portaobjetos de vidrio*. Se utilizó para todo tipo de experimentos exploratorios, por ejemplo para pruebas de depósito, cortes o diseños, ya que es sumamente económico, de superficie plana y composición similar al sol, lo cual minimiza el estrés térmico entre el sustrato y la película.

- Silicio monocristalino, orientación cristalina [100]. Las películas depositadas sobre silicio se utilizaron para obtener resultados de espectroscopía de absorbancia IR, para hacer elipsoporosimetrías e imágenes MEB principalmente. El silicio ofrece también un mayor contraste para visualizar las PDM que el vidrio o el oro, por lo que se usó también para estimar la uniformidad de espesor sin la necesidad de utilizar microscopio, evaluando la homogeneidad a la largo de la superficie a través del color del depósito, el cual resulta de la interferencia óptica.
- *Películas delgadas de Au.* El Au es el material elegido para los electrodos de los sensores. Sobre ellos se llevaron a cabo las pruebas electroquímicas, se evaluaron fenómenos de transporte, accesibilidad y propiedades de permeoselectividad. También se utilizó para obtener imágenes de MEB.

En una segunda etapa, una vez dominada la química y física para obtener soles estables y películas homogéneas de espesor controlado sobre una amplia variedad de sustratos térmicamente estables, se dedicará el resto del capítulo a la discusión sobre métodos posdepósito. Dicho tratamientos tienen por objetivo preservar la estructura del cristal líquido y extraer el molde sin necesidad de recurrir a procesos de calcinación (T $\geq 350^{\circ}$ C).

El desarrollo de métodos alternativos a la calcinación para condensar y extraer el molde supramolecular tiene varios própositos y surge de necesidades concretas. Por un lado, disminuir la temperatura permite compatibilizar los procesos *bottom-up* (utilizados en la síntesis de las PDM) y los procesos *top-down* (necesarios para fabricar los sensores). Por otro lado, permite incluir sustratos no aptos para altas temperaturas (orgánicos en su mayoría) y de esta forma diversificar las opciones a la hora de elegir soportes para fabricar sensores basados en PDM.^{10,80,101,156,157}

La gran mayoría de los autores emplean temperaturas típicamente entre $350\,^{\rm o}{\rm C}$ y $600\,^{\rm o}{\rm C}$ para producir materiales mesoporosos en general. $^{13,\,14,\,158}$ Dicho rango de temperatura tiene como ventaja que promueve la condensación del óxido y, a su vez, calcina el surfactante (materia orgánica) dando lugar a la formación de los poros. Sin embargo, para obtener un control adecuado sobre la estructura final, antes de la calcinación se debe estabilizar el arreglo micelar, es decir la estructura que actúa de molde supramolecular. Abundan en la literatura los trabajos que se concentran en optimizar condiciones experimentales para estabilizar diferentes organizaciones espaciales de poros, empleando diferentes precursores con diversos surfactante.^{93,159,160} Existen muchos tratamientos v estrategias de síntesis para lograr dicho control basados en pH o variaciones del mismo durante la síntesis, $^{101,102,159,161-163}$ ciclos de P_{H_2O} , 84,164 tiempos de envejecimiento^{93,165} y rampas de temperatura^{21,72,166,167} por citar algunas de las variables más influyentes. En general todas estas etapas pre-calcinación de los citados trabajos son a temperaturas moderadas, alrededor de los 100 °C y destacan la importancia de controlar estas variables y, en el mejor de los casos, poder mantener la integridad estructural de la fase inorgánica luego de la calcinación.

Las publicaciones en las cuales se reportan métodos alternativos a la calcinación para la extracción del molde supramolecular son escasas. En el año 2000

Clark y col.¹⁶⁸ emplearon UV ($\lambda = 187 - 254 \,\mathrm{nm}$) para generar una atmósfera oxidante rica en O_3 de forma de remover el surfactante. El método lo aplican con éxito sobre películas de sílice estructuradas con Brij56, aunque el arreglo de poros muda de hexagonal a cúbica luego de la exposición al UV. Los trabajos de Huang y col. en 2002¹⁶⁶ y Zhang y col. en 2005¹⁵⁷ utilizan plasma para remover el molde. El primero emplea plasma de oxígeno sobre PDM de TiO_2 y el segundo adapta el método para utilizarlo sobre mesoporosos en base sílice con plasma de argón. Ambos trabajos llegan a la conclusión de que la estructura se desordena, cambia el grado de porosidad y el control sobre la estructura final es poco predecible. Horiuch y col.¹⁶⁹ en 2011 propone un proceso fotocatalítico para remover el surfactante. Para ello modifican la superficie de las PDM de sílice con TiO₂, irradian con UV (con lámpara de HgXe) y concluyen que el TiO₂ interviene activamente en la oxidación y remoción del Brij78, el cuál fue utilizado como molde. Utilizaron PDM de sílice sin modificar como experimento control y bajo estas condiciones no observaron evidencia de que el surfactante abandone la película.

Los métodos citados en el párrafo anterior como alternativa a la calcinación, parecen promisorios. Sin embargo, presentan algunas dificultades en su aplicación. El uso de plasma es aparentemente difícil de controlar y la penetración en las PDM es poca. El uso de UV requiere de surfactantes fotodegradables o bien asistir la oxidación del molde con alguna modificación fotoactiva.

En este trabajo se optó, como alternativa a la calcinación y a los métodos mencionados, extraer el surfactante por inmersión en solvente. Existen antecedentes de trabajos en los cuales se realiza este tipo extracción empleando como solvente etanol acidificado a una temperatura de 200 °C.^{32,75,91,103} Esta temperatura fue elegida por los autores para promover la condensación de la fase inorgánica sin comprometer la integridad de las funciones orgánicas incorporas en las películas. Para avanzar aún más en esa dirección, en este trabajo, se exploró una gama de procesos y condiciones de contorno para condensar la pared inorgánica y extraer el molde orgánico de películas delgadas mesoporosas de SiO₂ reduciendo todavía más la temperatura, por debajo de los 130 °C.

La búsqueda de procesos de síntesis con temperaturas de condensación extracción suaves permite fabricar los electrodos sobre Au metalúrgico o carbono (ver capítulos 5 y 6, donde se desarrollan en profundidad estos aspectos) e incorporar sustratos poliméricos, como acrílico, resinas de poliéster, tereftalato de polibutileno (PBT), tereftalato de polietileno (PET), abriendo la posibilidad de utilizar una gama de materiales mucho más amplia y reduciendo costos. Veremos que mediante los procedimientos desarrollados es posible extender considerablemente el uso de sustratos para depositar PDM en base sílice, abarcando virtualmente a cualquier superficie de baja rugosidad cuyo material sea estable por encima de los 130 °C, incluyendo materiales flexibles.

3.2. Síntesis de películas delgadas mesoporosas

Para la síntesis de las películas mesoporosas se utilizaron modificaciones de los procesos conocidos como «Autoensamblado inducido por evaporación (AEIE)» desarrolladas por el grupo de Brinker.¹⁷ En el capítulo 1, pág. 7, se hizo breve introducción sobre los aspectos teóricos de este proceso y en el capítulo 2, pág. 20, se detallan los aspectos experimentales para la obtención
de las PDM. Se recuerda la nomenclatura usada en el capítulo 2; SF y SC para películas delgadas mesoporosas de SiO₂ estructuradas con Pluronic F127 y CTAB respectivamente; SZF y SZB para películas delgadas mesoporosas mixtas SiO₂/ZrO₂ estructuradas con F127 y Brij58 respectivamente.

En las secciones que siguen se discuten los resultados obtenidos durante la fabricación de las PDM por el método tradicional de depósito seguido de calcinación. Se discuten detalladamente los aspectos para controlar la homogeneidad, adherencia al sustrato, espesor y porosidad. Ésta será la base de conocimientos fundamentales para el desarrollo de métodos de síntesis alternativos a la calcinación tratados en el resto del capítulo.

3.2.1. Control de la homogeneidad y espesor

Las técnicas más utilizadas para el depósito de películas por sol-gel son dipcoating y spin-coating. Pensando en establecer las bases para la fabricación de sensores, se eligió trabajar exclusivamente por spin coating con la intención de, en un futuro, escalar la síntesis, ya que esta técnica permite obtener recubrimientos homogéneos en superficies extensas, en una sola cara y sobre sustratos con una gran variedad de texturas. De hecho es la que se utiliza en la megaindustria de los semiconductores.^{45,49}

Cr|Au.

Cr|Au.

a. SC sobre una oblea de silicio.

d. SF sobre una oblea de silicio.

e. SF sobre un electrodo de

 ${\bf b.}~{\rm SC}$ sobre un electrodo de

c. SC sobre un arreglo de electrodos (diseño 1).

f. SF sobre un arreglo de electrodos (diseño 2).

Figura 3.1: Fotografías de las PDM obtenidas por *spin-coating* sobre distintos sustratos para los surfactantes F127 y CTAB.

Primero se establecieron las rampas de aceleración y velocidad final del *spin-ner*; los tiempos de estabilización en cámara de humedad; los tiempos de calentamiento y calcinación, de forma de obtener películas homogéneas, sin fisuras y del espesor deseado. Los detalles del proceso se encuentran en la sección 2.1.2 y 2.1.3, pág. 22.

En la figura 3.1 se muestran fotografías de las PDM obtenidas para los surfactante utilizados y los distintos sustratos.

Allí se pueden destacar dos características de las PDM: 1) la continuidad, ya que no se ven ni grietas ni fisuras y, 2) la homogeneidad en el color de interferencias. Dicho color es indicador de que el espesor es constante en toda la superficie, salvo en los bordes debido, precisamente, a los efectos de borde generados por la rotación del *spinner*.^{45,49}

La ausencia de discontinuidades microscópicas (grietas o fisuras) se pudo corroborar con imágenes MEB, donde se ve que el depósito es homogéneo en la superficie (ver figura 3.2). En dichas imágenes también se observan detalles del arreglo poroso, y, en el caso del F127 se ve que dicho arreglo poroso esta homogéneamente distribuido también a lo largo del eje transversal a la superficie, como se muestra en la ampliación de la figura 3.2b.

a. MEB donde se observa la superficie de una SF con poros de 10 nm de diámetro en promedio. Recuadro: FFT de la imagen completa.

b. Corte transversal por FIB de una SF para medir el espesor y observar los nanoporos a lo largo del eje transversal de la película.

c. MEB donde se observa la superficie regular de muestra SC con poros de 3 nm de diámetro en promedio.

d. Corte transversal por FIB de una muestra SC en la cual se puede medir el espesor de la película. La resolución no es suficiente para observar los nanoporos.

Figura 3.2: (a) y (c) Microscopías electrónicas de barrido de películas de sílice mesoporosa calcinadas y estructurada con CTAB y F127, sobre una oblea de silicio con electrodos de Cr|Au. (b) y (d) Secciones transversales realizadas con microscopía FIB donde se puede apreciar la homogeneidad en el espesor de las películas.

El espesor se controla variando las condiciones de aceleración y velocidad final del *spin-coater*, por lo tanto, para cada condición, se obtiene un espesor diferente. Las rampas de aceleración que se han utilizado para las PDM se muestran en la figura 2.3. Tener control y conocimiento del espesor de las películas es importante para calcular o estimar otras magnitudes, por ejemplo concentración dentro de los poros o la distancia características de difusión.

Algunos autores han desarrollado un marco teórico para establecer la dependencia del espesor con la velocidad de rotación en depósitos de películas poliméricas, encontrando una relación matemática según:^{98,170–172}

a

$$l = k_1 \omega^{\alpha} \tag{3.1}$$

donde k_1 y α son constantes empíricas que dependen de la concentración del monómero, del solvente, del sustrato, de la interacción sol/sustrato y de las propiedades reológicas del sol. Siguiendo los reportes de la literatura, el valor de α parece mantenerse contante y en las cercanías de $\alpha = -0.5$ para una gran cantidad de polímeros.^{98, 171, 172}

Para controlar el espesor de los depósitos se realizaron mediciones del mismo en función de la velocidad final de rotación. Dichas mediciones fueron tomadas en todos los casos por elipsoporosimetría ambiental (EPA) y sólo en algunos casos selecionados se contrastaron por MEB/FIB, obteniéndose valores comparables por ambas metodologías. Una vez establecido un valor de rotación de referencia, se midieron en forma sistemática para cada tratamientos posdepósito, con ambos surfactantes. Los valores de dichas mediciones se encuentras resumidos en la tabla 3.3. Los gráficos de la figura 3.3 corresponden a la mediciones de espesores en sistemas calcinados. Fueron ajustados matemáticamente por la ecuación 3.1 y se obtuvieron valores de $k_1 = 6413 \pm 2300$ y $\alpha = -0.44 \pm 0.04$ para SF y $k_1 = 7601 \pm 1800$ y $\alpha = -0.44 \pm 0.04$ para SC. Dichos resultados siguen la tendencia esperada: disminución del espesor con el aumento de la velocidad angular y decaimiento según la ecuación 3.1 con $\alpha \approx -0.5$.

Figura 3.3: Control del espesor en función de la velocidad angular para valores comprendidos entre 1000 y 4000 min⁻¹ en sistemas calcinados estructurados con F127 (izquierda) y CTAB (derecha). Todas las mediciones fueron llevadas a cabo por EPA.

3.2.2. Adherencia de PDM sobre electrodos de Au

En numerosos trabajos se ha demostrado la producción de películas delgadas mesoporososas de sílice (con surfactantes como F127, P123, CTAB, Brij56, Brij58, etc.) sobre sustratos de vidrio o silicio que resultan estables en el tiempo tanto química como mecánicamente. En ninguno de ellos se menciona la existencia de problemas de adherencia al sustrato.^{31,32,173} Resulta natural utilizar sustratos de silicio o vidrio debido a la compatibilidad estructural y química que comparten con las películas en base sílice. De hecho tanto película como sustrato son óxidos de silicio. Se conoce que luego de tratamientos térmicos para condensar y calcinar el surfactante, las películas sufren una contracción uniaxial a lo largo del eje normal a la superficie del sustrato debido a la fuerte adherencia al sustrato.^{26,84,174} Uno de los pilares de este trabajo es el depósito de PDM en base silicio sobre sustratos metálicos, más precisamente sobre Au. Sin embargo, se sabe desde hace décadas, que los metales nobles no tienen una buena adherencia sobre sustratos no-metálicos,^{121,125} con lo cual es de esperar que también se experimenten problemas de adherencia al querer depositar un sol sobre una película delgada de Au.^{175–177} En las próximas secciones se exponen los resultados que ponen de manifiesto estos problemas y se proponen soluciones para mejorar la adherencia de las PDM sobre electrodos de Au.

3.2.2.i. PDM estructuradas con F127

En los electrodos en los cuales se depositó PDM calcinadas y estructuradas con Pluronic F127 sobre ectrodos de Au, se observó, en algunos casos, una adherencia deficiente.

Las voltametrías cíclicas (VC) del gráfico 3.4 corresponden a la respuesta de la sonda $[Ru(NH_3)_6]^{3+}$ (la cual difunde a través de la película) luego de 38 ciclos electroquímicos consecutivos, cantidad suficiente para adsorber y saturar la PDM con la sonda. El potencial al cual aparecen los máximos de corriente anódica y catódica se encuentran desplazados a potenciales menores respecto de la respuesta en un electrodo de Au desnudo, producto de la adsorción del $[Ru(NH_3)_6]^{3+}$ en la PDM. El aumento de la densidad de corriente respecto de un electrodo de Au (figura 2.23a, pág. 50), también consecuencia de la adsorción, se debe a la preconcentración de $[Ru(NH_3)_6]^{3+}$ en los poros.^{178, 179}

Figura 3.4: Serie de voltametrías cíclicas consecutivas, del ciclo 39 al 42, donde se evidencia la pobre adherencia de SF sobre electrodos de Au. Las flechas negras indican un cambio repentino en el comportamiento, de un electrodo recubierto con una PDM a un electrodo desnudo (curva punteada). Las VC fueron tomadas a $50 \,\mathrm{mV\,s^{-1}}$ usando de referencia ECS y con sonda ARu 1 mM.

Los mecanismos de transporte, adsorción y forma de las VC (tanto los cambios en la intensidad como los corrimientos en el potencial) se discutirán en profundidad en el capítulo 4.

La observación de interés para determinar la adherencia es el cambio repentino en dos VC consecutivas (del ciclo 41 al 42), tanto en el corrimiento de potencial como en la disminución de la intensidad de los picos anódicos y catódicos, indicado en el gráfico 3.4 mediante sendas flechas. El área bajo el voltagrama es igual a la carga total de la sonda, por lo tanto una disminución en la carga implica menor concentración de $[Ru(NH_3)_6]^{3+}$, este hecho sumado al corrimiento de pico hacía potenciales más positivos sugiere que el sistema muda de la típica respuesta de una sonda que se adsorbe en una PDM, a la respuesta habitual de un electrodo desnudo de Au en el ciclo 42, marcado con línea de puntos. Este comportamiento es indicativo de que la película no sufrió una disolución lenta y paulatina, sino que se desprendió del electrodo, total o parcialmente, en algún momento de la medición.

3.2.2.ii. PDM estructuradas con CTAB

Cuando se despositaron PDM utilizando CTAB como molde para los poros, se manifiestan problemas de adherencia en la mayoría de los tratamientos posdepósito, incluida la vía de síntesis por calcinación. Las películas presentan grietas y fisuras, macro y microscópicas y se observan desprendimientos antes de poder someter los sensores a cualquier medición electroquímica, es decir, apenas terminada la síntesis. Sólo se rescataron algunos pocos casos exitosos de formación de SC sobre oro por calcinación y con una superficie lo suficientemente extensa para poder realizar dichas mediciones. Éstos sirvieron para hacer experimentos de EQ conceptuales sobre transporte en poros (consultar capítulo 4), pero en la generalidad de los casos, se observa desprendimiento de la película tal como muestran las imágenes de la figura 3.5.

Además de la ya mencionada falta de adherencia de los óxidos sobre películas de Au, este desprendimiento se debe, sobre todo, a la interacción CTAB-Au. Es numerosa la información que se encuentra en la literatura sobre la interacción superficial de CTAB sobre películas delgadas y/o nanopartículas de Au. La principal aplicación se basa en la adsorción y autoensamblado del CTAB para controlar el crecimiento y estabilización de nanopartículas de Au.^{180–184} Algu-

Figura 3.5: MEB donde se muestra la falta de adherencia de SC sobre una película delgada de Au. Obsérvese los círculos grises que corresponden a PDM elevadas en forma de cúpula y separadas del sustrato. La imagen de la derecha muestra una porción de SC despegada y elevada.

nos autores lo utilizan por encima de la concentración micelar crítica $(\text{cmc})^{185}$ o combinado con otros reactivos para favorecer el crecimiento cristalino en alguna dirección preferencial.¹⁸⁶ Los electrodos de Au, depositados por pulverización catódica, generan películas policristalinas sin favorecer ninguna dirección cristalina.^{187,188} Sobre esta superficie las moléculas de CTAB o las micelas se adsorben. Su distribución y densidad a largo de la superficie del electrodo parece depender de la concentración, la orientación cristalina del Au, el solvente y la rugosidad de la superficie.^{182,185} La adsorción del surfactante en la superficie del electrodo, sumada a la poca adherencia propia del SiO₂,^{121,125} son factores que van en demerito de la adherencia y consecuentemente de la formación de SC sobre electrodos de Au.

Como se explica más adelante (ver sección 3.3.4), para obtener PDM de poros pequeños (≤ 5 nm) sobre electrodos con superficies suficientemente extensas y sin presencia de discontinuidades, se recurrió al uso de un surfactante no-iónico, el Brij58, que no se adsorbe significativamente sobre Au.

3.2.2.iii. Estrategias para mejorar la adherencia

En función de los resultados expuestos en la sección anterior queda claro que la falta de adherencia de las PDM sobre oro es crítica para la elaboración de los sensores. Por otra parte, al fabricar electrodos de Au con un diseño arbitrario, se suma la dificultad de obtener películas delgadas continuas y adherentes sobre un sistema con dos regiones distintas en su superficie, óxido y metal.

Las estrategias empleadas para promover la adherencia en estos sistemas se basaron en dos conceptos:

- 1. Optimizar el diseño de forma de minimizar el área metálica de los electrodos, pistas y contactos, ampliando la región del óxido para favorecer la adherencia de las PDM.
- 2. Realizar modificaciones superficiales en los electrodos, tendiendo puntos de anclaje entre el electrodo y el esqueleto inorgánico de las PDM.

La primera estrategia utilizada para promover una mayor adherencia de las PDM a los sensores, se basa en minimizar el área de contacto electrodo|PDM. Las mayoría de los resultados discutidos en este capítulo fueron realizados en PDM sobre electrodos plenos de Au. Sin embargo, los sensores comprenden un conjunto de electrodos o microelectrodos sobre un sustrato dieléctrico (p. ej. SiO_2 o vidrio). Eligiendo un diseño adecuado se puede minimizar el área de los electrodos metálicos. De ésta forma las PDM quedan adheridas fuertemente a

Figura 3.6: Esquema de un corte transversal de los sensores donde se observan los microelectrodos y la PDM depositada sobre ellos. Las flechas indican las zonas de baja y alta adherencia.

los sectores del óxido, donde no está el Au. El resultado final es una película bien adherida sobre una superficie mixta soporte|electrodos. La figura 3.6 representa de manera esquemática esta situación.

La segunda estrategia se basa en modificar los electrodos mediante una funcionalización superficial, la cual se llevó a cabo siguiendo el procedimiento detallado en el capítulo 2, sección 2.2.6. Se buscó una molécula compatible con el sistema utilizado, capaz de vincular la superficie del electrodo e integrarse al esqueleto de las PDM. Se usó para este fin el 3-mercaptopropil trimetoxisilano (MPTMS), el cual se une fuertemente al Au a través del grupo tiol,^{189,190} y por el otro tiene el silano el cual es perfectamente compatible con el precursor de Si(IV) utilizado.^{191–193} En la figura 3.7 se muestra la molécula en cuestión y un esquema de cómo queda anclado la PDM, mediante el MPTMS, al electrodo.

Figura 3.7: Izquierda: Molécula de 3-mercaptopropil trimetoxisilano utilizada como ligante entre los electrodos y las PDM. Derecha: esquema pictórico de la modificación superficial con MPTMS sobre los electrodos como anclaje de las PDM.

Una vez realizada la modificación superficial, se llevaron a cabo mediciones EQ para evaluar si los voltagramas sufren distorsiones debido a la funcionalización. Se realizaron dos comparaciones con el propósito de verificar: 1) que la señal sobre un electrodo desnudo no se vea afectada significativamente por la presencia de MPTMS ligado a la superficie del Au; y 2) que la funcionalización del Au mejora la adherencia cuando se depositan PDM sobre esta superficie modificada.

Las voltagramas de la figura 3.8 muestran un típico experimento donde el $[\operatorname{Ru}(\operatorname{NH}_3)_6]^{3+}$ ingresa y a medida que difunde a lo largo de una película SF, se preconcentra sobre las paredes de la misma. Dicho voltagrama esta constituido por 30 voltametrías cíclicas consecutivas correspondiente a los ciclos 45 al 75. A partir del ciclo 65 se ve una disminución en la densidad de corriente de los picos anódico y catódico (indicada por las flechas), la cual es compatible con un fenómeno de disolución de la película y no con un evento de desprendimiento, demostrando también una mejoría sobre la adherencia. Los fenómenos de adsorción, preconcentración y disolución de las películas se discuten en profundidad en el capítulo 4.

En la figura 3.9 se presentan dos voltagramas en los cuales se compara la respuesta para $[Ru(NH_3)_6]^{3+}$ 1 mM con dos electrodos de Au distintos, uno virgen y otro funcionalizado con MPTMS. Como se puede apreciar en el gráfico, la respuesta es prácticamente idéntica para ambos tipos de electrodos, demostrando que la funcionalización con el grupo tiol no modifica significativamente la respuesta electroquímica frente a la sonda catiónica.

Figura 3.8: Voltametrías cíclicas consecutivas para $[Ru(NH_3)_6]^{3+}$ 1 mM a partir del ciclo número 44 realizados a 50 mV s⁻¹ sobre electrodos modificados con MPTMS. La respuesta es de características similares a la obtenida para este tipo de sistemas, donde se observa el ingreso de la sonda, la adsorción y la disminución de la intensidad debido a un fenómeno de disolución. No se observa indicio alguno de falta de adherencia.

Potencial vs ECS/mV

Figura 3.9: VC para $[Ru(NH_3)_6]^{3+}$ 1 mM a 50 mV s⁻¹ sobre un electrodo virgen de Au (punteado) comparado con uno funcionalizado con MPTMS (sólido). La funcionalización no bloquea ni modificar el desempeño electroquímico de los electrodos.

Ambas estrategias ideadas para promover la adherencia fueron aplicadas a películas donde se usó F127 o Brij58 como surfactante. Además son complementarias y compatibles. Esto quiere decir que se puede optimizar el diseño de forma de minimizar la superficie de electrodos y, a su vez, es posible funcionalizar con MPTMS las superficies con Au, generando puntos de vinculación entre la película y el electrodo. La funcionalización se debe llevar a cabo luego de depositar el Au y antes de realizar el decapado de la fotoresina (consultar sección 2.2.3, pág. 33) y no sobre los sensores terminados. De este modo la modificación queda delimitada sólo a las regiones donde están los electrodos, evitando reacciones colaterales como la silanización del vidrio o el silicio con el MPTMS por el extremo del silanol.

Es importante resaltar que en los casos que no se utilizó MPTMS, el desprendimiento o despegue de las PDM se hizo evidente por microscopía óptica o durante las mediciones EQ en una fracción de las casos. En otros se observaron grietas, fisuras o discontinuidades en las películas. En contrapartida, en los electrodos que se funcionalizaron con MPTMS en el 100 % de los casos se logró la formación de películas continuas, sin grietas y con buena adherencia.

3.3. Desarrollo de métodos de síntesis de PDM a bajas temperaturas

En esta sección se da cuenta de los resultados obtenidos en la fabricación y caracterización de PDM por métodos alternativos a la calcinación. Como ya se mencionó anteriormente, el desarrollo de estos métodos surgió de necesidades que emergieron durante el proceso de fabricación de los sensores. Entre las principales necesidades se cuentan: disminuir la presencia de grietas e imperfecciones debido a la diferencia de expansión térmica entre las películas delgadas mesoporosas y metálicas, minimizar procesos difusivos, ampliar sustancialmente la gama de sustratos, mejorar la adherencia y disminuir costos.

En este sentido, se idearon metodologías que permiten disminuir la temperatura de procesado hasta 130 °C, sin perder el grado de condensación y manteniendo las características espaciales de los poros. Al no calcinar, se sustituye la etapa de calcinación por una de extracción del surfactante luego de la consolidación de la estructura mesoporosa. En la tabla 3.1 se resume la nomenclatura y una breve reseña de los métodos desarrollados, los cuales ya fueron descriptos en detalle en la sección 2.1.3.

Se exponen primero los resultados de las caracterizaciones de las PDM obtenidas por calcinación con el propósito de tener datos de referencia para comparar

Método	Nomenclatura*	Descripción
Calcinado	CalSC CalSF	Condensación 130 °C 1 hora Calcinación 350 °C 2 hora
Simplificado	$\begin{array}{l} {\rm SimSC} \\ {\rm SimSF} \end{array}$	Condensación 130 °C 1 hora Extracción IpOH / H ₂ O pH=2 / t=15 min
Prolongado	ProSC ProSF	Condensación 130 °C 7 días Extracción IpOH / H ₂ O pH=2 / t=15 min
Vacío	VacSC VacSF VacZSF VacZSB	Condensación 130 °C 7 días, P=10 $^{-5}\rm mbar$ Extracción IpOH / H ₂ O pH=2 / t=15 min
Ácido	ÁciSC ÁciSF	Condensación en atmósfera de HCl Extracción IpOH / H_2O pH=2 / t=15 min
Alcalino	$egin{array}{c} { m AlcSC} \\ { m AlcSF} \end{array}$	Condensación en atmósfera de $\rm NH_3$ Extracción IpOH / $\rm H_2O~pH{=}2$ / $\rm t{=}15\rm min$

 Tabla 3.1: Nomenclatura de los métodos de síntesis de PDM a bajas temperaturas.

*SC=sílice/CTAB, SF=sílice/F127, SZF=circonio-sílice/F127, SZB=circonio-sílice/Brij58.

con los métodos alternativos. Luego se discuten los resultados que se obtuvieron en cada tratamiento, los cuales se resumen en la tabla 3.3. Finalmente, se expone una discusión global comparando cada una de las técnicas, para cada uno de los métodos. Para facilitar la lectura, la información detallada microscópica y espectroscópica de cada proceso se encuentra en el anexo C.

3.3.1. Método de calcinación

El tratamiento de calcinación luego del depósito del sol es una ruta sintética clásica utilizada por muchos autores para la producción de películas delgadas mesoporosas de diversos óxidos.^{10, 17, 21, 26, 154, 156} Consiste en estabilizar las PDM en una atmósfera de humedad y temperatura controlada y someterlas luego a una etapa de calcinación a 350 °C para eliminar el molde. Los detalles técnicos se pueden consultar en la sección 2.1.3, pág. 25.

3.3.1.i. Análisis de la porosidad

Como veremos en adelante, la porosidad y accesibilidad son factores que determinan la cantidad de analito que se adsorbe o difunde a través de las PDM, por este motivo resulta fundamental tener herramientas para cuantificar dichas magnitudes.

Del estudio de las películas por MEB se puede obtener información muy valiosa como tamaño y distribución de los poros, así como estudios de la organización espacial de los mismos mediante transformadas de Fourier (FFT). En la figura 3.10 se muestran imágenes de MEB para películas CalSF sobre distintos sustratos, cada una con su respectiva transformada. De éstas, se deduce que se trata de un arreglo de poros con orden local con tamaños próximos a los de 10 nm de diámetro, coincidiendo con los reportes existentes en la literatura^{154,194,195} y con los datos obtenidos por EPA (ver más adelante y consultar la tabla 3.3 para más información).

En el caso de las películas mesoporosas estructuradas con CTAB el análisis por MEB brinda una información más limitada, ya que el diámetro de los poros (≈ 3 nm) esta en el límite de resolución de la técnica para muestras no conductoras. A pesar de ello se alcanza a identificar que existe un sistema de poros (ver figura 3.2c). En este caso, para hacer un estudio por imágenes mas completo, se debería recurrir a microscopía electrónica de transmisión (MET).

Figura 3.10: Microscopía electrónica de barrido de sistemas CalSF y sus respectivas FFT. Se observa la distribución y homogeneidad de los poros en superficie. Izquierda: sobre sustrato de silicio. Derecha: sobre sustrato de Au.

El estudio por MEB es sumamente útil en muchos aspectos; sin embargo, la información que brinda es de áreas muy pequeñas, superficial y no da información completa sobre la conectividad y cuellos de las películas. Es por ello que se recurrió a la técnica de elipsoporosimetría ambiental (EPA). Esta es una técnica promedio, donde podemos obtener información valiosa sobre la accesibilidad de agua en los poros, se puede determinar el volumen poroso de las PDM, la distribución de tamaños de poros y cuellos, y la variación del espesor en función de la presión de vapor de agua relativa a la presión de saturación (P/P_a) . Para valores crecientes de P/P_s , la adsorción en los mesoporos se produce a través de la formación de una monocapa y luego de multicapas de moléculas de agua sobre las paredes de los poros, seguida de condensación capilar, es decir, llenado de los poros con agua líquida. Luego del llenado de los poros, la posterior disminución de la presión externa resulta en la desorción mediante evaporación capilar, vaciando primero el centro de los poros, seguida por la desorción de la multicapa de solvente presente en las paredes de los mismos. Para cada punto de P/P_s en equilibrio se tiene un valor del índice de refracción efectivo (n), de esta forma se construye la isoterma de adsorción/desorción de agua. Los cálculos realizados para obtener información estructural (volumen poroso, y distribución de poro y cuello) a partir de las isotermas se basaron en el protocolo detallado los trabajos del grupo de Sánchez y Baklanov.^{110, 118, 196}

En las figuras 3.11a y 3.12a se presentan las isotermas de adsorción de agua para sistemas CalSF y CalSC. Se observa que ambas son de tipo IV, según la clasificación de Brunauer.^{31,117,173} Este tipo de isotermas con histéresis entre la rama de adsorción y la de desorción es característico de materiales con mesoporos, donde los poros se llenan por condensación capilar. Por otro lado el ciclo de histéresis se podría clasificar como un ciclo intermedio entre H1 y H2, según la clasificación IUPAC.¹¹⁶ Esto es indicativo de una estructura de poros de tamaño uniforme que forma parte de un red compleja con efectos significativos sobre la adsorción de solventes.^{116,117,119,197} En general este tipo de ciclo de histéresis se presenta en estructuras con poros restringidos por cuellos (comúnmente referido como «cuellos de botella») con distribuciones de tamaños de cuellos con diámetros mucho menores que el de los poros, en contraposición con el ciclo H1 donde la distribución de tamaño de poro y cuello son similares.^{116,198} En las figuras 3.11b y 3.12b se muestran las distribuciones de tamaño de poro y cuello resultantes para estos sistemas. Las mismas se obtuvieron con el software Winellli II a partir de la información brindada por las ramas de adsorción y desorción y del ángulo de contacto ente el agua y la superficie de la película delgada mesoporosa. Los detalles experimentales de esta técnica y el mecanismo para calcular los diámetros de poros, cuellos y las distribuciones de tamaño se presentaron en el sección 2.1.7, pág. 28.

Del conjunto de resultados presentados cabe resaltar que en todos los casos se obtuvieron películas homogéneas, sin grietas ni discontinuidades tanto a nivel macro como microscópico, con poros organizados localmente y distribución de tamaños de poros y cuellos estrecha. Las PDM estructuradas con F127 presentan poros y cuellos de 9 y 4,5 nm de diámetro respectivamente, mientras que las estructuradas con CTAB, 2.5 y 2 nm. También se pueden extraer los valores de n, porcentaje de volumen poroso (%V) y espesor, los cuales se resumen en la tabla 3.3, pág. 79. Estos valores son los que se usarán para establecer los parámetros de condensación y porosidad de las PDM, y se utilizarán para la discusión comparativa de los resultados obtenidos para el resto de los tratamientos.

a. Elipsoporosimetría de una CalSF depositada sobre silicio sintetizada por calcinación.

b. Distribución de tamaño de poro y cuello correspondientes a la isoterma de (a).

Figura 3.11: (a) Curva de adsorción/desorción de agua para una CalSF. La misma corresponde a una isoterma de tipo IV con un lazo de histéresis de tipo H1/H2, lo cual se concuerda con materiales mesoporosos con poros y cuellos interconectados. (b) Distribución de poros y cuellos con tamaño de poros uniformes, de aproximadamente 10 nm de diámetro.

a. Elipsoporosimetría de una CalSF sobre sustrato de silicio sintetizada por el método clásico de calcinación.

b. Distribución de tamaño de poro y cuello correspondientes a la isoterma de (a).

Figura 3.12: (a) Curva de adsorción/desorción de agua para una CalSC. La misma corresponde a una isoterma de tipo IV con un lazo de histéresis de tipo H1/H2, lo cual concuerda con materiales mesoporosos con poros y cuellos interconectados. (b) Distribución de poros y cuellos con tamaño de poros uniformes, de aproximadamente 3 nm de diámetro.

3.3.1.ii. Análisis por FTIR

Son muchos los trabajos en los cuales se caracterizan las películas delgadas de SiO₂ por IR, ^{199–202} y también muchos otros que recolectan y emplean dichos resultados.^{32,83,103} El análisis de espectroscopía infrarroja por transformada de Fourier (FTIR) se utilizó en esta tesis para identificar y caracterizar la estructura inorgánica porosa del SiO₂, evaluar comparativamente la condensación del óxido, y determinar la presencia de grupos orgánicos, en particular residuos de surfactante.

Innocenzi ha realizado un análisis completo y bien fundamentado sobre las vibraciones en el IR, de películas delgadas de SiO₂ tanto densas como mesoporososas.²⁰² Para los enlaces Si-O-Si, se observa la presencia de cuatro modos de vibración óptico-trasversales (TO_x) y cuatro modos óptico-longitudinales (LO_x) en películas delgadas de SiO₂. Las películas de SiO₂ sintetizadas por sol-gel se caracterizan principalmente por presentar tres de los cuatro modos transversales, los cuales en general son tomados como huella digital para este tipo de

Figura 3.13: Representación de los movimientos de vibración del oxigeno (gris oscuro) respecto de los átomos de silicio (gris claro). (a) y (b) Estiramientos simétricos perpendiculares al plano Si-Si. (c) y (d) Estiramientos antisimétricos paralelos a la recta Si-Si. (e) y (f) Balanceos perpendiculares al plano Si-O-Si. La figura fue adaptada de la publicación deInnocenzi, J. Non. Cryst. Solids, 316(2-3), p. 309-319.

materiales.^{32, 83, 202} El modo TO₁, presenta una banda débil aproximadamente a 460 cm⁻¹ asociada a movimientos de balanceo; el modo TO₂ está asociado a un estiramiento simétrico con una banda débil cercana a 800 cm⁻¹; el modo TO₃ presenta una banda intensa centrada en 1075 cm⁻¹ y se asocia a vibraciones asimétricas del enlace Si-O-Si.

El modo TO₄ por lo general no es observable, algunos autores lo reportan como una banda muy débil en las cercanías de $1150 \,\mathrm{cm^{-1}}$.^{203, 204} La figura 3.13 es una representación esquemática de los tres principales modos de vibración: TO₁, TO₂ y TO₃.

Figura 3.14: Espectro de absorción de IR de una película SiO₂ denso depositada por *sputtering* comparada con una CalSF. Se observa, para las PDM, la aparición de un marcado hombro en 1180 cm⁻¹ debido al acoplamiento TO₃-LO₃ y un pico correspondiente a la vibración ν Si-OH.

En experimentos de incidencia normal a la superficie, solo deberían excitarse las vibraciones óptico-transversales, sin embargo se observan banda de vibraciones correspondientes a modos óptico-longitudinales asociadas a oscilaciones colectivas acopladas TO-LO.^{202–204} Los modos ópticos-longitudinales, LO₁ y LO₂ no son visibles, y LO₃, aparece como un hombro de la banda TO₃ a mayores frecuencias. La observación experimental de LO₄ es escasa, cuando se observa aparece como una banda muy débil en la zona comprendida entre 1200 y $1150 \,\mathrm{cm}^{-1}$.^{203, 204}

Otra observación relevante, realizadas por Almeida y Pantano,²⁰⁰ es la naturaleza del hombro presente a $1180 \,\mathrm{cm}^{-1}$, el cual se intensifica con el aumento de la porosidad de la película y lo asocia a un acoplamiento de los modos LO₃ y TO₃ con predominancia de carácter LO. Este fenómeno parece estar asociado a la dispersión de la radiación IR dentro de los poros y la consecuente activación del modo longitudinal.

Se pudo corroborar dicha observación en los espectros de la figura 3.14, donde se compara una CalSF con una película delgada de SiO₂ depositada por sputtering. Allí se ve el hombro bien acentuado para la CalSF y una banda a 965 cm⁻¹ asociada al estiramiento Si-OH/Si-O⁻; mientras que para la película de SiO₂ denso depositada por sputtering ($n \sim 1.5$ a $\lambda = 600$ nm)²⁰⁵ se observa la ausencia del hombro, aparición de la incipiente banda de LO₄ y desaparece la banda del Si-OH/Si-O⁻. En esa misma figura se puede apreciar en el espectro de la CalSF la presencia de bandas correspondientes a la estructura fina de vapor de H₂O (banda ancha centrada en 1600 cm⁻¹), sugiriendo la adsorción de agua dentro de los poros.

Además del análisis de la estructura inorgánica, se utilizó FTIR para evidenciar la presencia del surfactante usado de molde para los poros. Se centrará la atención en las bandas que corresponden a las vibraciones del enlace C-H, las cuales aparecen en la zona de 2950 a 2850 cm^{-1} . En la figuras 3.15 y 3.16 se

Figura 3.15: Espectro de absorción para una SF antes y después de calcinar, donde se puede apreciar la aparición de una banda fuerte la cual corresponde al surfactante F127.

Figura 3.16: Espectro de absorción para una SC antes y después de calcinar, donde se puede apreciar la aparición de una banda fuerte(ν_{C-H}), la cual correspondiente al surfactante CTAB.

comparan PDM calcinadas a 350 °C y sin calcinar utilizando como surfactante F127 y CTAB respectivamente. Se ve cómo desaparecen las bandas correspondientes a la vibración C-H debido a la eliminación del surfactante. Se conserva la forma del hombro a 1180 cm⁻¹ indicador de una estructura porosa y se observa la banda a 965 cm⁻¹ asociada al estiramiento Si-OH/Si-O⁻, el cual según algunos autores sólo desaparece cuando las películas son sometidas a T>500 °C debido a la condensación de grupos silanol en la superficie.^{200, 202, 206}

Posición (cm^{-1}) Vibración Presente en 3500-3000 H_2O , 2-propanol $\nu_{\rm OH}$ 2950-2850 Molde (CTAB, Pluronic F127) $\nu_{\text{C-H}}$ CO_2 CO_2 ambiental 2450Estructura fina del vapor de H_2O 2000-1200 H_2O H_2O adsorbida 1250 SiO_2 denso LO_3 $\nu_{\rm Si-O-Si}$ 1170 SiO_2 denso LO_4 $\nu_{\rm Si-O-Si}$ 1075 $SiO_2 TO_3$ $\nu_{\rm Si\text{-}O\text{-}Si}$ 1180 (hombro) SiO₂ poroso acoplamieno LO₃-TO₃ $\nu_{\rm Si-O-Si}$ SiO_2 parcialmente condensado 965 $\nu_{\rm Si-OH}$ silanoles superficiales 800 SiO_2 denso TO_2 $\nu_{\rm Si\text{-}O\text{-}Si}$

Tabla 3.2: Bandas y asignación de vibraciones en el IR frecuentemente observadas a lo largo de la tesis.

Estos espectros IR, obtenidos para películas calcinadas, se utilizarán de referencia para comparar con los espectros IR de PDM producidas por métodos alternativos a la calcinación.

En suma, los espectros IR dan información útil en tres aspectos: se evalúa la presencia de poros, indicado por la presencia del hombro LO_3 -TO₃; el grado de condensación, siguiendo la relación de bandas Si-O-Si/Si-OH; y por último, la técnica es utilizada para corroborar la eliminación del surfactante por ausencia de la banda $\approx 2900 \text{ cm}^{-1}$ correspondiente a la vibración C-H.

En la tabla 3.2 se asignan las vibraciones observadas que servirán de referencia para el análisis de resultados de las próximas secciones.

3.3.1.iii. Accesibilidad de las PDM

En las secciones precedentes de este capítulo se han evaluado muchos de los aspectos fundamentales para poder pensar en utilizar las películas mesoporosas de óxido de silicio como componentes de sensores: estructura porosa, volumen poroso, compatibilidad de sustratos, técnicas de depósito, control del espesor, etc.^{10,74,156}

Sin embargo, se debe considerar un aspecto crítico para utilizar estas películas como parte de un sensor electroquímico. Se debe garantizar el libre acceso de los analitos a través de los nanoporos, de forma de poder difundir hasta la superficie del electrodo, para que tenga lugar allí la reacción electroquímica.

Para evaluar el transporte de especies a través de los materiales se recurrió a experimentos de voltametrías cíclicas. Para ello se coloca una solución con una sonda electroquímica adecuada en la celda de medición en contacto con un electrodo recubierto con una PDM. La forma en que fueron tomadas los voltagramas se detalla extensamente en la sección 2.4.4, pág 2.4.4.

La figura 3.17 muestra dos voltametrías cíclicas, una para CalSF y otra para CalSC en presencia de $[Ru(NH_3)_6]^{3+}$ 1 mM en solución de KCl 0,1 M. En ambos voltagramas se registra una respuesta electroquímica, demostrando que la superficie del electrodo se encuentra accesible. Los resultados sugieren que existe un camino percolativo en las PDM, tanto si se estructuran con F127 o con CTAB, que permite, o bien que la señal electroquímica se propague desde el seno de la solución hasta el electrodo (transporte de carga) o bien que el analito difunda desde la solución al electrodo (transporte de masa). A pesar de que se utilizó la misma sonda e iguales condiciones experimentales, los voltagramas presentar algunas diferencias entre sí. En la CalSF la señal es mas intensa y los potenciales de picos anódico y catódico se encuentran desplazados hacia potenciales más negativos, esto indica que el ARu se adsorbe (desplazamiento del potencial) y se preconcentra (alta intensidad). En contrapartida, en el voltagrama que corresponden a la CalSC no hay evidencia de adsorción del ARu y la intensidad es mucho menor que unas cuatro veces menor que un electrodo de Au desnudo, sugiriendo una difusión impedida por la tortuosidad de la matriz porosa.

Los diferentes mecanismos de trasporte involucrados en estos experimentos, son tema central de esta tesis y se profundizará la discusión en el capítulo 4. De estos experimentos preliminares se puede concluir que la síntesis de PDM sobre electrodos lleva a películas que, al menos en parte, son accesibles y permiten a una sonda EQ difundir hasta la superficie del electrodo.

3.3. Desarrollo de métodos de síntesis de PDM a bajas temperaturas

a. Voltametría Cíclica sobre CalSF.

b. Voltametría Cíclica sobre CalSC.

Figura 3.17: Voltametrías Cíclicas de $[Ru(NH_3)_6]^{3+}$ 1 mM sobre Au recubierto con PDM con una velocidad de barrido 50 mV s⁻¹ utilizando como referencia ECS.

3.3.2. Método simplificado (Sim)

Se denomina método simplificado a un conjunto de procesos mediante los cuales se condensa la fase inorgánica y se extrae la fase orgánica con una cantidad mínima de etapas. Luego de depositar y estabilizar las PDM siguiendo el protocolo descrito en la sección 2.1.3, pág. 25, el proceso consiste en condensar las PDM a 130 °C durante 1 h. Muchos autores utilizan estas condiciones para congelar las estructuras mesoporosas previo a los procesos de calcinación o extracción.^{21,29,100} Luego se elimina el surfactante en reflujo de 2-propanol durante 15 min, condiciones similares a las descritas en la literaturas.^{32,75,79,86,91,103}

En el análisis por microscopía se aprecia que las SimSF sometidas a este tratamiento se adhieren correctamente tanto en silicio como en oro, quedan bien estructuradas, sin grietas ni discontinuidades y se obtienen poros uniformes en tamaño y con estructuras de orden local (figura A.4). Las SimSC sobre silicio también adhieren bien y no presentan grietas, mientras que sobre Au presentan grietas y discontinuidades en su estructura (figura A.5), lo cual se adjudica al hecho de la adsorción del bromuro sobre el Au, tema que ya fue discutido en la sección 3.2.2.iii, pág. 62.

La caracterización por elipsoporosimetría para las SimSF resultó en una isoterma tipo IV con histéresis H5 para las SimSC y tipo IV con histéresis H2 para las SimSF.¹¹⁶ Los sistemas estructurados con CTAB presentan una porosidad del 40 % aproximadamente, con una histéresis pequeña entre las ramas de adsorción y desorción de la isoterma (figuras A.7a y A.7b). Esto sugiere que prácticamente no existe diferencia entre el tamaño de poro y cuello, de 2,5 y 2,0 nm de diámetro respectivamente, valores obtenidos por PEA. Este diámetro de poro pequeño se puede atribuir a que el surfactante ha sido sólo parcialmente eliminado de la estructura, estrechando el tamaño de poro hasta hacerlo prácticamente igual tamaño de los cuellos. En el caso de los sistemas SimSF la adsorción de agua se produce en una única etapa mientras que la desorción ocurre a dos valores de presión diferentes, a $P/P_s = 0,65$ y a $P/P_s =$ 0,45 (figura 3.18).

Thielemann²⁰⁷ y Groen²⁰⁸ proponen que este último comportamiento se produce al desorber el agua ocluida en poros, que están más o menos «bloqueados» por el diámetro de los cuellos, tal como se ejemplefica en la figura 3.18a. Al producirse la desorción del agua a través de cuellos de distinto tamaño, la fuerza necesaria para vencer la tensión superficial debe ser mayor, desorbiendo a menor P/P_s cuanto menor sea el diámetro de los cuellos; tal como predice la ecuación de Kelvin (ver ecuación 2.7). Esta observación se repite para varios de los tratamientos practicados e indica una población de cuellos con una doble distribución de tamaño (figura A.6b). Esto sugiere dos posibilidades: 1) la existencia de dos sistemas porosos no conectados entre sí, o 2) falta de condensación en el sistema poroso con cuellos o poros medianamente ocluidos por sílice parcialmente condensada.

a. Efecto de poros bloqueados en sílice calcinada estructurada con Pluronic 123.

b. Isoterma de adsorción/desorción de agua realizada por EPA para una SimSF.

Figura 3.18: Isotermas obtenidas para sílice mesoporosa con poros parcialmente bloquedados. (a) Isoterma extraída de la publicación de Thielemann²⁰⁷ y, (b) isoterma para sistemas SimSF condensadas y extraídas por el métodos simplificado.

En los espectros de IR, para ambos sistemas de poros (figuras A.9 y A.8), se observa, entre otras, el típico acoplamiento TO_3 -LO₃ que resultan en un hombro a 1180 cm⁻¹ indicativo de una estructura porosa.²⁰² También se ha estimado el grado de condensación en función de la relación en la intensidad de las bandas para $\nu_{Si-O-Si}/\nu_{Si-OH}$ y por último se estimó el porcentaje de extracción del surfactante siguiendo la intensidad de la banda para el estiramiento C-H, esta última vibración puede estar asociada tanto a la presencia de surfactante cómo a la esterificación de grupos etóxidos con silanoles superficiales incorporados durante el proceso de extracción alcohólica, discusión que se amplia más adelante. La cantidad relativa de surfactante extraído se estimó mediante la ecuación 3.2, donde se calculó el cociente entre las integrales de la intensidad de la banda C-H de la película mesoporosa antes y después de extrace el surfactante.

$$\frac{\int_{\nu_0}^{\nu_1} I_{\rm CH} \, d\nu \Big|_{pos}}{\int_{\nu_0}^{\nu_1} I_{\rm CH} \, d\nu \Big|_{pre}} = \chi \tag{3.2}$$

El resultado de la ecuación es χ que es un indicador del porcentaje de surfactante extraído. Para poder realizar la comparación se normalizaron los espectros respecto de la banda de mayor intensidad, correspondiente a la vibración TO₃, asumiendo un espesor de película constante entre mediciones. Todos los valores obtenidos para este y todos los tratamientos que se describen a continuación se encuentran resumidos en la tabla 3.3.

3.3.3. Método prolongado (Pro)

Este tratamiento se basó en prolongar el tiempo de condensación. Luego de estabilizar las PDM en cámara de humedad (t = 1 h,50 % HR) se colocó en horno a 130 °C por el término de 7 días, luego se llevó a cabo la extracción del surfactante. La elección de un período de 7 días se debe a que se realizaron experimentos con tiempos de condensación de 1,2 y 5 días donde los sistemas porosos resultaron poco estables. Luego, con el propósito de estandarizar y sistematizar los experimentos y procesos subsiguientes de este trabajo, se escogió éste período como tiempo estándar de condensación.

Los resultados de este proceso lograron películas homogéneas sobre silicio, sin discontinuidades ni grietas y con poros bien formados para ambos surfactantes. Cuando se utilizó Au como sustrato sólo se obtuvieron películas de buen aspecto cuando se las estructuró con F127. Para las estructuradas con CTAB se observaron grietas y sectores enteros completamente desprendidos de los electrodos. Nuevamente, al igual que en el tratamiento anterior, este hecho sugiere que la adsorción de las micelas de CTAB al oro impiden la adhesión de las ProSC a los electrodos (figuras A.10 y A.11).

Respecto de la caracterización por EPA, para ProSF, se observa la misma distribución de «doble cuello» o poros bloqueados que en el caso del tratamiento simplificado (figura A.12a). En cambio, los sistemas ProSC sometidos a este tratamiento muestran isotermas prácticamente idénticas al sistema calcinado, con poros y cuellos de 2,5 y 1,9 nm de diámetro respectivamente (figura A.13a).

Los resultados de espectroscopía IR para ambos sistemas de poros, F127 y CTAB (figuras A.14 y A.15), muestran que la extracción y la condensación mejoraron respecto del método simplificado. La metodología para cuantificar éstas variables fue la mismas que se expuso en la sección precedente. Si bien en el caso de las ProSC se ve todavía una pequeña cantidad de surfactante, la cantidad relativa al no extraído es mucho menor que en el tratamiento simplificado, indicando que la extracción fue mayor. La condensación de la fase inorgánica también parece haber mejorado respecto del tratamiento anterior, tal como indica el aumento relativo de la vibración correspondiente al estiramiento Si-O-Si, lo cual sugiere una maduración de la estructura porosa debido a la elongación en el tiempo de condensación.

Los valores porcentuales de ambas observaciones se pueden consultar en la tabla 3.3.

3.3.4. Método de alto vacío (Vac)

Luego de la experiencia acumulada y del éxito parcial del tratamiento prolongado donde se obtuvieron películas homogéneas y con arreglos de poros bien formados con estructuras comparables a la de las películas mesoporosas calcinadas,^{112, 209, 210} se realizó un tratamiento similar, en cuanto a duración y temperatura (7 días a 130 °C), pero colocando las muestras en atmósfera de alto vacío, a 10^{-5} mbar.

El motivo de llevar a cabo este tratamiento fue abastecer al sistema de calor durante un período tiempo prolongado para darle oportunidad de relajar

y estabilizar el cristal líquido y, a la vez, aplicar vacío de forma de desplazar el equilibrio de la reacción 3.3 según el principio de Le Chatelier, 104 removiendo productos de reacción volátiles (H₂O y alcoholes) y así favorecer la condensación del óxido. 211

Si-OH + X-O-Si
$$\xrightarrow{T=130 \,^{\circ}\text{C},\text{P}=10^{-5}\,\text{mbar}}{X=\text{H,CH}_3\text{CH}_2}$$
 Si-O-Si + X-OH \uparrow (3.3)

Para sistemas VacSF, las microscopías ópticas muestran películas homogéneas, sin discontinuidades ni grietas mientras que las imágenes de MEB revelan la presencia de poros de 9 nm de diámetro sobre ambos sustratos, silicio y oro (ver figura A.16). Respecto de las películas estructuradas con CTAB, presenta el mismo comportamiento que en los casos anteriores: se observa un depósito homogéneo y sin grietas cuando se depositan sobre silicio, pero se observan discontinuidades y grietas cuando se depositan sobre Au (figura A.17).

La isoterma de adsorción/desorción de H₂O muestra que desaparece la doble distribución de cuellos que se observó en los tratamientos anteriores para las películas estructuras con F127 (figuras A.19a y A.19b). El resultado es una isoterma tipo IV con histéresis H2, propia de sistemas con poros monodispersos uniformemente distribuidos, alcanzando un índice de refracción de n = 1,25(a P/P_s=0%) y una porosidad de 38%, valores próximos a los de un sistema calcinado. A su vez, para VacSC, el resultado por PEA es una isoterma que devuelve una porosidad (44%) y un índice de refracción (n = 1,393) prácticamente igual al del calcinado (figura A.20a) con una distribución de tamaño de poros y cuellos (figura A.20b) comparable con la reportada por Boissiere.¹¹⁰

De los espectros IR (figuras A.21 y A.22) se puede concluir que que la extracción del surfactante (ya sea para las películas estructuradas con F127 o estructuradas con CTAB) fue buena, pero no total, obteniendo valores de extracción por encima del 85%. Para ambos sistemas la relación de intensidades ν Si-O-Si/ ν Si-OH, así como un ángulo de contacto alto, demuestran que se trata de una estructura porosa con paredes bien condensadas. Los valores se encuentran en la tabla 3.3.

Este método fue el más utilizado a lo largo de la tesis, debido a la reproducibilidad de los buenos resultados que se obtuvieron, tanto para la condensación

a. Voltametría Cíclica sobre VacSZF correspondiente al ciclo número 95.

b. Voltametría Cíclica sobre VacSZB correspondiente al ciclo número 105.

Figura 3.19: Voltametrías Cíclicas de $[Ru(NH_3)_6]^{3+}$ 1 mM a una velocidad de barrido 50 mV s⁻¹ sobre electrodos de Au recubierto con PDM por el método de alto vacío. (a) PDM mixtas Zr|Si estructuradas con F127 y, (b) mixtas Zr|Si estructuradas con Brij58.

como para la extracción, así como en la distribución espacial de los poros y accesibilidad al electrodo. Es por ello que en una etapa más avanzada de la tesis se extendió su aplicación a películas de óxidos mixtos circonio/silicio utilizando tanto F127 como Brij58. Este último surfactante se utilizó para obtener poros pequeños, en reemplazo del CTAB, debido a los problemas de adherencia que presentó este último sobre Au (consultar sección 3.2.2.iii). Con ambos surfactantes (F127 y Brij58) se lograron sintetizar PDM uniformes sin grietas ni discontinuidades (figuras A.16 y A.18). Los voltagramas de las figura 3.19 muestran los resultados de adsorber [Ru(NH₃)₆]³⁺ 1 mM en sistemas mixtos VacSZF y VacSZB, donde se demuestra la accesibilidad y el poder de adsorción de ambos sistemas con distinto tamaño de poro.

3.3.5. Método ácido (Áci)

Algunos autores proponen que un medio fuertemente ácido (pH< 1) favorece la hidrólisis del alcóxido y la condensación de los grupos siloxano.^{14,101,102,159,161} Películas depositadas, estabilizadas en cámara de humedad y parcialmente condensadas a 130 °C, tal como se explica en la sección 2.1.3, pág. 25, fueron expuestas a una atmósfera de HCl durante 15 min con el objetivo de aumentar el grado de condensación.

En las microscopías para las PDM sometidas a este método (ya sean estructuradas con F127 como con CTAB) se observaron grietas y discontinuidades cuando se depositaron sobre electrodos de Au (figuras A.23 y A.24). Este hecho se ha atribuido a una condensación rápida, catalizada por el medio extremadamente ácido. Al no presentar buena adherencia sobre el sustrato, las películas de sílice se contraen en todas las direcciones, y no solo en la dirección normal a la superficie, como ocurre en las PDM depositadas sobre silicio, donde las fuerzas de adherencia al sustrato priman por sobre las fuerzas contracción en el plano.^{110,196,212} En ese caso las películas quedan bien formadas y homogéneas en toda el área de la muestra para ambos surfactantes. Se ha observado por microscopía electrónica que para los sistemas ÁciSF (figura A.23) los poros están casi unidos formando una especie de poro elongado, propio de una estructura $p6mm.^{162}$

Esta morfología superficial de poros elongados se corroboró por PEA (figura A.25a). Allí se observa, en la isoterma de adsorción/desorción de agua, una doble distribución de cuellos donde predominan cuellos de diámetro grandes, casi del mismo tamaño que los poros, coincidiendo con la observación por microscopía electrónica. Como se puede apreciar en la tabla 3.3, las dimensiones de los poros, medidos por ambas técnicas, dan valores diferentes. Esta discrepancia posiblemente se deba a que la medición por PEA no resulte del todo apropiada para este tipo de estructuras de poros elongados, no esféricos, suposición necesaria para el cálculo de las dimensiones de los poros. En cambio, mediante MEB se puede extrapolar la curvatura para simular una esfera y medir los poros, obteniéndose valores de diámetro similares a los de las SF sintetizadas por otros métodos.

La isoterma de adsorción/desorción de agua para AciSC muestra que se trata de sistemas con una porosidad del 38 % y un índice de refracción n = 1,23, al igual que en el caso del F127 apenas superior que en el caso de lo sistemas calcinados.

En lo referente a la etapa de extracción, se observa por espectroscopía IR, que fue efectiva para ambos sistemas de poros, alcanzando un alto porcentaje de extracción, 91,5% para CTAB y 85,7% para F127 (figuras A.28 y A.27).

3.3.6. Método alcalino (Alc)

El último de los tratamientos experimentados en pos de conseguir depositar y condensar películas mesoporosas de óxido de silicio a bajas temperatura fue el tratamiento en medio básico. Análogamente al realizado en medio ácido, se basa en someter a las películas a un medio de pH extremo (pH> 12), el cual, según algunos autores,^{102,159,162,163} cataliza los procesos de hidrólisis del TEOS. En este caso las películas, luego de la estabilización en humedad y temperatura, fueron colocadas en una atmósfera de NH₃ durante 15 min.

Los depósitos obtenidos sobre Au presentan grandes grietas y zonas muy fraccionadas para ambos sistemas porosos, AlcSF y AlcSC. Esta observación se atribuye nuevamente a la violenta condensación catalizada por el medio, en este caso fuertemente alcalino. Sobre silicio las PDM resultaron en depósitos homogéneos y de buen aspecto tanto por microscopia óptica como electrónica (figuras A.29 y A.30).

En las elipsoporosimetrías realizadas, se observa para el sistema AlcSF una doble distribución de cuellos muy similar a la obtenida por el tratamiento en medio ácido, pero en este caso el índice de refracción fue de n = 1,22 (a P/P_s = 0) el cual es prácticamente idéntico al que presentan los sistema calcinado (ver figura A.31a y tabla 3.3). Para poros estructurados con CTAB las mediciones por PEA muestran una isoterma tipo IV, con histérisis H1, resultando en un sistema altamente poroso (40 %) y un índice de refracción n = 1,22.

Los espectros IR para ambos surfactantes (figura A.34 para CTAB y A.33 para F127) muestran una ruptura en el aspecto del típico hombro (acoplamiento $\rm LO_3-TO_3$, a 1180 cm⁻¹) para estructuras de sílice mesoporosas.^{32,199,202} Esto sugiere un colapso de la organización de poros en la nanoescala, debido a la disolución parcial de la sílice, catalizada por el medio alcalino. Si bien el medio básico acelera la hidrólisis del TEOS, también aumenta la tasa de disolución del SiO₂.^{213–215}

3.3.7. Comparación de resultados de los tratamientos posdepósito

En la tabla 3.3 se resumen y comparan los resultados de las caracterización de las PDM obtenidas por cada uno de los tratamientos posdepósito.

La información organizada en forma concisa y sistemática resume los resultados de microscopía (óptica, MEB y FIB), elipsoporosimetría, ángulo de contacto, FTIR y electroquímica para cada sistema en particular.

Respecto de los resultados por microscopía se destaca que el visto bueno es para aquellas películas homogéneas en superficies extensas, sin grietas ni discontinuidades tanto a escala macro como microscópica.

La señal electroquímica positiva se refiere a pruebas de PDM homogéneas sobre electrodos de Au, en las cuales la sonda positiva ($[Ru(NH_3)_6]^{3+}$) puede difundir a través de la película hacía la superficie del electrodo donde se produce la reacción rédox.

Tabla 3.3: Resumen de resultados obtenidos por cada una de las técnicas de caracterización, para cada uno de los métodos posdepósito aplicados a PDM. Los diámetros de poros (\emptyset_p) , cuellos (\emptyset_c) y espesores (d) están expresando en nm.

Técnica	Mie	croscopía	Elipsoporosimetría	AC
Sustrato	Si	Au	Si	Si
	$oldsymbol{ ilde{O}}_p$	${}^{m O} {}^{\ensuremath{\varnothing}} {}^{\ensuremath{\phi}} {}^{\ensuremat$	$arnothing_p arnothing_c \ensuremath{\% \mathrm{P}} d n_p(\lambda)^{\S}$	θ°
CalSC	√ -	× - 258	2,5 $2,0$ 42 265 $1,384$	33,2
CalSF	✓ 9,0	✓ 9,1 215	8,2 $4,4$ 38 207 $1,391$	20,0
SimSC	 ✓ - 	X	2,2 2,0 30 308 1,389	41,2
SimSF	√ 7,8	✓ 7,0 -	$7,5$ $3,9^{\dagger}$ 30 211 1,390	$36,\!4$
ProSC	 ✓ - 	X	2,5 $2,0$ 41 338 $1,375$	44,5
ProSF	✓ 8,1	√ 8,5 -	$8,0$ $4,0^{\dagger}$ 39 212 $1,381$	22,7
VacSC	 ✓ - 	×	2,2 $1,7$ 44 381 $1,393$	$65,\!5$
VacSF	✓ 8,2	√ 8,2 201	9,0 $4,0$ 38 223 $1,383$	42,5
VacZSF	√ 8,5	√ - 248		-
VacZSB	✓ -	√ - 120		-
ÁciSC	✓ -	X	2,0 $1,6$ 37 340 $1,386$	46,0
ÁciSF	✓ 8,2	X	$5,7$ $2,1^{\dagger}$ 31 191 $1,399$	28,2
AlcSC	 ✓ - 	X	2,3 $1,6$ 46 383 $1,396$	47,6
AlcSF	√ 8,3	Х	$8,0$ $2,1^{\dagger}$ 32 225 $1,374$	24,5

Parte A: Microscopía, elipsoporosimetría y ángulo de contacto.

Parte B: Espectroscopía IR, accesibilidad de sondas EQ y observaciones.

Método	F	ΓIR	Señal EQ	Observaciones generales
	$\frac{\nu \text{Si-O-Si}}{\nu \text{Si-OH}}$	$\%_{\rm ext}$		
CalSC	$1,\!08$	100	\checkmark	falta de adherencia en Au
CalSF	0,77	100	\checkmark	
SimSC	$0,\!67$	72,7	×	falta de adherencia en Au
$\operatorname{Sim}\operatorname{SF}$	$0,\!53$	$70,\!4$	×	doble cuello
ProSC	0,80	87,7	×	falta de adherencia en Au
ProSF	0,78	$97,\!0$	×	doble cuello
VacSC	$0,\!88$	87,5	\checkmark	falta de adherencia en Au
VacSF	0,78	88,0	\checkmark	
VacZSF	-	-	\checkmark	
VacZSB	-	-	\checkmark	
ÁciSC	0,80	$91,\!5$	×	falta de adherencia en Au
ÁciSF	$0,\!81$	85,7	×	doble cuello, poros «elongados»
AlcSC	0,99	94,4	×	pérdida de la estructura poresa
AlcSF	$0,\!98$	$91,\!2$	×	perdida de la estructura porosa

 \S Valores de n
 calculados para las paredes de los sistemas mesoporosos
a λ =600 nm; índice de refracción de SiO₂ por sol-gel
,n=1,45.

 † Sistemas con doble distribución de cuellos, se reporta la población más abundante.

3.4. Discusión y comparación sobre los métodos

Luego de depositar, sintetizar, llevar a cabo los tratamientos y caracterizar las distintas películas, en esta sección se presenta una discusión general sobre los resultados obtenidos para cada uno de los métodos empleados. El resultado de la discusión y el análisis exhaustivo de los datos para cada tratamiento libre de calcinación, tendrá como objetivo final escoger uno o más métodos adecuados para la fabricación de sensores basados en películas mesoporosas de sílice depositadas sobre electrodos de Au y procesados a bajas temperaturas.

3.4.1. Sobre los sustratos

Para utilizar las PDM como sensores EQ, se deben depositar sobre un sustrato apto para reacciones electroquímicas. Podemos contar dentro de este grupo: carbono vítreo, ITO (del inglés indium tin oxide), FTO (del inglés fluorine doped tin oxide), grafito, Au y Pt entre otros.^{68,74} Se decidió utilizar Au, depositado por pulverización catódica sobre obleas de silicio para obtener electrodos de baja rugosidad. Este tipo de sustrato permite obtener señales EQ repetibles, sin interferencias ni distorsiones y comparables con aquellas en literatura. $^{33,\,34}$ De esta forma se pudo focalizar la atención en los fenómenos de transporte que tienen lugar a través de las membranas mesoporosas y no en las distorsiones de la señal que podría causar otro tipo de electrodo (ITO o FTO), debida a efectos de alta rugosidad o de una cinética de electrodo lenta, especialmente a altas velocidades de barrido. En los electrodos con un diseño transferido se utilizó una capa dieléctrica de SiO_2 , por lo que fue necesario realizar depósitos sobre silicio para determinar la compatibilidad con estos sustratos. Además los depósitos sobre silicio fueron de suma importancia llevar cabo numerosas caracterizaciones (que sobre Au no eran posibles), entender las bases de algunos comportamientos y comparar con la literatura.¹⁰

Hubo dos métodos en particular, el tratamiento en medio ácido y el tratamiento en medio básico, que mostraron el mismo comportamiento independientemente del surfactante utilizado. Ambos resultaron en la aparición de grietas a lo largo de toda la película sobre sustrato de Au. Esto es resultado de dos factores combinados: la baja adherencia sobre sustrato de Au (a los sistemas con CTAB se le suma la adsorción del surfactante al sustrato) y la rápida condensación catalizada por el medio, ya se sea ácido o básico. Esto lleva a una contracción en todas direcciones ya que la fuerza de adherencia al Au es menor que la fuerza de contracción en el plano de la película, lo cual genera las discontinuidades y grietas en las PDM.

Cuando se utilizaron obleas de silicio como sustrato la adherencia con la película demostró ser fuerte. En este caso la contracción es uniaxial (como es lo habitual para sistemas calcinados) y sólo ocurre en el eje normal a la superficie, resultando en depósitos continuos y homogéneos para cada uno de los métodos practicados y para cualquier surfactantes empleado.

Los sistemas que usaron CTAB y fueron depositados sobre Au presentaron grietas, fracturas y discontinuidades en todos los casos como ya fue mencionando. Esto es consecuencia de la adsorción superficial del bromuro sobre el Au que disminuye la adherencia de las PDM sobre los electrodos. Todas las películas depositadas sobre electrodos de Au tratadas con el método de alto vacío, estructuradas con F127 o Brij58, de SiO₂ o de Si0,9Zr0,1O₂ (SF, SZF, SZB), resultaron películas homogéneas tanto en espesor como en superficie y con buena accesibilidad al electrodo.

3.4.2. Sobre la condensación

Una de las dos técnicas utilizadas para evaluar la condensación de las PDM fue elipsoporosimetría ambiental (PEA), mediante la cual se construye una isoterma donde se gráfica índice de refracción en función de la presión parcial de H₂O. De dicha técnica se puede extraer el índice de refracción de la pared inorgánica de las películas mesoporosas (n_p) ponderando su porosidad, según la aproximación de Bruggeman, la cuál debe satisfacer la ecuación 2.3^{216} (los detalles se puede consultar en la sec. 2.1.7, pág. 28). Este valor, comparado con el sistema calcinado, nos da una idea de cuán condensada está la película. También se obtienen información cuantitativa sobre el volumen poroso de las películas e información estadística sobre el diámetro de los poros y los cuellos. En las figuras 3.20 y 3.21 se comparan las isotermas obtenidas para cada uno de los sistemas, estructurado con CTAB y con F127. Y en la figura 3.22 se presentan gráficos de barras comparativos relativos a las magnitudes más relevantes que se han utilizado para llegar a conclusiones sobre los métodos reportados.

Todos los métodos ensayados para sistemas SF y SC resultaron en películas porosas. Sin embargo en algunos en los que se empleó F127 como surfactante (simplificado, ácido y básico) se observó una doble distribución de cuellos. Esta observación puede interpretarse como sistemas con dos tamaños de cuellos

Figura 3.20: Comparación de las isotermas para todos los tratamientos posdepósito para SC. Destacan los altos valores para el índice de refracción de los tratamientos simplificado y en medio ácido.

Figura 3.21: Comparación de las isotermas para todos los tratamientos posdepósito para SF. Se destacan la doble distribuciones de cuellos (SimSF, ÁciSF y AlcSF) sugiriendo dos tamaños de cuellos o dos sistemas porosos independientes.

Figura 3.22: Comparación de las magnitudes más relevante (diámetro de poros, diámetro de cuellos, % volumen poroso e índice de refracción de la pared inorgánica), extraídas del análisis por EPA, con el ánimo de comparar el grado de condensación de las películas delgadas mesoporosas en base sílice, estructuradas con F127 (SF) y CTAB (SC).

o sistemas condensados parcialmente por sectores no conectados entre sí, con su propia y característica distribución de poros y cuellos. Para todos los tratamientos, los índices de refracción dan valores similares con óxidos mesoporosos calcinados, indicando un grado de condensación similar a estos.

La otra técnica utilizada para evaluar la condensación fue espectroscopía IR. Para ello se calculó la relación existente entre la intensidad de bandas correspondientes a las vibraciones ν Si-O-Si y ν Si-OH.^{202,203} Mientras más elevado sea el valor para dicha relación, mayor será la cantidad de enlaces Si-O-Si, indicando un mayor grado de condensación. Se observa en la tabla 3.3 que los mayores valores corresponden a los sistemas calcinados (CalSC y CalSF) y los menores a los sistemas en lo que solo se estabilizó a 130 °C (SimSC y SimSF). Los valores obtenidos para el resto de los tratamientos se encuentran próximos a los correspondientes a sistemas calcinados, lo cual sugiere un buen grado de condensación. Otra banda importante es el hombro de LO_3 (1180 cm⁻¹) formado a mayores frecuencias de TO₃, característico de estructuras porosas de SiO₂. Esta señal se debe al acoplamiento longitudinal/transversal de los modos TO₃ y LO₃ ocasionada por la dispersión de la luz en la red porosa, que estimula el modo longitudinal el cual habitualmente no se excita cuando se mide en modo trasmisión.^{202,217,218} La ausencia de este acoplamiento en el método alcalino para películas estructuras con CTAB y F127 sugiere un sistema poco poroso o más denso. Esta observación, junto a otros indicios, se pueden atribuir al colapso parcial de la estructura porosa. En la tabla 3.3 se muestran los valores cuantitativos obtenidos a partir de estas bandas.

3.4.3. Sobre la extracción

Al utilizar métodos alternativos a la calcinación se requirió una etapa de extracción para eliminar el surfactante. En todos los caso se llevó a cabo en 2-propanol a reflujo. Si bien fue exitosa en la mayoría de los casos, con valores

Figura 3.23: IR para cada etapa de eliminación del surfactante correspondiente a una SF sintetizada por el método de alto vacío.

de extracción por encima del 85%, siempre se observa una pequeña banda correspondiente a la vibración C-H en el IR. Dicha banda puede provenir tanto del surfactante como de intercambiar el hidroxilo por propanol mediante una reacción de esterificación según:

 $Si-OH + OH-CH_2CH_3 \implies Si-O-CH_2CH_3 + H_2O$ (3.4)

Por este motivo, luego de la extracción con 2-propanol, se realizó un enjuague de las muestras con H₂O acidificada con HCl (pH \approx 2) para poder completar la extracción, ya sean residuos de surfactante o propanol ligado.

Los espectros IR de la figura 3.23 corresponden a una muestra de una película delgada de sílice, estructurada con F127 y preparado por el método de alto vacío. Allí donde se comparan tres espectros IR para cada etapa: la película antes de extraer el surfactante, después de extraerlo con 2-propanol y luego de la extracció con alcohol seguida de un enjuague en agua acidificada. Se ve como después del tratamiento en agua ácida disminuye la señal correspondiente a la vibración C-H, que aparece ya sea por restos de surfactante y/o debido a la esterificación con 2-propanol.

3.4.4. Sobre la respuesta electroquímica

Una parte fundamental en la fabricación de las PDM y su potencial uso para sensores electroquímicos es la accesibilidad de moléculas y el transporte dentro de la red porosa. Ya se demostró, en la sección 3.3.1.iii, que el $[Ru(NH_3)_6]^{3+}$ es capaz de difundir en sistemas calcinados a través de los poros hasta la superficie del electrodo, donde tiene lugar la oxidación del complejo. Se debe evaluar, entonces, la accesibilidad en sistemas porosos no calcinados. Para ello se realizaron mediciones electroquímicas sobre películas depositadas, condensadas y extraídas con el tratamiento de alto vacío. Esté método es el que mostró las mejores condiciones de adherencia al Au, condensación y distribución de poros para su uso en sensores electroquímicos.

En la figura 3.24 se expone una comparación de las voltametrías cíclicas correspondientes a PDM estructuradas con F127 condensadas por calcinación y por el método de alto vacío, a dos concentraciones de sonda diferentes. Los voltagramas están compuestos por ciclos consecutivos de voltametrías cíclicas hasta llegar a un máximo donde ya no varía la respuesta. Esta respuesta corresponde al ingreso y adsorción de la sonda en las PDM, hasta llegar a la saturación, cuando las voltametrías permanecen invariables para los subsiguientes ciclos. La discusión sobre este tipo de observaciones es materia central de esta tesis y se retoma en el próximo capítulo, donde se lleva a cabo una profunda discusión sobre los fenómenos de transporte dentro de los poros.

Es posible estimar la concentración de saturación de ARu adsorbido dentro de los poros, es decir la capacidad de preconcentrar para dicha sonda que tienen las PDM. Éste valor se obtienen calculando la carga eléctrica, la cual se extrae integrando la curva de intensidad para la sonda adsorbida, representada por la curva negra sólida en cada uno de los voltagramas de la figura 3.24. En la sección 4.4.1, pág 100, se exponen los argumentos y las ecuaciones (ec. 4.9 y 4.10) para calcular dicha concentración. En la figura 3.24 se observa que para dos concentraciones diferentes de sonda en solución, la capacidad de adsorción de las

a. Ciclos de VC para AR
u $0,1\,\mathrm{mM}$ sobre SF calcinadas.

b. Ciclos de VC para AR
u $0,1\,\rm mM$ sobre SF sin calcinar.

c. Ciclos de VC para ARu 1 mM sobre SF calcinadas.
 d. Ciclos de VC para ARu 1 mM sobre SF sin calcinar.

Figura 3.24: Voltametrías cíclicas donde se compara la accesibilidad de una sonda electroquímica sobre SF con dos tratamientos posdepósito diferentes. Las curvas punteadas correponden al primer ciclo, las grises a los sucesivos ciclos y las negras a la máxima capacidad de adosrición para cada concentración de sonda. (a) y (c) Método de calcinación a (350 °C) y, (b) y (d) Método de alto vacío (130 °C, 7 días, $P=10^{-5}$ mbar). Todas las VC fueron realizadas en una solución 0,1 M de KCl a 50 mV s⁻¹.

películas es prácticamente idéntica, ya sea que se trate del sistema calcinado o del sistema de alto vacío. La diferencia se encuentra en el mecanismo de adsorción de la sonda, el cuál es diferente según el método posdepósito empleado para sintetizar las PDM.

En los sistemas calcinados la respuesta del primer ciclo (representado por la curva punteada en la figura 3.24) tiene la misma pinta que una respuesta sobre un electrodo de Au desnudo, sin recubrir (ver voltagrama 2.23a, pág 50). A medida que se realizan ciclos consecutivos de VC, el sistema evoluciona (voltagramas grises) a la típica respuesta que presenta una especie adsorbida (voltagramas negros). Esta tendencia se indica mediante flechas en los voltagramas de las figuras 3.24c y 3.24a. En cambio, en los sistemas de alto vacío, los primeros ciclos no dan respuesta EQ, mostrando una señal plana (punteada), y, conforme la sonda ingresa en los poros, la densidad de corriente aumenta hasta que es prácticamente igual a la del sistema calcinado (indicado con flechas en las figuras 3.24d y 3.24b).

Este comportamiento sugiere que la accesibilidad, en principio, no es la misma para estos sistemas, con marcadas diferencias en la cinética de adsorción. Las SF sintetizadas por el método de calcinación son sistemas inicialmente más abiertos o más comunicados, en los cuales la sonda difunde rápidamente a través de canales hasta llegar al electrodo y reaccionar desde el primer ciclo. En los sistemas condensados a bajas temperaturas, la difusión de la sonda al electrodo parece estar impedida, y la respuesta electroquímica aumenta conforme aumenta la concentración de sonda dentro de los poros (consultar sección 4.4.1) En resumen, en los sistemas calcinados la difusión es más rápida que la adsorción y en los de alto vacío la difusión esta impedida y solo se manifiesta señal EQ luego de varios ciclos voltamétricos, a medida que se adsorbe. Aún así, con marcadas diferencias en la forma de transporte de la sonda, la capacidad final de adsorción, determinada por la carga integrada, es prácticamente igual para ambos sistemas porosos.

Esta observación ya fue reportada en la tesis de Calvo,¹⁰³ donde utiliza SF funcionalizadas con grupos aminos, no calcinados y condensados a 200 °C. En dicho trabajo no se observa señal EQ para estos sistemas mientras que en sus homólogos calcinados si y la autora atribuye este hecho a que los poros necesitan ser «activados» debido a una baja condensación. Aquí queda demostrado que dicho proceso de activación sometiendo a los electrodo a reiterados ciclos electroquímicos corresponde, en realidad, a un impedimento cinético debido a la condensación realizadas a T<350 °C (sin calcinar).

Esta diferencia de accesibilidad de los sistemas calcinados respecto de los sistemas de alto vacío también se hizo evidente cuando se utilizó ferroceno metanol como sonda. Esta sonda es neutra, por lo tanto no debería verse influenciada por la carga dentro de las películas. En la figura 3.25 se compara la respuesta de VacSF (condensada y extraída por el método de alto vacío) y CalSF (calcinado a T=350 °C). Si bien ambos sistemas demostraron ser accesibles, los sistemas condensados a bajas temperaturas dan un respuesta propia de un sistema limitado por difusión. En el capítulo 4 se discute y analiza en profundidad los resultados de las observaciones de transporte de ferroceno metanol en sistemas SF y se realizan cálculos detallados para estimar las constantes de difusión en ambos casos.

Figura 3.25: Voltametrías para FcOH 1 mM en 100 mM de KCl realizada a 50 V s^{-1} . Izquierda: sobre sistemas SF calcinados. Derecha: sobre sistemas SF condensados por el método de alto vacío y extraído con 2-propanol y agua acidificada.

3.5. Conclusiones

En este capítulo se presentaron los resultados obtenidos durante el proceso de fabricación, desarrollo y caracterización de películas delgadas mesoporosas de óxido de silicio y silicio/circonio sobre distintos sustratos con potencial uso en sensores electroquímicos.

Los soles, precursores de las PDM, se depositaron exclusivamente por *spin*coating, previendo la futura integración a los procesos propios de la industria electrónica. La organización espacial de los poros se llevó a cabo con tres agentes moldeantes, CTAB, Brij58 y F127, sobre diferentes sustratos: silicio, vidrio y oro. Se ajustó el espesor entre 200 y 250 nm, el cual se consideró óptimo para obtener PDM sin fracturas ni discontinuidades. Frente a los problemas de adherencia de las PDM a los electrodos de Au se utilizaron dos estrategias: modificación química y optimización del diseño de los electrodos.

Una vez adquirida la experiencia para depositar y condensar por calcinación PDM sobre electrodos, con poros accesibles, sin discontinuidades y con buena adherencia, se propusieron distintos métodos posdepósito para obtener PDM a temperaturas por debajo de los 130 °C. Para ello se realizó un trabajo sistemático y metódico sobre el estudio y desarrollo de tratamientos posdepósito. En total fueron cinco los procesos desarrollados: simplificado, prolongado, alto vacío, ácido y alcalino.

Los resultados muestran que cualquiera de los métodos es plausible de ser usado para obtener PDM sobre Si o vidrio, con poros accesibles, y porosidades entre 30 % y 45 %. Sin embargo, este trabajo tiene por objetivo utilizar estas películas como elemento activo permeoselectivo incorporado en sensores. Para ello no basta sólo con obtener películas mesoporosas sobre silicio o vidrio (sistemas más clásicos), sino que hay que depositarlas y condensarlas sobre electrodos fáciles de producir y que permitan una detección electroquímica confiable, como Au o Pt. También es preciso mantener, durante todo el proceso de síntesis, la temperatura por debajo de los $150 \ ^{\circ}$ C para evitar procesos difusivos, discusión que se profundiza en el capítulo 5.

Las películas estructuradas con F127 mostraron dificultades a la hora de obtener distribuciones homogéneas de poro y cuello para los tratamientos simplificado, prolongado, ácido y básico. Sin embargo, con tiempos de estabilización prologados y en alto vacío, resultaron homogéneas en todo sentido, tanto en el depósito en sí, como en una distribución estrecha de poros y cuellos. Este hecho sugiere que el tiempo de estabilización prolongado sumado al alto vacío (que favorece la reacción de condensación) ayudan a controlar la condensación y la organización espacial de los poros, obteniendo sistemas con un alto grado de condensación con poros y cuellos uniformemente distribuidos.

No fue posible obtener depósitos continuos sobre Au en películas estructuradas con CTAB. Esto se debe a las limitaciones de adherencia sobre Au, sumado a la adsorción del surfactante catiónico sobre la superficie del mismo. A pesar de ello, los métodos desarrollados sobre silicio demostraron ser parcialmente exitosos en todos los casos. Con el propósito de obtener poros pequeños (≈ 5 nm) se reemplazó el CTAB por un surfactante no iónico, el Brij58. En base a la experiencia adquirida durante el desarrollo de los métodos de baja temperatura, se incorporó Brij58 en soles mixtos Zr|Si empleando el método de alto vacío. El resultado fueron películas homogéneamente, con buena adherencia sobre los electrodos y de poros accesibles.

De los cinco métodos desarrollados, sólo el de alto vacío resulto ser apto para utilizar indistintamente CTAB, F127 o Brij58. Este resultado resulta interesante en sí, ya que, si bien las películas con CTAB sobre Au no presentan un adherencia perfecta, es importante saber que el proceso de condensación y extracción es compatible con este tipo de películas, ya que permitiría combinar dispositivos multicapas intercalando CTAB, F127 o Brij58 en un solo proceso de fabricación.

El tema central de este capítulo fue que, a diferencia de los métodos existentes hasta ahora, en ninguno de los procesos la temperatura se elevó mas de 130 °C. Evitar la calcinación permite trabajar sobre sustratos térmicamente lábiles, como polímeros, y evitar procesos difusivos en las interfaces electrodo mesoporoso.

Si se piensa en sensores y procesos de fabricación complejos, que involucren una diversidad de etapas de fabricación, se podría usar cualquiera de los métodos desarrollados, eligiendo adecuadamente según el propósito que se persiga. Por ejemplo, si se desea funcionalizar las películas con polímeros o si se usan sustratos químicamente lábiles, hay que tener en cuenta que los métodos en medio ácido o alcalino son químicamente agresivos, pero son rápidos y económicos. De lo expuesto se ha podido demostrar que mediante tratamientos escogidos es posible controlar el espesor, tamaño de poro y cuello, adherencia, porosidad, etc. y emplearlos según la conveniencia del uso al que se quiera destinar.

El tema central del próximo capítulo es el estudio de los fenómenos de transporte de sondas electroquímicas a través de PDM. Para los sensores prototipos que se usaron en las pruebas EQ se eligió condensar y extraer las películas por el método de alto vacío. Está elección esta fundada en que es el método más suave desde el punto de vista químico, sin agregados de reactivos químicos ni inmersión en un medio a pH extremo, el más compatible con otras películas mesoporosas y el que resultó tener mejor adherencia sobre Au.

Electroquímica en películas delgadas mesoporosas

Contenido

4.1. Introducción	90
4.2. Transporte de sondas en PDM. Resultados preliminares	93
4.2.1. Caso 1. Sonda con carga negativa: $[Fe(CN)_6]^{4-/3-}$	94
4.2.2. Caso 2. Sonda con carga neutra: ferroceno metanol	95
4.2.3. Caso 3. Sonda con carga positiva: $Ru(NH_3)_6Cl_3$	95
4.3. Estudio detallado de la sonda ferroceno metanol	97
4.3.1. En sistemas mesoporosos calcinados	98
4.3.2. En sistemas mesoporos o sintetizados a baja temperatura $% f(x)=f(x)$	99
4.4. Estudio detallado de la sonda $Ru(NH_3)_6Cl_3$ 1	100
4.4.1. Capacidad de preconcentración	100
4.4.2. Mecanismo de transporte de carga de sondas adsorbidas	102
4.4.3. Simulaciones por elementos finitos	106
4.4.4. Discusión sobre el efecto de K y D_e sobre la medición electro-	
química \ldots	109
4.4.5. Estabilidad de las películas delgadas mesoporosas de SiO $_2$	112
4.5. Transporte en PDM mixtas Zr/Si	114
4.5.1. Exclusión	114
4.5.2. Preconcentración y estabilidad	115
4.5.3. Funcionalización \ldots	116
4.5.3.i. Incorporación de DHDP	117
4.5.3.ii. Incorporación de APTES	119
4.5.3.iii. Discusión sobre las funcionalizaciones	120
4.6. Conclusiones	122

4.1. Introducción

Luego de obtener y analizar los resultados de depositar, condensar y extraer PDM sobre distintos sustratos y bajo diferentes tratamientos posdepósito, se dedicará este capítulo al estudio de las propiedades permeoselectivas y de transporte de moléculas en los sensores basados en PDM. Para estudiar dichos fenómenos se utilizaron una variedad de sondas electroquímicas de diferente naturaleza. Estas sondas permitirán obtener información acerca de los fenómenos de transporte de masa y carga a través de los sistemas mesoporosos, así como de las propiedades permeoselectivas de las películas y como se modifican en función de las condiciones de contorno impuestas.

Existen numerosos trabajos en los cuales se demuestran propiedades permeoselectivas de PDM de SiO₂, TiO₂ o de óxidos mixtos, en particular la exclusión electrostática debida a la carga dentro de las PDM.^{69,74,76,79,86} En esta tesis se trabajó con recubrimientos mesoporosos de SiO₂ y Si_{0,9}Zr_{0,1}O₂ con el objetivo de utilizarlos en multisensores selectivos. Bajo esta premisa, resulta crítico estudiar en profundidad la química superficial de estas películas, de modo de racionalizar la selectividad de los multisensores y el análisis multivariable de respuesta para los analitos a ser cuantificados.

Los sensores están compuestos básicamente de una película delgada de oro sobre la cual se deposita una PDM. La superficie de las paredes de las películas dejan expuestos, hacia el interior de los poros, grupos silanoles los cuales pueden estar o no protonados. El estudio de la química superficial de estos sistemas aporta las claves para comprender los procesos de selectividad de las PDM.^{8,102} Las reacciones 4.1 a 4.3 ejemplifican el equilibrio ácido-base que se establece en la superficie de una película de sílice en medio acuoso.²¹⁹

$$\begin{array}{c} \cdots \\ 0 \\ \cdots \\ 0 \\ \end{array} \\ Si \\ 0 \\ H \\ H_2 \\ 0 \\ \hline K_1 \\ \hline K_{-1} \\ \hline \\ K_{-1} \\ \end{array} \\ \begin{array}{c} \cdots \\ 0 \\ \\ Si \\ 0 \\ - \\ H_3 \\ 0^+ \\ \end{array}$$

$$\begin{array}{c} (4.1) \\ (4.1) \\ \end{array}$$

$$\begin{array}{c} \cdots \\ 0 \\ \cdots \\ 0 \\ \end{array} \\ Si \\ \hline OH + H_3O^+ \\ \hline K_2 \\ \hline K_{-2} \\ \cdots \\ 0 \\ \end{array} \\ \begin{array}{c} \cdots \\ O \\ Si \\ \hline OH_2^+ + H_2O \\ \end{array}$$

$$\begin{array}{c} (4.2) \\ (4.2) \\ \hline \end{array} \\ \end{array}$$

$$\begin{array}{c} \cdots & 0 \\ \cdots & 0 \\ \end{array} \\ Si \longrightarrow OH + HO^{-} \\ \hline K_{-3} \\ \end{array} \begin{array}{c} \cdots & 0 \\ \hline K_{-3} \\ \end{array} \\ \hline Si \longrightarrow O^{-} + H_{2}O \\ \end{array}$$

$$\begin{array}{c} (4.3) \\ \end{array}$$

El pK₁ del SiO₂ es menor a 4 y la mayoría de los autores coinciden en que el punto isoeléctrico (IEP) varía de 1 a 4 dependiendo de las distintas formas morfológicas del óxido de silicio, en particular para el SiO₂ obtenido vía sol-gel el IEP $\approx 2.^{220-223}$

Wu y colaboradores²²³ analizaron conjuntamente el estado de carga superficial y la velocidad de condensación de nanopartículas de sílice mesoporosa. El gráfico de la figura 4.1 muestra como varían las razones SiO⁻/SiOH y SiOH⁺₂/SiOH en función del pH; se puede apreciar que sólo por encima de $\mathrm{pH} \geq 7$ se obtiene una superficie de carga negativa donde todos los silanoles reaccionaron, cediendo su H⁺, para convertirse en iones silanolatos; mientras que para pH bajos (pH ≤ 1), la sílice se vuelve inestable antes de llegar a un estado de carga completamente positivo y, solo queda parcialmente positiva. El estado de carga superficial y las consideraciones acerca de cómo se puede modificar el mismo (pH, funcionalizaciones, incorporar Zr, etc.) son las que definirán las propiedades permeoselectivas.

En el mismo trabajo²²³ también plantean que la velocidad de condensación decrece por encima de pH \geq 7,5 debido a que entra en una zona de inestabilidad donde el óxido se disuelve, siendo el proceso de disolución catalizado por el medio básico. La estabilidad de las PDM, particularmente en medio acuoso, es otro de los factores que necesariamente se deben tener en cuenta para el desarrollo de una plataforma de multisensores.

Figura 4.1: Velocidad de condensación y estado de carga superficial para nanoparticulas de sílice en función de pH. Gráfico extraído de *Synthesis of mesoporous silica nanoparticles* Chem. Soc. Rev., 42(9):3862, 2013.²²³

De hecho, Iler, en su libro «*The Chemistry of Silica*», explica que la velocidad de disolución de la sílice en medio acuoso depende de una variedad de factores y, que además, dependiendo del tipo de sílice, el proceso de disolución requiere de un catalizador. Presenta un gráfico de la velocidad de disolución en función del pH (figura 4.2) y postula que la misma depende de la forma que adopte la sílice, ya sea cristalina o amorfa. Para formas menos organizadas, como el SiO₂ amorfo, la cinética de disolución es más rápida, mientras que para otras, más cristalinas, como el cuarzo, se hace mucho mas lenta. Por último aclara que se trata de un proceso de despolimerización vía hidrólisis, y que la solubilidad es la concentración de Si(OH)₄ cuando alcanza un estado estacionario en el equilibrio despolimerización.^{224,225}

Figura 4.2: Velocidad de disolución de la sílice en función de pH. Gráfico extraído de *The chemistry of silica* Wiley 1^a edición, 1979.²²⁴

También propone un mecanismo en medio ácido catalizado por iones F^- , mientras que en medio básico el mecanismo es catalizado por iones OH^- , según el siguiente mecanismo:

El mecanismo de la figura 4.4 no está completamente consensuado en la literatura especializada. Sin embargo, todos los autores coinciden en que el óxido se vuelve inestable en cualquiera de sus formas a partir de un pH \geq 7 y que, a partir de pH \geq 10 el proceso de disolución se acelera varios ordenes de magnitud.^{220–224} En 2007 Bass y colaboradores²²⁶ realizaron un estudio completo sobre la estabilidad de películas de óxidos mesoporososos de SiO₂, Zr_xSi_{1-x}O₂, Al_xSi_yO₂ y TiO₂ en condiciones fisiológicas (pH= 7,4), llegando a la conclusión de que la sílice mesoporosa se disuelve rápidamente mientras que es más estable con un pequeño agregado de circonio o aluminio en su estructura.

Son muchos los trabajos que aplican técnicas de electroquímica a electrodos recubiertos con PDM (de distintos óxidos, funcionalizados y sin funcionalizar), ya sea para caracterizar el material o para potenciales aplicaciones. Se pueden
citar ejemplos que utilizan EQ como herramientas para evaluar la accesibilidad de las películas en función de la organización espacial de los poros, 127,178,227 caracterizar el área especifica libre del electrodo 152 o caracterizar el transporte de masa dentro de los poros. 79,86 Dentro de los trabajos que sugieren aplicaciones, podemos encontrar aquellos que los usan como membranas permeoselectiva, 76,78,79,81 como interface electrocatalítica, 228 cristales fotónicos, 140 sistemas preconcentradores, 179,229 etc. Se puede profundizar la información sobre electroquímica aplicada a materiales mesoporosos en general consultando los reviews de Walcarius de 2013 69,74 y 2015. 229

A pesar de esta gran cantidad de publicaciones de sílice mesoporosa orientadas a electroquímica, son pocos los que dan una interpretación fisicoquímica (con diferentes técnicas EQ y herramientas de simulación) de los fenómenos de transporte que ocurren dentro de los poros, y menos aún aquellos que discuten la disolución de las películas.

Se verá, en este capítulo, que la inestabilidad de la sílice mesoporosas en contacto con soluciones acuosas cercanas a la neutralidad es aún mayor cuando se la somete a un ciclado electroquímico, presentando un desafío inherente para desarrollar multisensores electroquímicos selectivos. También es un serio inconveniente a la hora de interpretar resultados, debido al constante cambio en el tamaño de los poros y cuellos como consecuencia de la disolución del películas.

Es por ello que para realizar un estudio profundo de los fenómenos que ocurren dentro de las películas o evaluar su utilidad como membranas permeoselectivas, sistemas preconcentradores, filtros moleculares, o vehículos de liberación controlada, no se debe dejar pasar por alto ni la inestabilidad ni la química superficial de las PDM, en particular en medios acuosos.

4.2. Transporte de sondas en PDM. Resultados preliminares

Durante las próximas secciones se presentarán y discutirán los resultados obtenidos al poner en contacto soluciones con sondas electroquímicas, de diferente naturaleza, sobre los multisensores. Al ser la fabricación de los sensores una parte estructural de este trabajo, cabe aclarar sobre qué sistemas se realizaron los experimentos mostrados en este capítulo. Se utilizaron, indistintamente, películas de oro continuas sobre sustratos varios (silicio, vidrio, flexible) o con diseños de electrodos ya transferidos por fotolitografía (consultar sección 5.2). En este capítulo se trabajó exclusivamente en electrodos recubiertos con películas delgadas mesoporosas de óxido de silicio o de óxidos mixtos silicio/circonio estructuradas con Pluronic F127 (SF y SZF respectivamente), y procesadas con el método de alto vacío (consultar sección 3.3.4, pág. 75). En todas las medidas electroquímicas (EQ) se usó como referencia de potencial un electrodo de calomel saturado (ECS) normalizando los valores de corriente por el área geométrica del electrodo, de forma de facilitar la comparación de resultados de sensores con distintos diseños. Todas los experimentos fueron llevadas a cabo a pH $\approx 5,5$ en solución de KCl 100 mM. Esta elección se basa en el doble propósito de elegir un pH que podemos encontrar en sumideros de aguas naturales y de conservar dentro de las películas delgadas mesoporosas una fuerte carga negativa para no comprometer la estabilidad de la sílice.

4.2.1. Caso 1. Sonda con carga negativa: $[Fe(CN)_6]^{4-/3-}$

El voltagrama de la figura 4.3 muestra la respuesta de los sensores cuando se colocan en una solución con una sonda negativa en las condiciones mencionadas en la sección precedente. Para este fin se utilizó una solución de ferrocianuro de potasio ($K_4Fe(CN)_6.3H_2O$) y ferricianuro de potasio ($K_3Fe(CN)_6.3H_2O$) en proporciones equimolares, que de ahora en más llamaremos FeCN. El voltagrama de línea punteada corresponde a la respuesta en un electrodo de Au desnudo, mientras que el de línea sólida a un electrodo de Au recubierto con SF.

Potencial vs ECS/mV

Figura 4.3: Respuesta comparativa de un electrodo de Au recubierto con SF y sin recubirir frente a una sonda FeCN 1 mm en $0,1\,\rm M$ de KCl a $50\,\rm mV\,s^{-1}$ y utilizando un ECS como referencia.

En el voltagrama para el electrodo recubierto con SF (línea sólida) de la figura 4.3 no se observa ni reducción ni oxidación de la sonda. Al ser ésta de carga negativa, no es capaz de ingresar a la película (la cual está cargada negativamente), y, por lo tanto tampoco puede difundir hacia el electrodo. La repulsión se debe a un efecto de exclusión electrostática. Este fenómeno de exclusión ya fue reportado por varios autores.^{76, 86, 230, 231} Al pH de trabajo, pH = 5, 5, los silanoles están como silanolatos, como ya se explicó anteriormente, estableciendo una carga negativa en todo el espesor de la película.

Desde el punto de vista del estudio de fenómenos de transporte esta sonda no es especialmente útil, porque, como ya se demostró, no puede ingresar en la PDM. Sin embargo, nos ofrece información importante sobre la integridad estructural de las películas delgadas. Dicho de otro modo, al no obtener señal electroquímica significa que la sonda no percola a través de la PDM, de donde se concluye que la PDM no presenta fisuras, agujeros o rajaduras, y que recubre por completo y de manera homogénea el área del electrodo.

Por ende, fue muy importante para corroborar el estado de las PDM al finalizar experimentos donde se dudaba del estado de la película (si no hay señal la PDM está intacta, si hay señal el Au quedó expuesto). De esta forma esta sonda se utilizó a modo de «experimento control» para comprobar que las películas no presentaron sitios de percolación debido a daños estructurales.

4.2.2. Caso 2. Sonda con carga neutra: ferroceno metanol

El ferroceno metanol ($C_{11}H_{12}OFe$, FcOH) es una molécula que, en su estado reducido, no presenta carga, es de esperar entonces que no se vea afectada por la carga de las paredes de los poros. En la figura 4.4 se comparan los voltagramas resultantes de colocar una solución de ferroceno metanol sobre un electrodo de Au desnudo (punteado) y uno recubierto con la PDM (sólido). Si bien este resultado requiere un análisis más detallado, está claro que el FcOH permea a través de la película mesoporosa, para dar una señal electroquímica. En las próximas secciones se discutirá la forma, intensidad y otras variables de los voltagramas, y se analizarán experimentos complementarios. Por ahora basta con haber demostrado que una sonda neutra permea a través de la PDM generando una señal electroquímica, aunque de menor intensidad que la obtenida con el electrodo desnudo. Esta disminución en la intensidad se puede atribuir, en principio, a dos efectos: 1) a una alta tortuosidad en la red mesoporosas imposibilitando la libre difusión de la sonda y,¹⁷⁸ 2) a un bloqueo parcial de la superficie del electrodo debido el recubrimiento de la película, disminuyendo sensiblemente el área activa del mismo.¹⁵²

Figura 4.4: Respuesta comparativa de FcOH 1 mM sobre un electrodo de Au recubierto con SF y uno sin recubrir en 0,1 M de KCl, a 50 mV s^{-1} utilizando como referencia un ECS.

4.2.3. Caso 3. Sonda con carga positiva: $Ru(NH_3)_6Cl_3$

Para este caso se utilizó como sonda cloruro de hexaminorutenio(III) (Ru(NH₃)₆Cl₃, ARu), sonda bien conocida por su reversibilidad entre los estados reducido y oxidado. Los primeros experimentos con esta sonda dan como resultados el voltagrama presentado en la figura 4.5. Allí se muestra una serie continua de sucesivas voltametrías cíclicas y su evolución en el tiempo, desde el gris claro al negro. El cambio en la señal en función del tiempo se debe al ingreso del ARu a través de la matriz porosa, aumentando la intensidad de la señal conforme aumenta la concentración de la sonda dentro de los poros. A su vez, se observa un desplazamiento del pico anódico hacia un potencial más negativo, indicando que se trata de un proceso de adsorción del ARu dentro de los poros.

Figura 4.5: Solución de ARu 10 mM a pH = 5,5 en KCl 100 mM sobre SF. Se observa el aumento la señal a medida que la sonda ingresa en la estructura porosa. Los voltagramas fueron tomados a $50 \,\mathrm{mV \, s^{-1}}$ y el número de ciclos electroquímicos aumenta del gris claro al negro.

Se pueden racionalizar los resultados de este voltagrama como un conjunto de reacciones rédox y de adsorción superficial que consideren los fenómenos que ocurren dentro y fuera de la película. Este conjunto de procesos se pueden representar cómo un ciclo termodinámico mediante las reacciones de la ecuación 4.5, donde K_R es la constante de adsorción de la especie reducida, K_O es la constante de adsorción de la especie oxidada, E^0_{ads} es el potencial formal de la especie adsorbida y E^0_{sol} el de la especie en solución.²³²

Por lo tanto, el desplazamiento del pico de AR
u adsorbido antes mencionado, se debe a la suma de un término extra al potencial formal de la sonda libre, producto del equilibrio de adsorción de las especies reducidas y oxidadas en la película mesoporos
a (K_R/K_O) según:³³

$$E_{ads}^{0} = E_{sol}^{0} - \frac{RT}{nF} \ln\left(\frac{K_{O}}{K_{R}}\right)$$

$$\tag{4.6}$$

En resumen, el comportamiento de la sonda se puede interpretar como consecuencia de una atracción electrostática sonda-pared, generando una señal «mixta» con dos contribuciones, la del ARu libre en solución o libre dentro de los poros y la del ARu adsorbido en las paredes de la película mesoporosa.

Con el objetivo de discriminar ambas contribuciones se realizó el siguiente experimento: una vez alcanzada la intensidad de pico máxima, cuando se mantiene constante de ciclo a ciclo, se retiró de la celda la solución con la sonda y se reemplazó por solución que contenía únicamente electrolito soporte. De esta forma, de existir señal, solo tendría sentido si la misma proviene del ARu retenido en la película mesoporosa. El gráfico de la figura 4.6 muestra los resultados de dicho experimento. El mismo contiene tres voltagramas; el de línea punteada corresponde a la respuesta de ARu en un electrodo de Au desnudo; la curva de color negra a la señal de una película en solución de ARu; y la curva gris es el resultado de intercambiar la solución con la sonda por solución con electrolito soporte unicamente. Esta última curva tiene la forma característica que presentan las sondas adsorbidas, matrices con sitios rédox «anclados»^{232,233} (como los que presentan los polímeros conductores) o los polímeros funcionalizados con compuestos electroactivos,^{72,234} donde la separación de potencial entre los picos catódicos y anódicos es menor a $\Delta E = 57 \,\mathrm{mV}$. En este caso en particular la separación resulta en $\Delta E = 39 \,\mathrm{mV}$, mucho menor a $\Delta E = 80 \,\mathrm{mV}$ que es la diferencia entre potenciales máximos cuando el ARu está se encuentra en solución y no adsorbido (consultar sección 2.4.1, pág. 43 y tabla 2.10, pág. $51).^{33}$

Figura 4.6: Voltagramas donde se compara la señal para ARu 10 mM a pH = 5,5 en KCl 100 mM en un electrodo de Au (--), en una SF (---) y en una SF luego de retirar la solución de ARu(---).

Estos experimentos preliminares muestran que tanto las interacciones electrostáticas como las fisicoquímicas (adsorción) tiene importantes consecuencias sobre en el comportamientos general de los multisensores frente a diferentes analitos. Los próximos apartados se centrarán en estudiar los fenómenos de transporte y estimar parámetros característicos para estos sistemas mesoporosos.

4.3. Estudio detallado de la sonda ferroceno metanol

Los resultados preliminares de la respuesta electroquímica del ferroceno metanol ($C_{11}H_{12}OFe,FcOH$) en las SF ya fueron presentados en la sección 3.4.4, pág. 84 del capítulo 3. Sin embargo, en dicha sección, la discusión se centró en el análisis de las PDM y cómo cambia la accesibilidad al electrodo en función de los distintos tratamientos de condensación posdepósito. En esta sección, se vuelven a discutir estos mismos resultados, pero ahora en términos de fenómenos de transporte y modelos válidos aplicables al cálculo de coeficientes de difusión del FcOH en las PDM.

4.3.1. En sistemas mesoporosos calcinados

Según los resultados de FTIR y EPA, en los sistemas calcinados, aquellos en los que se eliminó el surfactante sometiendo las películas a 350 °C, la red mesoporosa está más accesible y mejor interconectada que aquellos que no fueron calcinados (ver capítulo 3). En el voltagrama de la figura 4.7a se muestra cualitativamente que la accesibilidad de FcOH sobre SF calcinadas es alta, presentando un comportamiento similar al de un electrodo de Au desnudo (ver voltagramas de la figura 2.24a, pág. 51). Se colocó una solución de FcOH 1 mM y se realizaron una serie de voltametrías a diferentes velocidades de barrido, con el propósito de estimar el coeficiente de difusión. En la figura 4.7b, donde se graficó la intensidad de pico (i_p) en función de la velocidad de barrido (ν), se observa que i_p $\propto \nu^{1/2}$, lo que indica que se trata de un proceso controlado por difusión.

a. Voltagramas a diferentes velocidades de barrido para FcOH 1 mM. Recuadro: VC para una velocidad de barrido de $20\,{\rm mV\,s^{-1}}.$

b. Se observa que j_p es proporcional a $\nu^{1/2}$ indicando que se trata de un transporte controlado por difusión semiinfinita.

Figura 4.7: Respuesta para FcOH 1 mM sobre SF calcinadas en solución de KCl 100 mM utilizando de referencia ECS. (a) Voltagramas tomados a diferentes velocidades de barrido y (b) intensidad máxima en función de la $v^{1/2}$.

Ahora bien, esta difusión tiene dos contribuciones, una de la sonda en solución y otra de la sonda dentro de los poros. Es posible en primera instancia calcular un coeficiente aparente que contempla ambas contribuciones aplicando el modelo de Randles-Sevcik (ec. 4.7) el cual contempla las siguientes hipótesis: 1) que el coeficiente de difusión es independiente del potencial; 2) que la sonda no interactúa con la matriz y 3) que la intensidad de corriente solo depende de la concentración de la sonda, de la difusión y de la velocidad de barrido.

$$D_{ap} = \frac{RT}{nF\nu} \left(\frac{\mathbf{i}_p}{0.4463FAC}\right)^2 \tag{4.7}$$

En 2006 Otal y col.¹⁵² depositaron películas mesoporosas de TiO₂ estructuradas con F127 sobre electrodos de ITO. Utilizando FeCN cómo sonda electroquímica, reportaron dos parámetros importantes, el área de electrodo efectiva (parte del electrodo se encuentra bloqueado por la película) y el índice de tortuosidad $\tau = D_{apa}/D_0$, donde D_0 es el coeficiente de difusión de la sonda libre en solución, en el caso del citado trabajo FeCN.

Utilizando la corrección del área geométrica reportada de dicho trabajo $(A = 0.70A_0)$ se estimó el coeficiente de difusión aparente (D_{ap}) arrojando un valor de $D_{ap}=4.3 \times 10^{-6}$ cm² s⁻¹ magnitud típica para moléculas en soluciones acuosas.^{35,152,153} Tomando el valor de $D_0 = 7.5 \times 10^{-6}$ cm² s⁻¹, reportado por Longinotti y col.¹⁵³ para FcOH en solución acuosa, se calculó el coeficiente de tortuosidad el cuál resultó ser de $\tau = 0.64$. Dicho valor, teniendo en cuenta las diferencias entre sistemas, es comparable con el reportado Otal y col. para sistemas TiO₂-F127, $\tau = 0.71$.

De estas comparaciones se puede concluir que la difusión del FcOH dentro de SF calcinadas tiene un comportamiento similar al que presenta en solución con un coeficiente de difusión afectado por la tortuocidad de la estructura porosa.

4.3.2. En sistemas mesoporoso sintetizados a baja temperatura

Se exponen en la figura 4.8 los voltagramas obtenidos para FcOH (1, 5 y 10 mM) utilizando como electrodo SF condensada y extraída a 130 °C por el método de alto vacío.

Potencial vs ECS/mV

Figura 4.8: Voltagramas de SF sintetizada por el método de alto vacío para FcOH 1, 5 y 10 mM en solución de KCl 100 mM tomados a una velocidad de barrido de 20 mV s⁻¹. Se observa que se alcanza una densidad corriente limite (j_l) para cada una de las concentraciones de la sonda.

Aunque las mediciones se realizaron bajo las las mismas condiciones, en este caso se observa una respuesta diferente que en el caso de las SF calcinadas, sugiriendo que la difusión se encuentra disminuida a través estos sistemas porosos. La forma de la curva de los voltagramas de la figura 4.8 remite a una típica respuesta para sistemas en estado estacionario, formando un gradiente de concentración a lo largo de la sección de la película y alcanzando una densidad de corriente límite j_l . El coeficiente de difusión en estos sistemas se puede calcular mediante la ecuación 4.8, a partir de la corriente límite i_l , de la diferencia de concentración entre las cercanías del electrodo $(C_{x=0})$ y el seno de la solución C_s , el área del electrodo (A) y el espesor de la película (L).

$$\mathbf{i}_l = \frac{nFAD(C_s - C_{x=0})}{L} \tag{4.8}$$

Para una película de 200 nm, el valor obtenido para el coeficiente de difusión resultó ser $D=2.5 \times 10^{-9} \,\mathrm{cm^2 \, s^{-1}}$, tres ordenes de magnitud menor que en SF calcinadas ($D_{ap}=4.3 \times 10^{-6} \,\mathrm{cm^2 \, s^{-1}}$) y comparable con los coeficiente de difusión reportados para las permeación de sondas a través de películas poliméricas.²³⁵ Dicho valor sugiere que la difusión se encuentra muy impedida en estas películas, lo cual se puede atribuir a que son sistemas con una red porosa más cerrada.

4.4. Estudio detallado de la sonda $Ru(NH_3)_6Cl_3$

4.4.1. Capacidad de preconcentración

Una vez demostrada la adsorción de ARu de las PDM, se llevó a cabo una serie de experimentos adsorbiendo la sonda partiendo de distintas concentraciones de ARu en solución, con el objetivo de determinar cuantitativamente la capacidad de adsorción de las películas. Los resultados se presentan en los voltagramas de la figura 4.9.

La metodología es la misma que se aplicó en el experimento de la figura 4.6. Se utilizó un electrodo recubierto con la SF, se midieron repetidas voltametrías

Figura 4.9: Adsorción de ARu en PDM a diferentes concentraciones de la sonda. Los voltagramas grises (—) indican el ingreso de la sonda en la red mesoporosa, los de línea sólida (—) corresponden a la sonda adsorbida en solución con electrolito soporte únicamente y los voltagramas de línea punteada (--) son la respuesta en electrodos de Au desnudo. Todos los voltagramas fueron medidos a 50 mV s⁻¹ en solución de KCl 100 mM.

cíclicas hasta alcanzar el máximo de adsorción, lo cual ocurre cuando dos o más voltagramas consecutivos son equivalentes. Una vez alcanzado este punto, se retiró la solución con la sonda y se reemplazó con una nueva solución que sólo contenía electrolito soporte (KCl 100 mM). Se realizó entonces una nueva voltametría cíclica. Los resultados están expuestos en los voltagramas de la figura 4.9, donde se ha llevado a cabo un barrido de concentraciones desde 10^{-2} M hasta 10^{-5} M. Cabe destacar que a concentraciones por debajo de 60 µM (con un área geométrica de 3,14 mm²) la sonda ya no es detectada en un electrodo de Au desnudo, mientras que sobre una PDM se observa una señal intensa. Esto sugiere que la sonda positiva se preconcentra fuertemente en sistemas SF.

Se puede calcular la concentración dentro de la PDM, es decir la concentración adsorbida de ARu, de acuerdo a la ecuación 4.9:

$$C = \frac{Q}{FAd} \tag{4.9}$$

La concentración dentro de los poros es representada por C, Q es la carga eléctrica, F la constante de Faraday, A el área del electrodo y d el espesor de la película, la cual fue medida previamente por las técnicas explicadas en el capítulo 2, ya sea EPA o FIB.

La carga Q es igual a la integral de la corriente en el tiempo. Se puede desarrollar dicha igualdad y resolver como la integral definida entre dos valores de potencial para una velocidad de barrido constante, tal como se expone en la ecuación 4.10. Por lo tanto, de cada voltagrama de la figura 4.9, se puede extraer el valor de Q, ya sea para la corriente anódica como para la catódica.

$$Q = \frac{1}{v} \int_{E_i}^{E_f} i \, dE \tag{4.10}$$

Una vez obtenidos estos valores, se puede construir una isoterma de adsorción de ARu sobre SF a T=25 °C. De esta curva se obtiene una relación analítica entre la concentración de ARu dentro de la PDM y la concentración de ARu que colocamos inicialmente. La isoterma resultante se presentan en la figura 4.10,

Figura 4.10: Isoterma de Langmuir a T=25 °C donde se gráfica la concentración de $[Ru(NH_3)_6]^{3+}$ adsorbido en función de la concentración en solución colocada inicialmente.

donde se puede observar que la cantidad adsorbida aumenta hasta alcanzar un valor máximo de adsorción de la sonda.

Para este tipo de isotermas, el grado de recubrimiento (θ) está determinado por la concentración en solución (C_{sol}) y la constante de equilibrio de la adsorción/desorción (K), relación conocida como ecuación de Langmuir. Al ajustar los datos con dicha ecuación podemos extraer el valor de K.

$$\theta = \frac{KC_{sol}}{KC_{sol} + 1} \tag{4.11}$$

El cálculo para la concentración de ARu dentro la película corresponden al equilibrio ARu(III) + $e^- \rightleftharpoons$ ARu(II) (consultar esquema 4.5, pág. 96), por lo tanto la constante calculada corresponde a la adsorción de la especie oxidada, K_O , la cual para los sistemas estudiados arrojó un valor de $K_O = 9 \times 10^3 \,\mathrm{M^{-1}}$. Por otro lado, reorganizando la ecuación 4.6 se obtiene la ecuación 4.12, de la que se puede estimar el valor de la constante de equilibrio para la especie reducida, K_R .

$$K_R = K_O \exp\left(\frac{E_{sol}^0 - E_{ads}^0}{nF/RT}\right)$$
(4.12)

Dicho valor resultó en $K_R = 170 \,\mathrm{M}^{-1}$, como es de esperar, es menor que para la especie reducida ya que se trata de interacciones electrostáticas.

Otro valor de suma importancia que se puede extraer de estos experimentos es el de la concentración de ARu dentro de la película delgada en condiciones de saturación. Si bien ya se ha reportado la adsorción de sondas positivas en sistemas similares (p. ej. en el trabajo de Etienne y col.,¹⁷⁸ donde adsorbe $\operatorname{Ru}(bpy)_3^{2+}$ en una película de sílice mesoporosa sobre ITO a pH = 4,1) no se ha reportado, hasta la fecha, cálculos cuantitativos de concentraciones dentro de las películas delgadas. En estos experimentos, donde el espesor de la película fue de 200 nm, la concentración de saturación se estimó en C=1,1 M. Estas estimaciones y la metodología detrás del cálculo, son de suma importancia analítica para aplicaciones en sensores. También cabe destacar la gran capacidad de preconcentración de estos sistemas, alcanzando concentraciones dentro de las películas de 1000 o más veces que en la solución.

4.4.2. Mecanismo de transporte de carga de sondas adsorbidas

Como ya se demostró anteriormente, el sistema adsorbe una sonda positivamente cargada sobre las paredes de la película delgada. Se genera entonces, un par iónico entre el ARu, de carga positiva (+2 o +3 dependiendo del estado de oxidación), y los silanolatos de las paredes del mesoporoso, cuya carga es negativa al pH al cual se realiza la medición (pH=5,5). Los sitios rédox (ϕ^e) están parcial o totalmente inmovilizados, sugiriendo que el mecanismo de transferencia de carga es el que se produce a través de saltos electrónicos entre los sitios rédox, o como se lo conoce más comúnmente en inglés, *electron hopping*.^{72, 234, 236}

Si se supone mesoporos esféricos, monodispersos y distribuidos uniformemente en la película (consultar capítulo 3), se puede estimar la cantidad ARu por poro según la ecuación 4.13. Para ello se multiplica la concentración de ARu adsorbido (C), por la fracción porosa (F_p), por el volumen de un sólo poro (V_{poro}) y por el número de Avogrado (N_A) para calcular el número de moléculas. Y, a su vez, como se encuentran adsorbidos, se puede dividir por la superficie del poro (S_{poro}) de forma de obtener el número de sitios rédox por unidad de volumen. Finalmente, tomando la raíz cuadrada de la inversa se calcula la distancia promedio entre dos sitios rédox (d_{ϕ^e}) . Teniendo en cuenta una concentración de

$$d_{\phi^e} = 2\sqrt{\frac{S_{poro}}{\pi \, V_{poro} \, N_A \, C \, F_p}} \tag{4.13}$$

saturación de 1,1 M en una película de 200 nm con una porosidad $F_p = 35 \%$, la distancia promedio entre sitios rédox resulta de $d_{\phi^e} = 1,25$ nm. Esta estimación (aún con los suposiciones de poros esféricos e idénticos) es compatible con el modelo de *eletron hopping* propuestos y con la concentración ya calculada. Un valor muy grande, p. ej. $d_{\phi^e} > 15$ nm sería un indicador de que, o bien la película no esta saturada o bien los sitios rédox están muy lejos para que ocurra la trasferencia electrónica entre ellos, mientas que un valor de d_{ϕ^e} muy pequeño, sería comparable con el radio de la sonda y se solaparían los sitios rédox, (para $d_{\phi^e} < r_{\phi^e}$).

En el esquema de la figura 4.11 se ejemplifica el mecanismo propuesto. Se puede determinar experimentalmente el coeficiente de difusión D_e para la transferencia electrónica. Éste parámetro se determinó con dos técnicas diferentes, voltametrías cíclicas (CV) a distintas velocidades de barrido y otro utilizando la técnica de voltametría de corriente alterna (VCA). Los detalles experimentales para ambas técnicas fueron explicados en la sección 2.4, pág. 42.

Figura 4.11: Diagrama en el cual se ejemplifica el mecanismo de transferencia y transporte de carga mediante saltos electrónicos o *electron hopping*.

Determinación de D_e mediante VC

De acuerdo al trabajo de Tagliazucchi y Calvo²³⁷ donde se calculó el coeficiente de difusión para un complejo de osmio adsorbido en un polímero, es posible, a partir del tiempo de difusión característico, τ_D , calcular el D_e según la ecuación 4.14, donde d es el espesor de la película.

$$\tau_D = \frac{d^2}{2 D_e} \tag{4.14}$$

A su vez, se puede determinar la velocidad de barrido característica, ν_D , para la cual la capa de difusión alcanza la interfaz de la solución. Para ello se hace uso de la ecuación 4.15 donde F es la constante de Faraday, T la temperatura y R la constante universal de los gases.

$$\nu_D = \frac{RT}{\tau_D F} \tag{4.15}$$

Es a esta velocidad característica donde la respuesta del potencial cambia de un comportamiento de difusión en capa delgada a un comportamiento de difusión en régimen semiinfinito. Para determinar ν_D se tomaron voltametrías cíclicas de ARu sobre SF a distintas velocidades de barrido, desde 50 mV s⁻¹ a 50 V s⁻¹. Luego se graficó el desplazamiento de potencial de pico por un lado, y la corriente de pico por otro, ambas variables en función de la velocidades de barrido (gráficos 4.12 y 4.13a respectivamente).

En la figura 4.12 se indica mediante flechas rojas la velocidad característica donde aparentemente la difusión cambia de régimen, de acotado a semiinfinito. Sin embargo, sería impreciso establecer un valor de ν_D de este gráfico, ya que el proceso de transferencia de carga de la sonda al electrodo enmascara la separación entre los potenciales $(E^p - E^0_{ads})$ y, por lo tanto, resulta difícil establecer un límite preciso.

En el gráfico 4.13
a se representa la corriente de pico en función de la velocidad de barrido. Para una velocidad
 $\nu \approx \nu_{\scriptscriptstyle D}$ se observa una transición de régimen de

Figura 4.12: Desplazamiento de los potenciales en función de la velocidad de barrido. Las flechas rojas indican la velocidad característica para el cambio de régimen, de capa delgada a control difusional.

difusión en capa delgada $(i_p \propto \nu)$ a régimen controlado por difusión semiinfinita $(i_p \propto \nu^{1/2})$. Este gráfico permite estimar con menor interferencia el cambio de régimen y por lo tanto la ν_D , la cual se ha identificado en el gráfico con flechas rojas. En la figura 4.13b donde se graficó $\log(i_p)$ vs $\log(\nu)$ se hace evidente el cambio de régimen difusión acotada (pendiente=1) a difusión semiinfinita (pendiente=0.5).

a. Intensidad de pico en función de la velocidad de barrido. Las flechas rojas indican la velocidad característica para el cambio de régimen.

b. $\log(\mathrm{i}p)$ v
s $\log(\nu)$ para determinar el cambio de régimen.

Figura 4.13: Gráficos para determinar ν_D , en (a) marcada con flechas rojas donde es más sencillo de determinar debido a la independencia del potencial; en (b) mediante el cambio en la pendiente de régimen en capa delgada (i_p $\propto \nu$) a régimen controlado por difusión (i_p $\propto \nu^{1/2}$).

Una vez que obtenemos el valor de ν_D se combinan las ecuaciones 4.14 y 4.15 para obtener finalmente el valor del coeficiente de difusión de saltos electrónicos entre sitios rédox, D_e según:

$$D_e = \frac{d^2 \nu_D F}{2RT} \tag{4.16}$$

Para los sistemas estudiados con esta metodología, el coeficiente D_e resultó $D_e = 1.6 \times 10^{-9} \,\mathrm{cm}^2 \,\mathrm{s}^{-1}$, tres ordenes de magnitud menor que para una sonda típica libre en solución acuosa $(D \approx 10^{-6} \,\mathrm{cm}^2 \,\mathrm{s}^{-1})$.

Determinación de D_e mediante AVC

El segundo enfoque que se utilizó para calcular D_e fue mediante el uso de la técnica de voltametría de corriente alterna (ACV). Esta técnica es muy útil para el estudio de parámetros cinéticos en sistemas reversibles. Permite fácilmente, para pequeñas perturbaciones, discriminar la componente de corriente continua de la de corriente alterna en función del potencial aplicado. Los voltagramas de la figura 4.14 muestran la respuesta de una SF cargada con ARu. Se aplicó una una perturbación de 10 mV a una frecuencia de 1 y 2 Hz.

El desarrollo de descomponer y combinar las ecuaciones para las componentes de corriente alterna y directa en función de campo eléctrico, deriva en una ecuación (ec. 4.17) que permite calcular el coeficiente de difusión,³³ el cual dió como resultado $D_e=4.5 \times 10^{-9} \,\mathrm{cm}^2 \,\mathrm{s}^{-1}$.

$$D_e = \sqrt{\frac{i_p \ 4RT}{n^2 F^2 A C \Delta E \omega^{1/2}}} \tag{4.17}$$

Potencial vs ECS/mV

Figura 4.14: Voltametría de corriente alterna para una película satura con AR
u. Se aplicó una perturbación de 10mV y una frecuencia de 1 y 2 Hz en solución de KCl
 100 mM usando como referencia ECS.

Resulta interesante remarcar las diferencias de ambos métodos. El primero se basa en calcular la velocidad de barrido característica para el espesor de una película delgada. El segundo utiliza el dato de la concentración de adsorbato para estimar el coeficiente de difusión mediante la técnica de ACV. Ambos métodos, estiman el valor de D_e desde diferentes aproximaciones, dando un valor de D_e comparable y dentro del mismo orden de magnitud $(10^{-9} \text{ cm}^2 \text{ s}^{-1})$ validando el modelo que se propuso para el sistema estudiado.

4.4.3. Simulaciones por elementos finitos

A partir de la experiencia acumulada, y en base al modelo propuesto sobre el transporte de carga para estos sistemas preconcentradores, se planteó la posibilidad de utilizarlos como mediadores electroquímicos. La mediación en sistemas análogos, basados en polímeros con complejos electroactivos, es bien conocida.^{233,235} Por lo tanto, para determinar si son sistemas con la capacidad de transportar la carga de una sonda electroquímica (ya sea neutra, positiva o negativa), desde la interfaz mesoporoso|solución hasta el electrodo, se diseñó un experimento de mediación electroquímica. El mismo consintió en cargar una SF completamente con ARu, retirar la solución y colocar una solución con FcOH en electrolito soporte, KCl 100 mM. El voltagrama de la figura 4.15 muestra la respuesta que se obtuvo de este experimento (negro) y se compara, en el mismo gráfico, con un voltagrama de FcOH en una SF no cargada (gris) y en un electrodo de Au desnudo (punteado).

Allí se observa que la señal del FcOH es de una intensidad comparable con la que la que se obtiene en un electrodo de Au desnudo. Se desprenden a partir de estos resultados dos hipótesis: que la señal del FcOH se debe a una mediación electroquímica entre el ARu y el electrodo o bien que el FcOH está permeando a través de la película por algún cambio debido a la adsorción del ARu en la película. Cabe destacar que la señal del FcOH en la película cargada de ARu es mucho más intensa que la que corresponde a colocar FcOH en una SF sin ARu (voltagramas negro y gris respectivamente).

Figura 4.15: Mediciones electroquímicas de FcOH 5 mM en solución de KCl 100 mM sobre un electrodo de Au desnudo (--), sobre una SF (---) y sobre una SF con ARu adsorbido (---).

Para poder discriminar e interpretar cuál es el proceso que está dando origen a la señal, se recurrió a experimentos de simulación. Se trabajó en conjunto con el Dr. Tagliazucchi del Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE) haciendo simulaciones por elementos finitos con el programa *COMSOL Multiphysics*[®].

Se utilizó un modelo el cual considera un electrodo recubierto con una película delgada de 200 nm de espesor saturada de $[Ru(NH_3)_6]^{3+}$ en una concentración de 1 M. Para una descripción detallada de los parámetros utilizados se pueden consultar en la sección 2.4.3, pág. 44.

La primera simulación (figura 4.16) tiene en cuenta dos sondas, una adsorbida y otra libre en solución (en los caso experimentales presentados ARu y FcOH respectivamente), y se varía la diferencia del potencial de reducción estándar entre ambas sondas, ΔE° . El objetivo de esta simulación es establecer alguna valor límite de ΔE° a partir del cual la mediación es posible.

Potencial vs ECS/mV

Figura 4.16: Simulación por elementos finitos de voltagramas cíclicos para la mediación entre una sonda en solución y una SF con ARu 1 mM. En el eje de la abscisas se coloca la diferencia de potencial estándar para cada una de las sondas con ECS.

Para una separación de potenciales nula ($\Delta E = 0$) se observa que la densidad de corriente de ambas sondas se suman, dando por resultado un voltagrama prácticamente simétrico para las corrientes de óxidación y reducción (voltagrama punteado). A medida que ΔE aumenta se puede observar cómo la densidad de corriente de pico de la sonda adsorbida permanece constante y a su vez se destaca cómo disminuye la densidad de corriente de la sonda en solución. De este análisis se desprende que la mediación electroquímica es posible, sin embargo para $\Delta E^{\circ} > 300 \text{ mV}$ la corriente debida a la oxidación/reducción de la sonda en solución disminuye sensiblemente, y para una separación de más de 400 mV solo se observa un pequeño pico que corresponde al proceso de oxidación de la sonda en solución (FcOH) mediada por la sonda adsorbida en la película (ARu).

En experimentos de laboratorio (consultar sección 2.4.5, pág. 47), la separación de potenciales estándar del ARu y del FcOH es de aproximadamente 400 mV para medidas independiente y sobre electrodos de Au. Por la tanto, es de esperar que la señal observada para el FcOH en la figura 4.15 se trate de un proceso de permeación y no de mediación.

Se realizaron dos nuevas simulaciones, ahora permitiendo que ocurran, simultáneamente, los procesos de mediación y permeación. Los parámetros variables fueron el coeficiente de difusión del FcOH dentro de la película, D_{Fc} y la constante para la reacción de mediación rédox, k. En el gráfico 4.17a, la mediación no es posible por una imposición propia de la simulación, donde k=0. Allí se observa que la permeación ocurre para $D_{Fc} \gtrsim 10^{-10} \text{ cm}^2 \text{ s}^{-1}$ y a partir de $10^{-6} \text{ cm}^2 \text{ s}^{-1}$ llega a un valor límite para el cual la respuesta se mantiene constante.

En el caso de hacer simulaciones que permitan la mediación rédox, asignando una valor $k = 1000 \,\mathrm{M^{-1}\,s^{-1}}$ para la constante cinética de intercambio electrónico para la mediación, se pone de manifiesto que la permeación es el proceso dominante para valores de $D_{Fc} \gtrsim 10^{-6} \,\mathrm{cm^2\,s^{-1}}$ (figura 4.17b). Para constantes de difusión $D_{Fc} \gtrsim 10^{-8} \,\mathrm{cm^2\,s^{-1}}$ se manifiestan ambos procesos, la mediación y la permeación, y para valores de $D_{Fc} \lesssim 10^{-10} \,\mathrm{cm^2\,s^{-1}}$ ya no es posible de observar permeación y solo se ve un pequeño pico atribuible a un proceso de mediación rédox. Audebert y col. reportaron valores de coeficientes de difusión en éstos ordenes de magnitud para sistemas similares.²³⁶

a. Simulación de mediación y permeación con $k = 0 \text{ M}^{-1} \text{ s}^{-1}$.

b. Simulación de mediación y permeación con $k = 1000 \text{ M}^{-1} \text{ s}^{-1}$.

Figura 4.17: Simulaciones de permeación y mediación rédox para una PDM de 200 nm de espesor cargada con ARu 1 M. Las mismas se llevaron a cabo utilizando dos constantes de mediación, k = 0 y $k = 1000 \text{ M}^{-1} \text{ s}^{-1}$, variando el coeficiente de difusión del FcOH dentro las películas.

En la sección 4.3 se calculó el coeficiente de difusión del FcOH utilizando los sistemas fabricados a bajas temperatura por el método de alto vacío, el cual resulto ser $D_{Fc}=2.5 \times 10^{-9} \,\mathrm{cm}^2 \,\mathrm{s}^{-1}$. Bajo estas condiciones, deberíamos observar en los resultados experimentales, de acuerdo a las simulaciones, ambos fenómenos, mediación rédox y permeación.

Con las simulaciones que se han realizado y, comparando en un mismo gráfico, los experimentos simulados con los experimentos realizados en el laboratorio (figura 4.18), se puede interpretar cúal es el fenómeno de transporte de carga/masa dominante en los sistemas estudiados. Resulta evidente que sólo el fenómeno de permeación es el dominante, sugiriendo un cambio en el coeficiente de difusión del FcOH, de $D_{Fc} = 2.5 \times 10^{-9} \,\mathrm{cm^2 \, s^{-1}}$ a, por lo menos, $D_{Fc} = 10^{-6} \,\mathrm{cm^2 \, s^{-1}}$, el cual es un valor más próximo al calculado para sistemas calcinados, $D_{Fc} = 4.3 \times 10^{-6} \,\mathrm{cm^2 \, s^{-1}}$ (ver sección 4.3, pág. 97).

La interpretación de estos resultados es que los sistemas porosos, condensados y extraídos a baja temperatura, van cambiando su estructura a medida que el ARu se adsorbe en su superficie de los poros, permitiendo, luego que el FcOH difunda más libremente hacia el electrodo, de forma similar a lo observado para sistemas calcinados. Como veremos más adelante estos resultados son compatibles con un proceso de disolución de la sílice catalizado por la adsorción de $[Ru(NH_3)_6]^{3+}$.

Potencial vs ECS/mV

Figura 4.18: Comparación entre resultados experimentales y de simulación. Los parámetros de la simulación fueron $k = 1000 \text{ M}^{-1} \text{ s}^{-1}$, $D_{Fc} = 10^{-6} \text{ cm}^2 \text{ s}^{-1}$ con FcOH 5 mM en un PDM con ARu adsorbido 1 M. El experimento de laboratorio fue realizado con las mismas concentraciones para ambas sondas.

4.4.4. Discusión sobre el efecto de K y D_e sobre la medición electroquímica

Se presentan en esta sección algunas consideraciones sobre la termodinámica de la medición rédox en general y una discusión sobre cómo se ve afectada dicha mediación por las condiciones de contorno en este trabajo. Particularmente se analiza como influye en la corriente límite de mediación para un proceso anódico la diferencia de potenciales formales del ARu y el FcOH y el coeficiente de difusión electrónico dentro de las películas mesoporosas, D_e .

4. Electroquímica en películas delgadas mesoporosas

Laviron y colaboradores²³⁸ describen la situación de equilibrio en una interfaz electrodo|polímero según la siguiente ecuación:

$$\frac{\omega}{\rho} = \exp\left(\frac{E - E^{\circ}_{\omega/\rho}}{RT/nF}\right)$$
(4.18)

donde ω y ρ son respectivamente las concentraciones de las especies reducidas y oxidadas del polímero en la interfaz electrodo|polímero, E es el potencial de electrodo medido respecto a un electrodo de referencia, $E^0_{\omega/\rho}$ es el potencial formal del mediador rédox y F la constante de Faraday. Si el sistema está en equilibrio, no hay flujo de corriente neta y las concentraciones ω y ρ en toda la película deben ser uniformes debido a la condición de equilibrio material dentro del polímero. Por lo tanto, las concentraciones de ω y ρ en la interfaz polímero|solución son las dadas por la ecuación 4.18.

Como ya se discutió anteriormente se puede establecer una analogía entre el comportamiento de los sitios rédox en polímeros y en películas delgadas mesoporososa. La concentración de sitios rédox es igual a la suma de las concentraciones de las especies reducidas y oxidadas, $\phi^e = \omega + \rho$, dicha concentración ya fue estimada anteriormente en la sección 4.4.1. Ésta relación para los sitios rédox se puede combinar con la ecuación 4.18 para obtener la constante de equilibrio que gobierna la reacción de la interfaz (ecuaciones 4.20 y 4.19 respectivamente), donde O y R son las especies oxidada y reducida en solución y C_R y C_O las respectivas concentraciones.²³³

$$\rho + O \iff \omega + R$$
 (4.19)

$$K = \frac{\omega C_R}{\rho C_O} = \exp\left(\frac{E_{O/R}^\circ - E_{\omega/\rho}^\circ}{RT/nF}\right)$$
(4.20)

Si ahora se reemplaza ω/ρ por la ecución 4.18 se obtienen la expresión:

$$\frac{C_R}{C_O} = \exp\left(\frac{E_{\omega/\rho}^\circ - E}{RT/nF}\right) \tag{4.21}$$

Esta expresión, que no es otra cosa que la ecuación de Nernst, demuestra que en el equilibrio las concentraciones de O y R quedan determinadas por el potencial del electrodo, de la misma manera que sucedería en un electrodo metálico sin recubrimiento. Esto significa que, independientemente de los valores que puedan adoptar los potenciales formales de los pares rédox en la película y la solución, no existen impedimentos termodinámicos para que el par rédox en la solución reaccione en cualquiera de los dos sentidos, hacia la reducción o la oxidación.

Ybarra y col.²³⁹ estudiaron el caso para sistemas en estado estacionario. Los autores encuentran una expresión simplificada para la corriente anódica cuando la velocidad de transporte de carga en el mediador es relativamente lento (i_e) y la K (que depende de la separaciones de los potenciales formales) es relativamente grande y, definen la corriente i_{lim} en función de estos dos parámetros.

$$i_{lim} = \frac{i_e}{K} \tag{4.22}$$

La ecuación 4.23 es relevante porque demuestra que en ciertos casos la corriente de mediación resulta de la combinación de dos factores: un transporte de carga lento en el mediador (consecuencia de un bajo coeficiente de difusión electrónica o un gran espesor de película) y de una termodinámica que desfavorece la reacción (representada a través del alto valor de la constante de equilibrio de la reacción inversa).²³³ Combinado las ecuaciones 4.20 y 4.22 se obtienen la relación:

$$\log\left(\frac{i_{lim}}{i_s}\right) = \log\left(\frac{i_e}{i_s}\right) - \frac{nF}{RT}\left(E_{O/R}^\circ - E_{\omega/\rho}^\circ\right)$$
(4.23)

donde i_s es la máxima corriente de la sonda en solución. Con el propósito de visualizar claramente como influyen sobre la corriente de mediación (i_{lim}) el coeficiente de difusión dentro de la película D_e y la diferencia de potenciales formales $E_{O/R}^{\circ} - E_{\omega/\rho}^{\circ}$ (ΔE°), se graficó $\log(i_{lim}/i_s)$ vs. ΔE° (figura 4.19). Para diferencia grandes de ΔE° y valores pequeños de D_e se observa cómo la i_{lim} disminuye, y como consecuencia no se observa mediación. En los casos en que $\Delta E^{\circ} < 0$ se favorece la mediación de la especie oxidada, mientras que para los casos en que $\Delta E^{\circ} > 0$ la especie reducida, tal como se observó en las simulaciones de la sección precedente.²³²

Estas ecuaciones fueron obtenidas para condiciones de estado estacionario y, por lo tanto, no pueden aplicarse de forma directa a la interpretación de las características voltamétricas. Sin embargo, las principales conclusiones cualitativas respecto de la influencia del valor de la constante de equilibrio (p. ej. la separación entre los potenciales formales de los pares rédox en la película y la solución) sobre la mediación rédox siguen siendo válidas. Puede esperarse entonces que la corriente de pico anódico en una voltametría cíclica y el espesor dependa de la separación entre los potenciales formales, el coeficiente de difusión electrónica (p. ej. el cociente De/K) de una manera similar a la expresada en la ecuación obtenida en condiciones de estado estacionario.

Figura 4.19: Dependencia de la relación i_{lim}/is variando el coeficiente de difusión dentro de la película D_e en función de la separación entre potenciales formales para el mediador y la sonda para una película de 200 nm de espesor.

Ambas contribuciones van en demérito de la mediación rédox, por lo tanto es esperable que no observemos mediación para los casos estudiados debido al bajo valor de D_e y a la diferencia de potenciales entre las especies que contribuye a una K alta.

4.4.5. Estabilidad de las películas delgadas mesoporosas de SiO_2

Como ya se ha demostrado, al poner en contacto una solución de ARu sobre una SF, la película se va cargando con la sonda hasta alcanzar la saturación. Una vez saturada, la concentración de la sonda dentro de la película debería permanecer constante; en este punto, una vez alcanzado el valor máximo de corriente, los sucesivos voltagramas deberían ser equivalentes.

Sin embargo, experimentalmente esto no ocurre y al ciclar constantemente el sistema se obtienen los voltagramas de la figura 4.20, experimento donde se adsorbió ARu 1 mM. Se observa que la película se va cargando conforme

Potencial vs ESC/mV

Figura 4.20: Ciclos sucesivos de VCs para ARu 1 mM en solución de KCl 100 mM. Se observa aquí como se carga para luego recuperar la señal de un electrodo de Au desnudo, debido a la disolución de la SF.

aumenta el número de ciclos, y adsorbe cada más ARu hasta llegar a un valor máximo de adsorción, indicado por la curva azul. Si se continúa ciclando el sistema, el mismo evoluciona hasta la curva roja (indicado por las fechas), la cual tiene la misma forma que un voltagrama para ARu sobre un electrodo de Au desnudo (ver figura 2.23a). Esto sugiere que las SF podrían disolverse luego de realizar algunos ciclos de VC. De hecho, si se realizan suficientes ciclos, se puede observar al microscopio óptico el Au desnudo en el área sobre la cual se realizaron las mediciones EQ (ver figura A.35).

Si bien la solución está a un pH (5,5) donde la disolución de las SF debería ser mínima o nula, las mismas parecen disolverse con bastante facilidad, mostrando siempre el comportamientos del voltagrama de la figura 4.20, independientemente del tratamiento posdepósito o de la concentración de la sonda utilizada.

Se diseñaron experimentos para determinar la causa de la disolución, ya que podría ser función del pH, la sonda o el potencial aplicado, entre otras. Se han

aislado estas variables dejando sumergidas las SF en solución con electrolito soporte (KCl 100 mM), con y sin ARu durante varios días, no habiéndose observado disolución alguna de las PDM. Tampoco se ha observado disolución cuando se utilizan sondas neutras o negativas, como FeCN, hidroquinona o FcOH. En resumen las SF sólo se disuelven cuando se realizan voltametrías cíclicas consecutivas en presencia de solución de ARu .

En la figura 4.21 se graficó la razón entre la intensidad de pico de un electrodo recubierto con SF y uno desnudo para tres concentraciones de AR
u distintas.

Figura 4.21: Razón entra la intensidad de pico catódica para ARu de un electrodo recubierto con PDM y uno sin recubrir, la línea roja indica cuando i_p / i_p^{Au} = 1. Cabe destacar que al disminuir la concentración de ARu en solucón aumenta el poder preconconcentrador. Zona I: adsorción, zona II: máxima preconcentración, zona III: disolución.

En estos gráficos se puede fácilmente visualizar la capacidad de preconcentrar y la cantidad de ciclos antes de la disolución. Se pueden dividir en tres zonas, I) zona de carga, II) zona de máxima adsorción y III) zona de disolución o de pérdida de la mesoestructura. Todas las medidas que se hicieron en este trabajo fueron realizadas dentro de la zona II, asegurándose la máxima adsorción del ARu . Al ingresar y adsorberse el ARu se produce, por cada ciclo de mediación, un movimiento de iones y contraiones desde y hacia la película, debido a los cambios de estado de oxidación de la sonda por el potencial aplicado, y a la necesidad de compensar la carga. Se puede hacer una analogía con los sistemas de rédox poliméricos, en los cuales al colocarlos en una solución con electrolitos se produce un cambio de volumen, denominado *swelling*, debido al ingreso de los mismos.²³³ En estos sistemas formados por óxidos inorgánicos, mas rígidos, el cambio en el volumen es mínimo,¹⁶⁵ sin embargo el movimiento de los iones y contraiones parece provocar cambios irreversibles en la estructura de la película mesoporosa que llevan, finalmente, al colapso de la misma.

4.5. Transporte en PDM mixtas Zr/Si

Con la intención de mejorar la resistencia química y mecánica de los sensores, minimizando los procesos de disolución, se prepararon películas delgadas incorporando una pequeña cantidad de circonio a la matriz de sílice, las cuales llamaremos SZF. Se conoce que el Zr(IV) es capaz de estabilizar el SiO₂ en medio alcalino,⁹² de esta forma se espera obtener películas delgadas que no se deterioren durante las mediciones EQ, sin perder la exclusión de iones ni la química superficial que ofrecen las películas de SiO₂. Son muchos los trabajos en la literatura en los cuales depositan películas mesoporosas de ZrO₂ puras, mixtas con TiO₂, con SiO₂, e incluso con VO_x.^{29,32,92,103,167,240,241} En este trabajo se utilizó un sol de relación Si/Zr 9:1 de forma de evitar la segregación de fases.⁹² Se estructuraron los poros con Pluronic F127 y se depositaron las películas sobre electrodos de Au y obleas de silicio (consultar sección 2.1.1 sobre detalles de preparación y depósito del sol). Para la condensación y extracción se escogió el método de alto vacío (en lugar de la clásica calcinación), el cual se desarrolló y se estudiaron los resultados extensamente en este mismo trabajo (ver capítulo 3). En los trabajos de Soler-Illia y col.⁹² y de Crepaldi y col.,²⁹ los autores concluyen, entre otras cosas, que las SZF sufren menor deterioro a los tratamientos térmicos, y sugieren que presentan mejor resistencia a entornos ácidos y básicos respecto de sus homologas, las películas hechas de óxido de silicio exclusivamente. Manzini y col.²⁴⁰ también reportaron la fuerte resistencia mecánica de las películas de ZrO₂ mesoporosas frente a la radiación ionizante.

4.5.1. Exclusión

Al introducir Zr(IV) en las películas delgadas se espera un corrimiento del IEP hacia un pH mayor.²²¹ Sin embargo al incluir solo un núcleo metálico de Zr cada diez de Si, esperamos mantener un IEP más próximo al del SiO₂ y, consecuentemente, observar propiedades similares a las que ya se presentaron para las SF. Se evaluó, en primera instancia, si a pH=5,5 las SZF presentan capacidad

Figura 4.22: Respuesta comparativa de un electrodo de Au recubierto con SZF (sólida) y uno sin recubrir (punteado) frente a una sonda $[Fe(CN)_6]^{4-/3-}$ 1 mM en 0,1 M de KCl utilizando ECS como referencia.

de excluir electrostaticamente sondas negativas. El voltagrama de la figura 4.22 muestra la respuesta del electrodo frente a una solución de FeCN 1 mM y se compara con un electrodo de Au desnudo. Se puede observar claramente cómo la sonda no puede ingresar en la película debido a la repulsión electrostática dada por la carga negativa de las paredes de los poros de las SZF.

4.5.2. Preconcentración y estabilidad

Para estudiar la capacidad de preconcentrar de las SZF se realizaron los mismos experimentos que para las SF. Se puso en contacto un electrodo recubierto con SZF con solución de ARu de distintas concentraciones.

Como se observa los voltagramas de la figura 4.23, las SZF, al igual que las SF, adsorben y preconcentran fuertemente una sonda positiva como el ARu, incluso a concentraciones tan bajas como $10 \,\mu$ M. Se hicieron ciclos de VCs para evaluar la estabilidad de las SZF frente a las mediciones EQ y a la migración de iones que se genera en dicho proceso.

Figura 4.23: Adsorción de ARu en SZF a diferentes concentraciones de la sonda. Los voltagramas grises (—) indican el ingreso de la sonda en la red nanoporosa, los negros (—) corresponden a la máxima preconcentración y los voltagramas punteados (--) son la respuesta en electrodos de Au desnudo. Todos los voltagramas fueron medidos a 50 mV s⁻¹ en solución de KCl 100 mM.

Se graficó la intensidad de pico relativa a la intensidad en un electrodo de Au desnudo, tal como se hizo para las SF. Aquí se observa que, para ARu 0,1 mM luego de 360 ciclos la intensidad solo disminuyó un 15%, y, para ARu 1 mM luego de 600 ciclos solo un 20% lo que sugiere que la velocidad de disolución es mucho más lenta que para las películas puras de SiO₂ (figura 4.24).

Figura 4.24: Razón entra la intensidad de pico catódica para ARu de un electrodo recubierto con SZF y uno sin recubrir, la línea rojo indica cuando la razón = 1. Zona I: zona de carga, zona II: zona de máxima adsorción.

4. Electroquímica en películas delgadas mesoporosas

Con el propósito de evaluar la estabilidad de SZF con las SF, se han colocado en la figura 4.25 dos gráficos. El primero, figura 4.25a, compara la intensidad relativa a un electrodo de Au en función de la cantidad de ciclos, tanto para SZF como para SF. Se verifica en ese mismo gráfico la disolución total de las SF luego de unos 100 ciclos, mientras que para las mixtas Zr/Si la señal sólo cae un 20 % luego de 600 ciclos. El segundo gráfico, figura 4.25b, muestra las voltametrías cíclicas (para ARu sobre SZF) desde el ciclo 180 al 250, donde se puede observar que los voltagramas son prácticamente equivalentes.

a. Comparación de la razón de la intensidad de pico de ARu 1 mM para CalSF, VacSF y VacSZF respecto de un electrodo de Au.

b. VCs consecutivas para ARu 1 mM sobre VacSZF (ciclos 180 al 250) comparado con la respuesta de un electrodo de Au desnudos (punteado).

Figura 4.25: Estabilidad de las películas SZF frente al ciclado electroquímico. (a) Comparación en intensidad con sistemas CalSF y VacSF. (b) Voltagramas consecutivos correspondientes a los ciclos 180 al 250 donde se observa que todos ellos son prácticamente equivalentes.

4.5.3. Funcionalización

En esta sección se exponen los resultados obtenidos al incluir y anclar grupos moleculares dentro de los poros. Trabajos precedentes abordan el tema sobre la importancia de funcionalizar películas mesoporosas, en los cuales se destaca el diseño y la racionalización de las estructuras que se anclan a los poros para utilizar como membranas permeoselectivas altamente eficientes.^{83,103,152,230,242}

En particular en este trabajo, realizar funcionalizaciones tiene por objetivo cambiar la naturaleza química superficial de los poros, de forma de poder modificar y regular las propiedades permeoselectivas de las películas.

Para obtener resultados sólidos sobre fenómenos de transporte dentro de las películas es necesario que la estabilidad estructural de las mismas no esté comprometida.

En las secciones precedentes se ha demostrado que la incorporación de un 10 % de Zr en el esqueleto inorgánico de las películas de SiO₂ mejora la estabilidad mecánica y la resistencia química sin perder poder de adsorción, incluso frente a SF calcinadas. Es por ello que todos los experimentos que se presentan en esta sección fueron realizados sobre películas mesoporosas de Si_{0,9}Zr_{0,1}O₂ sintetizadas por el método de alto vacío.

Se utilizaron dos moléculas diferentes para incorporar a las películas mesoporosas, dihexadecilfosfato (DHDP) y 3-amino-propil trietoxisilano (APTES). El DHDP se eligió en base a trabajos previos en los cuales se utiliza esta función para tapizar las paredes de películas mesoporosas mixtas de silicio con óxidos de metales de transición, como Zr y Ti, haciendo énfasis en el carácter hidrofóbico que podría generar esta molécula a los poros.^{32,152} La otra funcionalización incorporada fue APTES. Esta molécula se une covalentemente al silicio dejando un grupo amino hacia el interior de los poros, cambiando el estado de carga superficial de las películas.^{76,78,243,244}

Hasta ahora no se han reportado en la literatura trabajos donde se incorporen estas funcionalizaciones sobre electrodos recubiertos con películas delgadas mesoporosas mixtas $Zr_xSi_{1-x}O_2$. Cabe destacar que los resultados expuestos en esta sección cuenta fueron obtenidos de un único multisensor. Esto significa que las reacciones de funcionalización para DHDP y APTES se realizan sobre un único dispositivo, simultáneamente y restringidas al área de un electrodo dentro del multisensor (consulta figura 5.17, pág. 142). La fabricación de los multisensores se abordará en detalle en el próximo capítulo.

4.5.3.i. Incorporación de DHDP

La funcionalización con DHDP se llevó a cabo adaptando la reacción utilizada por Angelomé.³² Se utilizó DHDP 3 mM en películas delgadas de Si_{0,9}Zr_{0,1}O₂ (SZF₃^P). El detalle de las condiciones experimentales se puede consulta en la sección 2.1.4, pág. 26. En su trabajo, Angelomé incorpora DHDP en películas mixtas de Si_xZr_{1-x}O₂ y Si_xTi_{1-x}O₂. Se concluye allí que la reacción se trata de una unión débil de complejación superficial entre el fosfonato y el centro metálico, en este caso el Zr. El esquema de la figura 4.26 representa una SZF₃^P luego de ser funcionalizada.

Figura 4.26: Esquema donde se representa la reacción de DHDP con SZF para obtener películas funcionalizadas con DHDP. Figura adaptada de *Films delgados mesoporosos de óxidos metálicos, mixtos e híbridos. Hacia un diseño racional de nanomateriales funcionales.* Angelomé P., Tesis de Doctorado, Facultad de Ciencias Exactas y Naturales - UBA, 2008.³²

Una vez realizada la funcionalización de las películas se llevaron a cabo sobre las mismas mediciones EQ con FeCN, FcOH y ARu. El resultado se presenta en los voltagramas de las figura 4.27.

En los caso del FeCN y el FcOH (gráficos 4.27
a y 4.27
b respectivamente) se observa un leve aumento de la densidad de corriente en las películas funcionalizadas con DHDP respecto de las no funcionalizadas. Sin embargo, la señal, a igualdad de condiciones, sigue siendo muy pequeña comparada con un electrodo de Au desnudo (
j_{FeCN}^{p} =340 \ \mu A \ cm^{-2} y j_{FcOH}^{p} =98 \ \mu A \ cm^{-2}). Esto indica que el comportamiento es similar en ambos casos: el FeCN queda en gran medida excluido y el FcOH permea en mayor medida.

En las figuras 4.27c y 4.27d se compara la respuesta electroquímica luego de 90 ciclos para SZF y SZF_3^P cuando se coloca una solución de ARu 1 mM. Como ya se mencionó anteriormente en la sección 4.5.2, pág. 115, la sonda positiva se adsorbe paulatinamente en las SZF hasta llegar a la saturación (voltagrama

4.27c). En las películas funcionalizadas con DHDP no pasa lo mismo. Se observa que desde el primer ciclo la señal del ARu corresponde a la de una especie libre, no adsorbida. A medida que aumenta el número de ciclos electroquímicos la sonda ingresa en el mesoporoso rápidamente, llegando a saturación a partir del ciclo 10 aproximadamente (voltagrama 4.27d). En contrapartida en el caso de las SZF requiere mas de 50 ciclos llegar a la saturación. Es interesante destacar que la capacidad final de adsorción no cambia entre los sistemas con o sin DHDP. Esto hecho sugiere que a medida que el ARu se adsorbe desplaza al fosfonato para mantener constante la concentración de ARu dentro de los poros.

Los resultados de incorporar DHDP en los poros parece no tener efecto sobre la carga de las películas, ya que no se ven alteradas cualitativamente las propiedades de transporte. Sigue preconcentrando ARu, excluyendo en gran parte el FeCN y permitiendo la percolación de FcOH. Sin embargo, se observa que se agiliza el transporte de las sondas hacia el electrodo. Esto se pone de minifiesto ya que en las películas SZF_3^P , para ARu, desde el primer ciclo ya se observa la respuesta como una sonda libre en solución, para luego evolucionar como una sonda adsorbida en una cantidad de ciclos mucho menor que en las SZF. Más adelante, una vez analizados los resultados de funcionalizar películas con APTES, se hace una discusión más amplia sobre estas observaciones.

a. Respuesta utilizando como sonda negativa $[Fe(CN)_6]^{4-/3-}$ 1 mM.

c. Respuesta sobre una SZF sin funcionalizar utilizando como sonda positiva $[Ru(NH_3)_6]^{3+}$

b. Respuesta utilizando como sonda neutra FcOH $1\,\mathrm{mM}.$

d. Respuesta sobre una SZF funcionalizada con DHDP usando como sonda positiva $\left[{\rm Ru}({\rm NH}_3)_6\right]^{3+}$ 1 mM.

Figura 4.27: Respuesta comparativa entre SZF funcionalizadas con DHDP y sin funcionalizar. Para cada experimento se tomaron 90 voltagramas consecutivos en KCl 100 mM a $50 \,\mathrm{mV \, s^{-1}}$.

1 mm.

4.5.3.ii. Incorporación de APTES

La incorporación del 3-aminopropil trietoxisilano se hizo en base al protocolo utilizado por Calvo.¹⁰³ En dicho trabajo se estudió profundamente la adición de esta molécula en películas delgadas mesoporosas de SiO₂, TiO₂ y mixtas. La autora concluye que la incorporación de APTES modifica el estado de carga superficial de las PDM lo cual, a un pH determinado, altera sensiblemente el transporte de sondas electroquímicas cargadas. Se ejemplifica en el esquema de la figura 4.28 la funcionalización con APTES incorporada en SZF y su equilibrio ácido-base.

Figura 4.28: Esquema donde se representa la reacción de APTES con SZF para obtener películas funcionalizadas con grupos aminos y la dependencia de la carga con el pH. Figura adaptada de *Films delgados mesoporosos híbridos conteniendo el grupo amino: una plataforma para el diseño y producción de membranas permeoselectivas*, Calvo A., Tesis de Doctorado, Instituto de investigación e ingeniería ambiental - UNSAM, 2010.¹⁰³

Se llevaron a cabo dos funcionalizaciones con diferentes concentraciones de APTES en solución, $1 \text{ mM} \text{ y} 10 \text{ mM} (\text{SZF}_1^N \text{ y} \text{SZF}_{10}^N \text{ respectivamente})$, con el objetivo fue obtener diferentes grados de funcionalización.^{32,103,173} Al igual que en el caso en que se funcionalizó con DHDP, se exponen en la figura 4.29, los voltagramas obtenidos al utilizar FeCN, FcOH y ARu como sondas.

Para la respuesta con FeCN (figuras 4.29a) se puede observar un pico correspondiente a la adsorción de la sonda. Sin embargo al ser el pico tan pequeño, se puede concluir que las películas siguen excluyendo fuertemente la sonda de carga negativa.

En los casos que se usó FcOH (figura 4.29b) se observa que la corriente de pico es similar para ambos, SZF y SZF₁^N. Sin embargo, se observa un cambio cualitativo en la respuesta de la sonda: la diferencia de potenciales de pico catódico y anódico se encuentran desplazados en las SZF₁^N respecto de las SZF. Por otra parte la diferencia entre los potenciales de pico catódico y anódico es menos de 60 mV, indicando que la especie se encuentra adsorbida.

En las figuras 4.29c y 4.29d se exponen los resultados de comparar la respuesta de ARu en SZF y en SZF₁^N respectivamente. Allí se ponen de manifiesto dos cambios en los voltagramas correspondientes a las películas funcionalizadas y a las que no fueron funcionalizadas: el primero es la disminución de la corriente de saturación y el segundo es la cantidad de ciclos necesarios para llegar a dicha saturación (aproximadamente 50 y 100 ciclos respectivamente). Los resultados sugieren que los grupos NH₃⁺ parecen neutralizan parte de la carga negativa de las películas,²⁴⁵ dificultando la adsorción del ARu (la incorporación es mucho más lenta y solo luego de 100 ciclos alcanza la saturación) y disminuyendo la capacidad de adsorción de las SZF₁^N para esta sonda, reducíendola aproximadamente a la mitad que en películas no funcionalizadas.

Se obtuvieron resultados equivalentes para las tres sondas al funcionalizar las SZF con APTES 10 mM (figura A.36). Esto sugiere que se alcanzó el grado máximo de funcionzalización de las SZF con una solución de APTES 1 mM.

a. Respuesta utilizando como sonda negativa $[{\rm Fe}({\rm CN})_6]^{4-/3-}$ 1 mM.

b. Respuesta utilizando como sonda neutra FcOH $1\,\mathrm{mM}.$

c. Respuesta sobre una SZF sin funcionalizar utilizando como sonda positiva $\left[\mathrm{Ru}(\mathrm{NH}_3)_6\right]^{3+}$ 1 mM.

d. Respuesta sobre una SZF funcionalizada con APTES 1 mM utilizando como sonda positiva $[{\rm Ru}({\rm NH}_3)_6]^{3+}$ 1 mM.

Figura 4.29: Respuesta comparativa entre SZF funcionalizadas con APTES 1 mM y sin funcionalizar en KCl 100 mM a $50 \,\mathrm{mV \, s^{-1}}$. Para cada experimento se tomaron más de 90 voltagramas consecutivos.

4.5.3.iii. Discusión sobre las funcionalizaciones

En los apartados anteriores quedó demostrado que al funcionalizar las SZF se afecta significativamente la permeoselectividad y los propiedades de transporte de las PDM. Aquí se busca resumir y analizar en modo sintético los datos expuestos anteriormente.

En el gráfico de la figura 4.30 se expone la evolución de los ciclos electroquímicos para ARu en distintos sistemas. Para ello se extrajeron los valores de máxima densidad de corriente anódica en función del potencial al que aparece dicho máximo. Las mediciones fueron realizadas sobre un multisensor con distintos electrodos: 1) de Au desnudo; 2) recubierto con SZF sin funcionalizar; 3) recubierto con SZF funcionalizado con APTES (SZF₁^N); y 4) recubierto con SZF funcionalizado con DHDP (SZF₃^P).

Figura 4.30: Intensidad de corriente de pico anódico vs potencial de pico de $[Ru(NH_3)_6]^{3+}$ para diferentes funcionalizaciones sobre películas delgadas mesoporosas de Si_{0,9}Zr_{0,1}O₂. Los puntos rojos correponden a la señal de un electrodo de Au desnudo.

En el gráfico se puede analizar como evoluciona la adsorción de ARu 1 mM en distintos sistemas. Para facilitar la interpretación se remarcó el potencial correspondiente a ARu libre en solución (E_{sol}^p) , el potencial para ARu adsorbido (E_{ads}^p) y la densidad de corriente de ARu obtenida en un electrodo de Au desnudo (j_{Au}^p) . En ese mismo electrodo (Au desnudo) la respuesta es, como era de esperarse, invariable de ciclo a ciclo, salvo por la dispersión propia de cualquier medida EQ. La densidad de corriente relativa a este electrodo indica la capacidad para preconcentrar de cada sistemas, mientras mayor sea la diferencia, mayor será la capacidad de preconcentrar. Es interesante remarcar que este gráfico aporta y compacta información termodinámica y cinética sobre la absorción de ARu dentro de las películas, aportando un punto de vista novedo-so sobre la dinámica (evolución temporal) de la adsorción para estos sistemas o para sistemas equivalentes.

El potencial de pico anódico (ubicado en el eje de las abscisas) indica la evolución de la especie ARu libre a la especie ARu adsorbido. Se pueden extraer algunas observaciones interesante para cada uno de los sistema: SZF, SZF₃^P y SZF₁^N. En las películas sin funcionalizar el sistema evoluciona con un régimen mixto (caracterizado por escalada suave de corriente en función del potencial), en el cual se manifiesta el transporte de carga mediante ARu adsorbido y el transporte de masa mediante ARu libre, el cual difunde dentro de los poros como una especie en solución. Para el caso de películas funcionalizadas con DHDP se observa que se encuentra muy favorecida la difusión de ARu al electrodo y que rápidamente el sistema evoluciona al adsorbido, manteniendo la misma capacidad de preconcentrar la sonda. Finalmente en el caso en que se funcionalizaron las SZF con APTES se observa que el ARu está impedido de difundir y que la corriente aumenta de forma abrupta cerca del potencial que corresponden con la especie ARu adsorbida. Este fenómeno se puede apreciar bien en los volta-

gramas de la figura 4.31 en la cuál se comparan los primeros 14 ciclos sobre una SZF sin funcionalizar con los primeros 45 ciclos en una película funcionalizada con APTES. Se destaca en la figura con flechas la evolución en cada sistema, en particular en las películas funcionalizadas se ve cómo la corriente aumenta pero el potencial correponde siempre al de la especie adsorbida.

Figura 4.31: Voltagramas cíclicos de AR
u sobre películas funcionalizadas con APTES (SZF_1^N) y sin funcionalizar (SZF) donde se destaca la diferente cinética de adsorción para cada sistema.

Por otra parte en las SZF_1^N , la densidad de corriente de pico es la mitad que en una SZF, indicando que la capacidad de preconcentración disminuyó en un 50 %. Ambas observaciones, tanto el impedimento de libre difusión del ARu como la disminución en la capacidad de preconcentrar, se pueden atribuir al cambio de carga superficial en las SZF debido a la incorporación de los grupos amino, que al pH de trabajo se encuentran protonados como NH_3^+ .²⁴⁵

4.6. Conclusiones

Durante los capítulos previos se han estudiado y desarrollado métodos para depositar películas delgadas mesoporosas de SiO_2 y $Si_{0,9}Zr_{0,1}O_2$ sobre electrodos de Au. A su vez, se idearon mecanismos de condensación y extracción del surfactante a temperaturas por debajo de los 130 °C.

Una vez terminadas estas etapas, se realizó un exhaustivo estudio de las diferentes respuestas electroquímicas en función de las interacciones de las PDM con las sondas utilizadas, con el propósito de estudiar las propiedades permeoselectivas que pudieran presentar. Se verificó la exclusión del $[Fe(CN)_6]^{4-/3-}$ (negativa), la permeación del FcOH (neutra) y la adsorción del $[Ru(NH_3)_6]^{3+}$ (positiva). Los resultados sobre estas últimas permitieron, por primera vez, reportar la concentración de ARu dentro de las películas, evaluar la capacidad de preconcentración, estimar la constante de Langmuir y calcular valores de coeficientes de difusión, ya sea por transferencia de masa (como en el caso del FcOH) o por transferencia de carga vía *electron hopping*, como en el caso del ARu. Se simularon voltametrías cíclicas por elementos finitos para interpretar resultados de experimentos de mediación rédox, donde se intentó mediar la respuesta electroquímica de una sonda a través de una PDM saturada con ARu. Se establecieron las condiciones de contorno para las cuales se podría o no dar dicho proceso y, avanzando con las simulaciones, se pudo determinar cual es el fenómeno dominante: mediación o permeación. Se realizó un análisis más profundo mediante el cual se pudo establecer cuáles son los procesos que podrían tener lugar dentro de las películas porosas y cómo influye sobre estos el coeficiente de difusión dentro de la película (D_e) y la constante de equilibrio entre la sonda en solución y el mediador.

Se demostró la disolución por completo de las SF durante el ciclado electroquímico. Este comportamiento se ha verificado para cualquier tipo de película de SiO₂ (ya sea calcinada o no, sobre ITO o sobre Au). En la mayoría de los casos la disolución es completa a partir de ciclo número 90. Este fenómeno se ha interpretado como una disolución catalizada por el ciclado electroquímico debida a la migración de iones y contraiones entre la película y la solución. Con el objetivo de minimizar dicha disolución, se sintetizaron películas delgadas mesoporosas de óxidos mixtos de Si y Zr con el método de alto vacío (desarrollado en este mismo trabajo). Se verificaron las mismas capacidades permeoselectivas (exclusión, permeación y preconcentración) que las películas de SiO₂, pero con una resistencia química y mecánica muy superior, pudiéndose llevar a cabo hasta 600 ciclos electroquímicos con una disminución de la señal sólo del 20 %.

Una vez superados los problemas de estabilidad de las PDM sometidas al ciclado electroquímico, se avanzó en la selectividad de las películas. Se depositaron sobre los sensores películas $Si_{0,9}Zr_{0,1}O_2$ obtenidas por el método de alto vacío. Luego se funcionalizó las PDM sobre algunos de sus electrodos con el objetivo de modificar las propiedades de transporte. Se incorporó a uno de los electrodos mesoporosos dihexadecilfosfato y a otro 3-aminopropil trietoxisilano, dejando uno sin funcionalizar y otro de Au desnudo. El análisis de los resultados de las mediciones electroquímicas mostró que las propiedades de transporte se vieron modificadas significativamente debido a estas funcionalizaciones. Se estudió en particular cómo se modifica la capacidad y la cinética de adsorción del $[Ru(NH_3)_6]^{3+}$ al incorporar los distintos tipos de moléculas. Los resultados obtenidos en función de dichas modificaciones químicas se utilizarán en el próximo capítulo como base fundamental para llevar a cabo pruebas de concepto en el desarrollo de multisensores electroquímicos permeoselectivos.

Capítulo 4

Microfabricación de multisensores electroquímicos

Contenido

5.1. Intr	oducción
5.2. Microfabricación de los multisensores	
5.2.1.	Consideraciones sobre el diseño
	5.2.1.i. Primer diseño
	5.2.1.ii. Segundo diseño
5.2.2.	Transferencia de los diseños
5.2.3.	Películas delgadas de Au 134
5.2.4.	Decapado de la fotorresina o <i>lift-off</i> 135
5.3. Inco	mpatibilidad top-down/bottom-up $\ldots \ldots \ldots \ldots \ldots 138$
5.3.1.	Reestructuración de la superficie de los electrodos 139
5.3.2.	Difusión de contaminantes
5.4. Multisensores de respuesta selectiva	
5.4.1.	Respuesta para ARu, FeCN y FcOH sobre multisensores 143
5.4.2.	Análisis multivariable de la respuesta electroquímica 145
5.5. Conclusiones	

5.1. Introducción

El diseño y desarrollo de un multisensor electroquímico selectivo, integrado y escalable basado en PDM consta de dos bloques constructivos fundamentales: los electrodos y las películas delgadas mesoporosas. En el capítulo 3, se discutió y analizó la elección de los materiales para conformar la película delgada mesoporososa con la cual se recubren los electrodos. En el capítulo 4 se realizó un estudio profundo de las propiedades permeoselectivas, la capacidad de preconcentrar, excluir y sobre la estabilidad química de dichos recubrimientos sobre electrodos de Au.

La integración de los procesos *bottom-up*, propios de procesos de síntesis químicas, y *top-down*, aquellos usados en microfabricación, nunca es trivial. El sólo hecho de depositar soles con precursores de óxidos sobre oro, que resulten en películas delgadas homogéneas, bien adheridas, sin grietas ni fisuras, ya es un desafío, como se vió en el capítulo 3. El objetivo, luego de desarrollar los métodos a bajas temperaturas para la síntesis de PDM, de optimizar y estudiar su estructura, y de comprender los procesos de transporte a través de las películas, es poder depositar las PDM sobre películas delgadas de oro con motivos arbitrarios en base a un diseño racionalizado y optimizado para usarlo como multisensores.

El depósito de soles sobre una superficie que tenga dos o más capas de distintos materiales trae asociadas dificultades inherentes a las propiedades físicas y químicas de cada uno de ellas. Pueden diferir en el coeficiente de expansión térmica, en la química superficial, en la afinidad por el H_2O o solventes, etc. Es por ello que el diseño debe considerar los materiales que se usarán y sus propiedades, así como racionalizar la estructura de los electrodos considerando resistencia eléctrica, espesor de los electrodos y facilidad para la fabricación. También es fundamental tener en cuenta una serie de factores a la hora de imprimir las máscaras para los sensores. Principalmente, la resolución de línea que se puede obtener según el tipo de máscara, cantidad de electrodos de trabajo por sensor, calcular el área óptima para obtener señales aceptables, estimar resistencia eléctrica, distancias entre electrodos y demás parámetros.

El material para los electrodos también se debe elegir cuidadosamente. Se trata de un compromiso entre tres factores: 1) compatibilidad con el óxido de las películas mesoporosas, 2) obtención de una respuesta electroquímica de calidad y, 3) facilidad para depositarlos y transferir los diseños por litografía.

En esta parte del trabajo se priorizó generar diseños compactos, miniaturizar los electrodos y optimizarlos para obtener respuestas electroquímicas de buen desempeño. El oro posee excelentes propiedades para llevar a cabo reacciones de oxido-reducción y obtener una respuesta confiable y repetible, como ya se pudo corroborar en los resultados preliminares de la sección 2.4.5, pág. 47, para las sondas utilizadas en esta tesis. Si bien el Au es el material óptimo para este tipo de mediciones, existen otros materiales más económicos y, en algunos casos más fáciles de depositar (tintas de carbono, óxido de indio/estaño, carbono vítreo, etc.). Sin embargo, su respuesta electroquímica es poco repetible, su rugosidad es muy variable y tienen grandes desviaciones de la idealidad (sobre todo a altas velocidades de barrido).^{33, 151}

En la primera parte de este capítulo se presentan los resultados colectados durante la fabricación de los microelectrodos. Se da cuenta de los diseños, se

discuten las ventajas y desventajas de los procesos empleados y se pone énfasis en la compatibilidad con los métodos utilizados para el depósito y condensación de las PDM realizados por procesos sol-gel. Una vez fabricados los electrodos de Au se supervisaron, validaron y estandarizaron los procesos de depósito, transferencia del diseño y desempeño electroquímico para luego recubrir los multisensores con películas delgadas mesoporosas. La composición de los soles, parámetros de depósito y los procesos de condensación y extracción de éstas películas fueron cuidadosamente elegidos en función de los resultados obtenidos a lo largo de los capítulos 3 y 4. La película delgadas escogida fue la de composición Si_{0,9}Zr_{0,1}O₂ principalmente por la estabilidad química y mecánica, mientras que el método elegido posdepósito fue el de alto vacío por la compatibilidad con la fabricación de los multisensores.

La segunda parte del capítulo se exponen los resultados de una análisis multivarible para cada una las sondas estudiadas (ARu, FeCN y FcOH) luego de fabricar un multisensor conteniendo electrodos de características distintivas. Dichas diferencias se consiguieron funcionalizando dos de ellos (cada multisensor contiene 6 electrodos de trabajo), uno con una función fosfonato y otro con una función amino, otro con la PDM sin funcionalizar y otro de Au desnudo, quedando dos libres para tener una respuesta redundante de cualquiera de ellos o incluir una tercera o cuarta funcionalización.

Luego se llevaron a cabo las mediciones electroquímicas y realizó un análisis multivariable teniendo en cuenta las propiedades permeoselectivas de cada electrodo, el potencial formal de cada cada sonda y el ciclo de medición, introduciendo estos dispositivos en el campo de los sensores denominados «lenguas electrónicas».^{89,90} Estas pruebas de concepto abren un universo de posibilidad sobre los multisensores, ya que se pueden llevar a cabo una enorme cantidad de funcionalizaciones sobre cada electrodo,^{32,68,103,127,246} aumentar el número de electrodos por multisensores e incluso cambiar el tipo de película delgada mesoporosa para sumar más variables al sistemas. Esto, sumado a los modernos enfoques de análisis de información inteligente, como *big data*²⁴⁷ o redes neuronales,²⁴⁸ presenta un potencial enorme y un panorama prometedor para seguir generando conocimientos y prototipos de multisensores.

5.2. Microfabricación de los multisensores

En las siguientes secciones se analizan los diseños de los sensores y los resultados de la fabricación de los electrodos. Se discuten, también, las técnicas y procesos de microfabricación empleados. Por último, se analiza la compatibilidad de los electrodos con las técnicas *bottom-up* y qué consideraciones se deben tener en cuenta a hora de utilizarlos como sustratos de películas delgadas mesoporosas.

5.2.1. Consideraciones sobre el diseño

Desde el principio de esta tesis surgió la idea de fabricar multisensores. Una plataforma con múltiples electrodos, para cuantificar múltiples analitos, compacta y escalable. Para ello es importante proveer un diseño que tenga en cuenta los procesos que se usan en la industria electrónica, a fin de poder escalar el prototipo. Las siguientes secciones tratan esta temática: de qué manera se pueden generar y optimizar diseños de electrodos para un multisensor y cuáles procesos pueden llevarse a cabo de forma de escalarlos y que sean compatibles con recubrimientos de películas delgadas mesoporososa sintetizadas vía sol-gel.

5.2.1.i. Primer diseño

El primer diseño contempló un multisensor con cuatro electrodos de trabajo (ET) y preveía utilizar contraelectrodo (CE) y electrodo de referencia (ER) externos.

Se trabajó con dimensiones relativamente grandes, con dos geometrías distintas, electrodos circulares con un radio $R=300 \,\mu\text{m}$ y electrodos cuadrados de lado $L=500 \,\mu\text{m}$. Este primer diseño, aunque simple y con un aprovechamiento del espacio poco eficiente, cuenta con algunas ventajas destacadas. Resulta muy económico para la impresión de las máscaras, áreas de electrodos y pistas relativamente grandes (para poder colocar fácilmente puntas de prueba y obtener valores altos de intensidad de modo de familiarizarse con las primeras respuestas EQ), y es sencillo de transferir debido a las dimensiones utilizadas, minimizando problemas de discontinuidades o desperfectos en los electrodos.

La figura 5.1 muestra el resultado de la impresión de este primer diseño. Se puede observar que la impresión de la máscara no es exactamente igual al diseño (5.1c), se destaca una deformación del diseño originada por la baja resolución de la impresora, estableciendo de esta forma limitaciones a la hora de diseñar cuando se imprimen con este tipo de impresoras. La contrapartida es el muy bajo costo de las mismas y la facilidad para obtenerlas en algunas librerías gráficas especializadas, con un costo asociado equivalente a una impresión de alta calidad sobre filminas de tamaño A4.

Figura 5.1: Diseño y máscara para la primera versión de los electrodos. (A) diseño completo con 32 sensores de 4 ET cada uno, (B) Detalles de las marcas de alineación empleadas, (C) microscopía óptica de la máscara donde se ven las imperfecciones de la impresión.
5.2.1.ii. Segundo diseño

El segundo diseño es más compacto y complejo, con un aprovechamiento espacial optimizado y compuesto por sensores cuadrados de 1 cm de lado. Cada uno de ellos tiene, a su vez, 6 ET circulares dispuestos sobre una circunferencia imaginaria, de manera que queden equiangulares entre ellos (ver figuras 5.2 y 5.3). Se hicieron seis tipos de multisensores diferentes, variando el diámetro de los electrodos (con R=300 µm, 200 µm, 150 µm, 100 µm y 20 µm). Además, este diseño contempla la integración del CE y uno para pseudoreferencia en el mismo sensor. El CE se ubica en el centro del diseño y tiene un área 5 veces mayor a la de los ET para no limitar la velocidad de reacción respecto del ET.³³ El ER se ubica rodeando el CE. Esta configuración del CE como del ER, asegura que los valores de resistencia, capacidad y los procesos difusivos sean equivalentes para cada electrodo.³⁴ En la figura 5.2 se muestra en detalle el diseño de uno de los multisensores y el modelado por computadora del mismo con la celda electroquímica incorporada.

Para esta etapa se incluyeron dos máscaras más. Una segunda máscara que integra la celda electroquímica en la oblea (realizada con una resina epoxi fotocurable, figura 5.3c) y una tercera para iluminar específicamente sobre el área de cada uno de los electrodos, con el objetivo de controlar reacciones químicas dentro de los poros, inducidas por luz UV, p. ej. activar un iniciador o controlar el grado de polimerización (figura 5.3d).^{76,249,250} Para ello se incluyeron marcas de alineación individuales en cada sensor. De esta forma se puede alinear individualmente cada sensor con dicha máscara, incluso luego de cortar la oblea e individualizar los sensores. En la figura 5.3 se muestra el juego de máscaras completo usado para este segundo diseño y una microscopía de la máscara ya impresa. Este segundo diseño, mejorado y con electrodos de menor tamaño, requirió una impresión de mejor calidad, lo cual se ve reflejado en la figura 5.3b donde se ve que la impresión es fiel reflejo del diseño, incluso con detalles tan pequeños como cuadrados de 10 µm de lado.

Figura 5.2: Segundo diseño de los sensores. Izquierda: Diseño de un sensor con 6 electrodos de trabajo, contraelectrodo, electrodo de referencia y marcas de alineación. Derecha: Modelo en 3D para un sensor con celda electroquímica. En rojo los electrodos y en verde la resina que forma la celda, el espesor de la misma es de aproximadamente $100 \,\mu\text{m}$ y puede contener un volumen aproximado de $2 \,\mu\text{l}$.

5. Microfabricación de multisensores electroquímicos

a. Máscara para la segunda versión de los electrodos, la cual contiene 46 sensores de 1 cm de lado cada uno.

b. Detalle del diseño de un sensor (A), marcas de alineación (B) y las imágenes de microscopías óptica de la máscara impresa (C) y (D).

 ${\bf c}.$ Máscara para depositar la fotorresina epoxi que dará lugar a la celda electroquímica.

d. Máscara para iluminar específicamente sobre el área de cada uno de los electrodos de cada sensor.

5.2.2. Transferencia de los diseños

Una vez definido el diseño y ya con las máscaras impresas, se realizó la transferencia de los mismos por fotolitografía. Los fundamentos de la técnica ya fueron introducidos en la sección 1.4, pág. 13.

Se eligió una fotorresina de doble exposición (conocida en inglés como *imagereversal*) por estar especialmente diseñada para aplicaciones de decapado o *liftoff*. Las variables de espesor resultante del proceso de *spin-coating*, tiempo y temperatura de secado de solventes, tiempo de irradiación UV, tiempo y tem-

Figura 5.3: Juego de máscaras para la segunda versión de los multisensores, (a) máscaras para los electrodos calesita, (b) detalle para un multisensor individualizado, (c) máscara para trasferir el diseño de las celdas electroquímicas, (d) máscara destinada a iluminar específicamente sobre el área de cada uno de los electrodo para llevar a cabo funcionalizaciones localizadas.

peratura de curado y tiempo de revelado fueron tomados de aquellos valores de referencia que figuran en la hoja de datos provista por el fabricante.²⁵¹ Los valores de los parámetros utilizados y detalles experimentales fueron expuestos en la sección 2.2.3, pág. 33.

Se recomienda, para esta fotorresina, que la relación de aspecto entre el ancho de línea (L) y el espesor (e) sea mayor a 2, de forma de obtener paredes verticales y estructuras mecánicamente robustas.

$$\frac{L}{e} \ge 2, \quad \text{con } e \approx 3 \, \mu\text{m}$$
 (5.1)

A su vez se fijó una rotación especifica $(4000 \text{ min}^{-1}, \text{ velocidad final})$ que determine un espesor de aproximadamente 3 µm para que haya una discontinuidad en el depósito del metal entre las partes con y sin fotorresina, tal como muestra el esquema y la microscopía de la figura 5.4. Esta discontinuidad es necesaria para remover correctamente el metal que está sobre la resina sin arrastrar metal que formará los electrodos.

La variable más delicada es, sin lugar a dudas, el tiempo de revelado, ya que es la que compensa los errores acumulados en el proceso. Cualquier irregularidad

Figura 5.4: Arriba: esquema de la fotoresina depositada y revelada, donde se muestra la relación de espesor respecto del ancho de línea y el sobrerevelado necesario para un correcto decapado. Abajo: corte por FIB para evaluar el sobrerevelado y espesor obtenido luego de la transferencia por litografía.

en el sistema de iluminación, inhomogeneidades en el espesor o calentamiento desparejo se ve reflejado en tiempos de revelado diferenciales para diferentes sectores. Dicho esto, mientras más extenso el sustrato, más difícil es lograr un revelado homogéneo. Es también en este paso donde se regula el «sobrerevelado» o, del inglés *undercutting*, perfil necesario para que no se deposite metal en los laterales de la fotorresina (figura 5.4). El parámetro β es la medida del sobrerevelado, que es la diferencia entre la proyección en el sustrato de la superficie superior y la superficie inferior de la resina. Un $\beta \approx 500$ nm es el ideal para obtener buenos resultados en el procesos de *lift-off*.

En la secuencia de imágenes de microscopia óptica de la figura 5.5 se muestra cómo evoluciona el revelado con el tiempo y, en particular, se ve en la última imagen de esta secuencia, el resultado final de la etapa de litografía y cómo el diseño resultó transferido de manera precisa.

Figura 5.5: Tiempos crecientes de revelado: $2,5 \min$, $3,5 \min$, $4,5 \min$ y $6 \min$). Se aprecia como se disuelve la resina en la solución reveladora indicado por el cambio de color a medida que disminuye el espesor. Se muestra en la última microscopía el revelado completo con un 20% de tiempo adicional para crear el perfil negativo de las paredes, necesario para el proceso de *lift-off*.

Se llevó a cabo una segunda etapa de litografía (luego del depósito de Ti|Au para los electrodos) para colocar una resina fotocurable, epoxi, de alta viscosidad que genera estructuras de hasta 100 µm de altura. En la fotografía de la figura 5.6 se destaca la alta viscosidad de la misma al momento de hacer el depósito por *spincoating*. Nuevamente, los datos del proceso se obtuvieron de la hoja de datos del fabricante^{252, 253} y los detalles experimentales fueron expuestos en la sección 2.2.3, pág. 33. Esta resina se usó para hacer la celda electroquímica, la cual puede

contener un volumen aproximado $2\,\mu l$ de solución. En las microscopías ópticas de la figura 5.7 se muestra el resultado obtenido luego de alinear y depositar esta resina epoxi.

Figura 5.6: Depósito por *spin-coating* de la resina expoxi para encapsular los multisensores. Se destaca la alta viscosidad de la misma, lo que permite formar paredes de hasta 100 μ m de espesor.

a. Alineación de la segunda máscara con la película de Ti
|Au ya depositada.

b. Microscopía de uno de los multisensores con la celda integrada.

Figura 5.7: Resultados de la alineación de la capa de los electrodos con la máscara para transferir la fotoresina epoxi (a) y, (b) detalle de un sensor terminado con celda EQ.

5.2.3. Películas delgadas de Au

Como ya se mencionó anteriormente, los electrodos de los sensores son de Au y fueron depositados por la técnica de pulverización catódica, más comúnmente conocida por su nombre en inglés *sputtering*. La fabricación consistió primero en depositar una capa de al menos de 20 nm de espesor, llamada capa de adherencia, que puede ser indistintamente de Ti o Cr, la cual promueve la adherencia del Au; sin esta capa el Au no adhiere sobre superficies no metálicas.¹²⁵ Una vez depositada la capa adherente y sin romper el vacío de la cámara del equipo, se depositaron 150 nm de Au. El espesor resultó ser el óptimo para lograr un electrodo mecánicamente robusto y con buenas propiedades de conducción eléctrica pero suficientemente delgado para que las películas delgadas mesoporosas sean continuas entre los electrodos y el sustrato. Para cada caso, en condiciones constantes, se puede realizar una curva de calibración. La misma se consigue graficando el espesor de las películas depositadas en función del tiempo de depósito, con el objetivo de establecer la velocidad de depósito y así poder controlar el espesor de la película.

Se optimizaron las condiciones de *sputtering* para obtener películas homogéneas tanto en espesor como superficialmente. Para lograrlo se variaron los parámetros relevantes de la técnica: aceleración de los iones, determinada por diferencia de tensión entre el cátado y ánodo, densidad de corriente y el flujo de Ar. Una vez establecidas dichas condiciones se mantuvieron constante a lo largo del trabajo de tesis. El espesor de las películas metálicas, d, se reguló controlando el tiempo de depósito, t. De acuerdo a los los trabajos de Sigmund⁶⁵ y Seah²⁵⁴ estas variables son directamente proporcionales entre sí y están vinculadas por la ecuación 5.2, donde J es la densidad de corriente, Y el rendimiento de la pulverización, r el radio atómico del material y e_o la carga del electrón.

$$d = \left(\frac{JYr^3}{e_o}\right)t\tag{5.2}$$

Las condiciones de depósito de cada una de las sucesivas capas se detallan en la tabla 2.6, pág. 35, para las películas metálicas y en la tabla 2.7, pág. 35, para el SiO₂.

Para establecer la velocidad de depósito de cada uno de los materiales pulverizados, se midió el espesor resultante de las películas por diferentes técnicas. Para monocapas de Au y espesores pequeños típicamente menores a los 30 nm, se utilizó elipsometría espectrométrica; los detalles experimentales y la base de la técnica ya fueron discutidos en la sección 2.1.7, pág. 28. Para evaluar el apilamiento de sucesivas capas, inspeccionar la homogeneidad transversal y superficial y medir el espesor de cada una de las capas, se tomaron imágenes de MEB asistida por microscopía FIB. Esta técnica permite hacer cortes en el sentido normal al plano de las películas en cualquier área seleccionada.

En la figura 5.8 se puede ver un corte transversal de los electrodos, realizado por FIB, donde se ven los espesores de ambas películas metálicas (Ti y Au), así como la capa dieléctrica de SiO₂. También se aprecia la buena homogeneidad en el espesor de cada una de las capas y en la superficie de la capa de Au, donde ocurrirá finalmente el intercambio electrónico entre las especies rédox. Midiendo los espesores de las capas depositadas a distintos tiempos, podemos establecer la velocidad de depósito, obtenida de la pendiente de la figura 5.9. Como ya se mencionó en reiteradas ocasiones, es de suma importancia conocer y controlar Au Cr SiO₂ $III = \frac{100}{1200} III = \frac{100}{100} IIII = \frac{100}{100} III = \frac{100}{100} III = \frac{100}{100} III = \frac{100$

los espesores de cada una de las capas, ya sean películas delgadas mesoporosas,

densas o metálicas.

Figura 5.8: Corte transversal de los electrodos, donde se observan detalles de la bicapa Cr|Au depositada sobre una oblea de silicio con un depósito aislante de SiO₂.

Figura 5.9: Curva de calibración para establecer la velocidad de depósito de la capa de Au. La misma se realizó por pulverización catódica en las condiciones experimentales detalladas en la tabla 2.6.

5.2.4. Decapado de la fotorresina o *lift-off*

La última etapa de la fabricación de los electrodos es el decapado de la fotorresina, técnica que se conoce más comúnmente con el nombre en inglés, *lift-off*. Consiste en disolver la fotorresina que queda luego del revelado y que se utilizó a modo de capa de sacrificio. En la figura 5.4 se pueden ver los sitios por donde

5. Microfabricación de multisensores electroquímicos

da comienzo la disolución. La fotoresina utilizada es completamente soluble en acetona. Cabe destacar, nuevamente, que es importante la discontinuidad de la película de oro para que tenga éxito esta etapa, ya que, si existe continuidad entre la parte que se quiere dejar y la que no, se generan imperfecciones en los bordes, o se desprende el metal de partes que no se desea. Para ello es muy importante saber bien los espesores que se logran durante el depósito, tanto de fotorresina como de película de Au, para regular la distancia que quede entre el metal en el sustrato y el metal sobre la resina. El esquema y la microscopía de la figura 5.4 presentado anteriormente en la pág. 131 ejemplifica bien esta situación.

Figura 5.10: Proceso de decapado o *lift-off.* Fotografía correpondiente a los electrodos del primer diseño, donde se muestra como a medida que se disuelve la fotorresina se va levantando el metal que está sobre ella.

Por último, es importarte recalcar que es necesario aplicar ultrasonido para un procesado eficiente. No alcanza con una simple inmersión de la oblea en solvente sino que se precisa mantener una constante convección en baño ultrasónico para la completa remoción de la fotorresina. A su vez, este proceso de constante movimiento evita el redepósito del metal liberado sobre los electrodos (figura 5.10), ya que si ocurre este fenómeno es muy difícil, una vez que se seca la oblea, remover el metal de desperdicio que se adhiere a los electrodos. Es en esta etapa final del proceso donde se demuestra si resultaron efectivas las etapas de limpieza y revelado. De haber algún residuo remanente durante la limpieza del sustrato o haber efectuado un revelado incompleto, se producirá indefectiblemente el desprendimiento de los electrodos del sustrato.

Finalmente, en las figuras 5.11 y 5.12, se muestra el resultado final de la fabricación de los electrodos realizados en obleas de cuatro pulgadas (10 cm de diámetro) para los dos diseños elaborados.

5.2.

Figura 5.11: Primer diseño de los sensores. Oblea de silicio de 10 cm de diámetro, capa de SiO₂ y 32 sensores con cuatro electrodos de trabajo cada uno.

Figura 5.12: Segundo diseño de los sensores. Oblea de silicio de 10 cm de diámetro con 46 sensores con 6 electrodos de trabajo, contraelectrodo y pseudoreferencia. También se muestra la celda electroquímica depositada con resina epoxi SU-8.

5.3. Incompatibilidad top-down/bottom-up

Lo primera acción que se llevo a cabo luego de fabricar los electrodos fue la de evaluar su desempeño electroquímico. Para ello se utilizaron sondas rédox de uso regular en electroquímica. En la sección 2.4.5 se demostró que el desempeño de los electrodos es analíticamente satisfactorio para su uso en sensores. La siguiente etapa del trabajo de tesis consintió en el depósito de la película mesoporosa sobre los electrodos. Esta etapa se expuso y se discutió a lo largo del capítulo 3, abordando las técnicas de depósito, el control sobre la síntesis, los parámetros para obtener películas de diferente porosidad, espesor, adherencia, etc.

Previo a los resultados discutidos y analizados en el capítulo 3 y basándose en trabajos similares,^{72, 78, 79, 152} donde utilizan mediciones electroquímicas como herramienta para establecer propiedades de las PDM, se realizaron experimentos preliminares y equivalentes para evaluar el transporte en películas delgadas mesoporosas de SiO₂. En los trabajos citados utilizan vidrio ITO o vidrio FTO como electrodos y llevan a cabo mediciones electroquímicas sobre sistemas clásicos, películas calcinadas y electrodos no miniaturizados. En este trabajo las primeras medidas se realizaron sobre películas mesoporosas de SiO₂ estructuradas con F127, depositadas sobre películas delgadas de Au, y tratadas por la vía de calcinación (350 °C). Los resultados preliminares de estas mediciones (previos al desarrollo de la discusión sobre transporte del capítulo 4) no fueron los esperados. Mostraban, o bien voltagramas «planos», o bien curvas donde la respuesta no era óptima, propia de electrodos con alta resistencia o limitados en la cinética de transferencia electrónica, tal como se muestra en los voltagramas de la figura 5.13.

Figura 5.13: Voltametrías para $[Fe(CN)_6]^{4-/3-}$ (izquierda) y $[Ru(NH_3)_6]^{3+}$ (derecha) tomados a 50 mV s⁻¹ sobre electrodos de Au calcinados, en los cuales la respuesta es deficiente para ambas sondas, producto de una transferencia electrónica impedida.

El estudio de porqué la respuesta era muy diferente a la reportada para estos sistemas calcinados se abordó de forma sistemática. Se plantearon cuatro hipótesis: 1) contaminación de los reactivos, 2) poros bloqueados, 3) difusión de impurezas y, 4) reestructuración de la superficie de los electrodos de Au. Las dos últimas como consecuencia directa del proceso de calcinación.

Para evaluar la hipótesis de contaminación en los reactivos, se repitió la preparación de los soles, de las soluciones con las sondas, se reemplazaron los solventes y el electrolito soporte por nuevos reactivos. La respuesta electroquímica seguía siendo deficiente por lo que se descartó esta hipótesis. Las hipótesis de poros bloqueados quedó descartada luego de realizar repetidas mediciones de eliposoporosimetría ambiental demostrando la buena accesibilidad y porosidad que mostraban las películas delgadas mesoporosa sometidas a calcinación (ver sección 3.3.1, pág. 66 y figura 3.11, pág. 68).

Para evaluar las hipótesis de contaminantes que difunden hacia la superficie y reestructuración del Au, ambos fenómenos debido a la temperatura de calcinacinación, se llevaron a cabo experimentos con muestras control, las cuales consistieron en electrodos de Au sometidos a calcinación pero sin depositar películas mesoporosas sobre ellos. En resumen, se sometió los electrodos de Au desnudos a condiciones de humedad y temperatura idénticos a las utilizadas en el proceso de síntesis de las PDM (ver el proceso descrito en la sección 2.1.3, pág. 25). La respuesta electroquímica seguía siendo defectuosa, por lo que se consolidaron las hipótesis de difusión de contaminantes o reestructuración (producto de la temperatura a la que fueron sometidos los electrodos) como causante de dicha respuesta. Las próximas secciones abordan la temática sobre cada una de las hipótesis.

5.3.1. Reestructuración de la superficie de los electrodos

Se estudió la morfología de las películas delgadas de Au en busca de cambios estructurales producto de someter los electrodos a calcinación. Se tomaron imágenes por MEB las cuales se exponen en la figura 5.14. Allí se comparan depósitos de Cr|Au tratados térmicamente con depósitos de de Cr|Au no tratados. Se observa un crecimiento en el tamaño de partícula para los sometidos a tratamiento térmico, más específicamente a 350 °C, temperatura usada para la vía clásica de síntesis de PDM. Este hecho demuestra que esta temperatura es suficiente para, al menos, producir un aumento en el tamaño de los cristales de las películas delgadas de oro. Dicha transformación también fue reportada a una temperatura menor (300 °C) por Švorčík y colaboradores.¹⁸⁷

Figura 5.14: Microscopías de barrido electrónico donde se comparan los electrodos sin calcinar (izquierda) con aquellos sometidos a tratamiento térmico (derecha). Se observa en las películas calcinadas un aumento en el tamaño de las partículas de Au.

Con el propósito de determinar si esta reestructuración, debida al tratamiento térmico, afecta las propiedades eléctricas de las películas delgadas de Au se midió la resistencia superficial de las mismas. Un aumento en la resistividad puede traer aparejadas deformaciones en los voltagramas, caída óhmica o separación de los potenciales de pico. Las mediciones se llevaron a cabo sobre tres muestras: una sin tratamiento térmico, otra calcinada a 350 °C y una tercera llevada también a 350 °C pero en atmósfera de alto vacío (10^{-5} mbar) . Los resultados se resumen en la tabla 5.1, donde se corrobora que la resistencia por cuadrado aumenta para las muestras sometidas a tratamiento térmico, posiblemente debido a la reestructuración o a la difusión de impurezas hacia la superficie. Dichas impurezas pueden provenir del Au, de la capa de adherencia o del sustrato (silicio o vidrio).

 Tabla 5.1: Resistencia superficial de los electrodos con y sin tratamiento térmico.

Muestra	Resistividad superficial $(\Omega/_{\Box})$
Au $350 ^{\circ}\text{C}$	$3,720 \pm 0,001$
Au $350 ^{\circ}\text{C}$ en vacío	$3,685 \pm 0,001$
Au $25 ^{\circ}\text{C}$	$0,595 \pm 0,001$

5.3.2. Difusión de contaminantes

Se ha reportado trabajos donde se demuestra que es posible la difusión hasta la superficie del electrodo, de metales provenientes de la capa de adherencia e incluso de iones provenientes del sustrato.^{255, 256} Para ello se decidió analizar la superficie de los electrodos mediante espectroscopía de fotoelectrones emitidos por rayos X (XPS). Se llevó a cabo un experimento en el cuál se depositaron dos electrodos de Cr|Au sobre silicio, uno de ellos fue sometido a tratamiento térmico mientras que el otro no. Los resultados se presentan en el gráfico de la figura 5.15, donde observa la presencia de picos de cromo ligado a oxígeno, demostrando la difusión hacia la superficie de cromo.

Figura 5.15: Espectroscopía de fotoelectrones emitidos por rayos (XPS) correspondiente a películas delgadas de Cr|Au con y sin tratamiento térmico. Obsérvese los picos correspondiente al cromo y el aumento de la intensidad relativa del pico correspondiente al oxígeno, sugiriendo la difusión de Cr_xO_y hacia la superficie de los electrodos.

Esto sugiere que el cromo, utilizado como capa de adherencia, se oxida y puede difundir hacia la superficie del electrodo cuando éstos son sometidos a una temperatura de 350 °C.

Una vez demostrado que es posible la difusión de impurezas a 350 °C, que provengan tanto del Au como de la capa de adherencia, se fabricó una tanda de electrodos utilizando oro de mayor pureza, Au4N (99,99% de Sigma Aldrich) en lugar del Au3N (99,9% de Eurometal), el cual es mucho más económico, fácil de conseguir y es el blanco habitual para pulverización disponible en el laboratorio de películas delgadas del INTI. El propósito de estas caracterizaciones es el de discriminar si las impurezas provienen del Au o del Cr y ver como es afectada la respuesta electroquímica, ya que la voltametría cíclica (VC) es una técnica analítica cuya respuesta depende fuertemente de la superficie del electrodo.^{33, 143, 150, 151}

En los voltagramas de la figura 5.16 se expone la respuesta electroquímica para ARu y FeCN utilizando electrodos Au3N calcinados y sin calcinar con aquella obtenida para electrodos de Au de mayor pureza (Au4N), estos últimos tratados a 350 °C.

a. Voltametrías cíclicas para FeCN 1 mM tomadas a 50 mV $\rm s^{-1}$ en una solución 0,1 M de KCl.

b. Voltametrías cíclicas para AR
u $1\,\rm{mM}$ tomadas a $50\,\rm{mV\,s}^{-1}$ en una solución
 $0,1\,\rm{M}$ de KCl.

Figura 5.16: Voltametrías para $[Fe(CN)_6]^{4-/3-}$ y $[Ru(NH_3)_6]^{3+}$ donde se compara la respuesta sobre electrodos de Au4N calcinado (—) con electrodos de Au3N calcinado (--) y Au3N sin calcinar (—). Se observa una respuesta deficiente solo para electrodos de Au3N sometidos a calcinación.

La primera observación que se desprende de los voltagramas es que la respuesta para el Au3N sin tratamiento térmico es prácticamente idéntica a la del Au4N con tratamiento térmico. Por otro lado la respuesta del oro menos purificado, Au3N, sometida a temperatura, muestra una clara irreversibilidad en los procesos de oxido reducción para ambas sondas, a tal punto que no se observa la reducción para [Fe(CN)₆]^{4-/3-} (figura 5.16a, curva punteada).

Con estos resultados y lo expuesto anteriormente, se demostró que durante la calcinación de Au3N se produce una reestructuración de la superficie de los electrodos, aumenta la resistencia eléctrica y pueden difundir impurezas o átomos de la capa de adherencia hacia la superficie.

De la comparación entre electrodos fabricados con Au3N y Au4N, ambos con Cr de igual calidad como capa de adherencia, se puede concluir que la respuesta electroquímica anómala es debida a una capa superficial de impurezas, generada por un proceso difusivo durante el tratamiento térmico. Dicha difusión dificulta la transferencia electrónica entre sonda electrodo, alejándose de la idealidad y generando una amplia separación de potenciales entre los picos anódico y catódico. A pesar de que se atribuye a que la transferencia electrónica se encuentra impedida por las impurezas en el propio Au, también se demostró que es posible la difusión del Cr, hecho que obliga a considerar la calidad de la capa de adherencia que se utiliza ya sea de cromo u otro metal. Como consecuencia directa de estos procesos difusivos se obtiene una respuesta EQ deficiente y no reproducible. Este resultado fue uno de los que motivó el desarrollo de películas delgadas mesoporosas a bajas temperaturas cuyos resultados fueron expuestos en el capítulo 3.

5.4. Multisensores de respuesta selectiva

Una vez hallado el motivo de la respuesta electroquímica no deseada, surgieron, naturalmente, dos vías de acción: 1) cambiar el material de los electrodos por Pt u Au de mayor calidad, y 2) sustituir o evitar la etapa de calcinación en la condensación y extracción de películas delgadas mesoporosas.

Ambas alternativas fueron puestas en prácticas con resultados exitosos. Se consideró la segunda opción mucho más rica, tanto científica como tecnológicamente, ya que permite minimizar los procesos difusivos, disminuir costos y, a su vez, desarrollar un método de condensación y extracción para sintetizar películas delgadas mesoporosas de óxido de silicio a temperaturas menores a 130 °C.

SFZ sin funcionalizar

Figura 5.17: Microscopía óptica de un sensor con múltiples electrodos recubiertos con películas delagadas mesoporosas de $Si_{0,9}Zr_{0,1}O_2$. Uno se dejó sin recubrir mientras que dos fueron funcionalizados con DHDP y APTES respectivamente. A modo ilustrativo se muestra un esquema de la estructura de las películas en cada caso y una típica respuesta EQ para cada uno de ellos.

En este tópico, la literatura especializada es escasa, y dicho desarrollo condujo al estudio de las matrices porosas resultantes, de la condensación de la fase inorgánica y de la extracción de la fase orgánica, así como también al estudio sobre la termodinámica y la cinética de transporte con sondas electroquímicas, temas tratados extensamente en los capítulos 3 y 4.

En esta sección se capitalizan las herramientas y conocimientos adquiridos sobre estos temas aplicados al uso de los multisensores, conceptualizando el uso de electrodos con diferentes respuestas que funcionan cooperativamente en la detección de las sondas modelos que se utilizaron a lo largo del trabajo de tesis.

Sobre un multisensor fabricado a partir del diseño «calesita», se depositaron películas delgadas mesoporosas de $Si_{0,9}Zr_{0,1}O_2$ por el método de alto vacío (VacSZF). Uno de los seis electrodos de trabajo se enjuagó con un hisopo con etanol para remover la película de óxido. Luego se llevaron a cabo, individualmente sobre dos electrodos, las funcionalizaciones con DHDP y APTES descritas en la sección 2.1.4, pág. 26. Sobre ese mismo sensor se tomaron las mediciones electroquímicas, de las cuales se pueden obtener cuatro respuestas por sensor: del electrodo de Au sin recubrir, del recubierto con VacSZF y de los dos recubiertos con VacSZF funcionalizados con APTES y DHDP (VacSZF₁^N y VacSZF₃^P). El diagrama de la figura 5.17 representa en forma esquemática esta situación mostrando el tipo de recubrimiento de cada electrodo y respuestas típicas que podrían obtenerse al colocar un analito electroactivo.

En las próximas secciones se analizará la respuesta del multisensor para cada una de las sondas ensayadas y se discutirán algunas formas de análisis multivariable para el tratamiento de los datos.

5.4.1. Respuesta para ARu, FeCN y FcOH sobre multisensores

Durante el desarrollo del capítulo 4 se estudió e interpretaron los voltagramas para cada una de estas sondas, cabe destacar que en dicho capítulo la mayoría de los datos fueron tomados sobre electrodos sin litografiar, mientras que en esta sección los datos fueron medidos sobre un único multisensor. Ya sea que estén o no litografiados los voltagramas son equivalente para ambas plataformas. En esta sección se explota la información que se pueda extraer de cada voltagrama, resumiendo los datos en graficos de distintos tipos.

Se analizó la respuesta electroquímica de $[\text{Ru}(\text{NH}_3)_6]^{3+}$, $[\text{Fe}(\text{CN})_6]^{4-/3-}$ y $\text{C}_{11}\text{H}_{12}\text{OFe}$ para cada uno de los electrodos de un multisensor EQ similar al mostrado en el esquema de la figura 5.17. La medición consiste en ciclar electroquímicamente, en un rango de potencial adecuado para cada sonda, utilizando cada uno de los electrodos de un mismo multisensor. Una vez que se colectaron los *n* voltagramas se extrae de cada uno de ellos el pico de máxima densidad de corriente anódica, luego se gráfica dicho valor en función de la cantidad de ciclos normalizado por la densidad de corriente del electrodo de Au desnudo (j_p/j_p^{Au}) .

En el caso del FeCN se tiene una fuerte exclusión por parte de las películas sin funcionalizar y una mínima permeación en las películas con APTES y DHDP. En el caso del FcOH en todos las casos el fenómeno dominante es la permeación, como es de esperar para una sonda de carga neutra. Debido a que las membranas fueron condensadas y extraídas a bajas temperaturas la difusión es lenta y la corriente resultante es bastante menor que la obtenida en electrodos de Au desnudo (consultar sección 4.3, pág. 97). Las corriente de pico a lo largo de los ciclos para estas dos sondas es prácticamente invariante tal como se puede observar en los gráficos de la figura 5.18.

Figura 5.18: Corriente de pico anódico normalizada para FcOH 1 mM (izquierda) y FeCN 1 mM (derecha) en función de la cantidad de ciclos. Los datos fueron tomados a una velocidad de barrido de 50 mV s⁻¹ en solución de KCl 100 mM en un multisensor compuesto por cuatro electrodos diferentes: de Au (Au), recubierto con una película mesoporosa sin funcionalizar (SZF), con una funcionalizada con DHDP (SZF^P₃) y con una funcionalizada con APTES (SZF¹₁).

El caso más interesante es de la sonda positiva, el ARu. La intensidad de pico anódico, para condiciones de contorno constante (velocidad de barrido, pH, fuerza iónica, concentración de ARu en solución), evoluciona en cada ciclo de forma diferente según se va adsorbiendo en las películas delgadas mesoporosas. La interpretación de las distintas respuestas ya se discutieron en la sección 4.5.3, pág. 116. Al igual que para las otras sondas, en el gráfico 5.19 se muestra cómo va cambiando la intensidad de pico, para cada electrodo, a medida que se aumenta la cantidad de ciclos electroquímicos.

Figura 5.19: Corriente de pico anódico para ARu 1 mM en función de la cantidad de ciclos. Los datos fueron tomados a una velocidad de barrido de 50 mV s⁻¹ en solución de KCl 100 mM en un sensor compuesto por cuatro electrodos diferentes: de Au (Au), recubierto con una película mesoporosa sin funcionalizar (SZF), con una funcionalizada con DHDP (SZF^P₃) y con una funcionalizada con APTES (SZF^N₁).

5.4.2. Análisis multivariable de la respuesta electroquímica

Con el objetivo de utilizar los sensores en aplicaciones analíticas se sintetizaron aún más los datos presentados en los gráficos 5.18 y 5.19. Durante la recolección de datos se escogieron algunos valores, de cada electrodo, y luego se volcaron estos resultados en un gráfico de barras como los mostrados en la figura 5.20. En estos gráficos se presentan los valores obtenidos en los ciclos 1, 25 y 50 en cada uno de los cuatro electrodos diferentes, para cada una de los analitos electroactivos. Es interesante recalcar que quedan dos electrodos que pueden ser empleados como sistema de redundancia para verificar integridad de los electrodos o la respuesta de los analitos. De los gráficos se pueden establecer perfiles de respuestas para las sondas de concentración conocida, de forma que el sistema vaya almacenando las respuestas de cada electrodo en una base de datos, para luego comparar la respuesta de una muestra incógnita con la almacenada en la base. Mientras mayor sea la variabilidad de funcionalizaciones de las películas delgadas mesoporosas y la cantidad de electrodos diferentes por sensor, más inequívoca será la identificación del analito, aún en matrices complejas, ya que la detección estará determinada por la respuesta de un conjunto de electrodos, limitado por las funcionalizaciones que se puedan llevar a cabo o por la cantidad de electrodos contemplada en el diseño.

Se puede ampliar aún más el análisis anterior agregando otras variables para la identificación de los analitos, tales como el potencial formal medio de cada sonda (E°) y la separación de potenciales entre los picos anódico y catódico (ΔE) . Estos dos valores son tomados directamente de los voltagramas correspondientes al electrodo de Au desnudo y permiten cuantificar dos variables electroquímicas propias de cada sonda comparables con bases de datos bibliográficas.

Figura 5.20: Densidad de corriente anódica máxima en los ciclos 1, 25 y 50 para cada uno de los electrodos del sensor. Las sondas probadas fueron FcOH1 mM, FeCN 1 mM y ARu 1 mM en KCl 100 mM a una velocidad de barrido de $50 \,\mathrm{mV \, s^{-1}}$.

5. Microfabricación de multisensores electroquímicos

Para poder representar conjuntamente todas estas variables se ha recurrido a gráficos radiales (figura 5.21), ya que son variables con distintas unidades y escalas asociadas. Los valores representados fueron distribuidos a lo largo de cinco ejes: densidad de corriente normalizada (j_p/j_p^{Au}) para los electrodos SZF, SZF₃^P, SZF₁^N, diferencia entre el potencial anódico y catódico (ΔE) y potencia formal medio (E°) de cada sonda. Estos gráficos permiten visualizar rápidamente tanto información termodinámica como cinética. El área especifica, o marca sensorial, que queda delimitada para los gráficos de las sondas FcOH y FeCN,

Figura 5.21: Marcas sensoriales para ARu, FeCN y FcOH para los ciclos electroquímicos 1, 25 y 50. Cabe destacar que para las sondas neutra y negativa (FcOH y FeCN) la marca permanece constante a lo largo de los ciclos. Para la sonda positiva (ARu) la marca va mudando en función de las propiedades permeoselectivas de cada electrodo del multisensor. Notar el cambio de escala para ARu en los electrodos SZF y SZF $_3^P$ debido a la alta capacidad preconcentradora de estas películas para la sonda de carga positiva.

146

permanece inalterable de ciclo en ciclo, indicando un estado de equilibrio desde el primer ciclo para ambos analitos. También se observa que para FeCN la señal es nula en SZF debido a una fuerte repulsión electrostática determinada por la carga negativa de la película, mientras que para el FcOH, sonda de carga neutra, la densidad de corrientes para los tres recubrimientos (SZF, SZF₃^P, SZF₁^N) es prácticamente idéntica, sugiriendo una interacción electrostática prácticamente nula con las distintas películas delgadas mesoporosas. El área para la sonda positiva evoluciona con los sucesivos ciclos debido a la cinética de adsorción, incluyendo el tiempo como un parámetro más que se suma para construir la marca sensorial.

Estos experimentos, sobre la base de un multisensor, muestran el gran potencial de los dispositivos para identificar y cuantificar analitos electroactivos o discriminar entre grupos de compuestos generando marcas sensoriales para cada uno de ellos.

5.5. Conclusiones

Se presentaron en este capítulo los resultados obtenidos durante el proceso de fabricación de los multisensores. Se idearon dos diseños, de los cuales el segundo (retroalimentado de la experiencia del primero) es más compacto, incorpora más electrodos por multisensor y prevé el uso de contraelectrodo y pseudoreferencia integrados en el mismo dispositivo.

Los mismos fueron fabricados por un conjunto de técnicas conocidas como top-down, propios de la microelectrónica como: fotolitografía óptica, deposición por pulverización catódica y *lift-off*, entre otras. Se establecieron las condiciones óptimas de proceso para cada etapa, y, una vez conseguido resultados satisfactorios para la fabricación, se evaluó el desempeño electroquímico de los sensores, el cual resulto excelente. Los resultados obtenidos en la caracterización de los mismos fueron presentados en la sección 2.4.5, pág. 47.

Sobre los electrodos de (Ti,Cr)|Au se realizaron los primeros depósitos de películas delgadas mesoporosas de sílice. En esta etapa surgieron algunas dificultades, en particular, en lo referente al sensado electroquímico. Se realizó un estudio meticuloso en el cual se discutió cómo se afectó el desempeño electroquímico luego de los procesos de calcinación. Se llegó a la conclusión de que se ve impedida sensiblemente la transferencia de carga entre la sonda y el electrodo debido a fenómenos de difusión de interferencias hacia la superficie de los electrodos, y por lo tanto, también disminuye la calidad analítica de los multisensores.

Éste fue el motivo principal para el desarrollo de procesos de síntesis de películas mesoporosas de SiO₂ a temperaturas menores que las clásicas de calcinación. Tiene como enormes ventajas minimizar los procesos difusivos y no recurrir a metales de ultra pureza, reduciendo sensiblemente los costos de los sensores. Las consecuencias directas del desarrollo fueron que se logró depositar óxidos sobre Au metalúrgico (Au3N) sin perder desempeño analítico y, a su vez, permitió depositar las PDM sobre sustratos que sean estables a 130 °C. Dicho desarrollo se estudia extensamente en el capítulo 3, mientras que en el capítulo 4 se estudia la estabilidad química y mecánica de la películas resultantes. Por otra parte el tratamientos a baja temperatura permite integrar la plataforma mesoporosa a una mayor variedad de electrodos, incluso utilizar sustratos

poliméricos o térmicamente lábiles.

Ya con el proceso de síntesis optimizado se escogieron las películas más estables para la fabricación de un multisensor prototipo. Se fabricaron nuevamente electrodos con el diseño «calesita» y se depositaron sobre ellas películas mesoporosas de Si_{0,9}Zr_{0,1}O₂ mediante el método de alto vacío. Sobre un multisensor se funcionalizaron localmente estás películas porosas con dihexadecilfosfato (DHDP) y 3-aminopropil trietoxisilano (APTES), específicamente sobre el área de dos electrodos, uno por cada funcionalización.

Se analizaron las respuestas electroquímica de cada electrodo de este multisensor en función del ciclado electroquímico, obteniéndose patrones de respuesta para cada una de las sondas en función de la interacción entre la sonda y la película. Con el propósito de obtener una identificación inequívoca para cada sonda se amplió el análisis multivariable agregando dos variables más al sistema de datos: la diferencia entre el potencial de pico anódico y catódico y el potencial formal de cada sonda. De esta forma se confeccionaron gráficos radiales en función de la cantidad de ciclos electroquímicos con los valores para cada sonda, generando una marca sensorial cuantificable para cada uno de los analitos estudiados.

CONCLUSIONES

Contenido

6.1. Con	clusiones Generales	50
6.2. Pers	spectivas para futuros trabajos $\ldots \ldots \ldots \ldots \ldots \ldots \ldots 1$	52
6.2.1.	Integración en circuitos integrados	152
6.2.2.	Multisensores impresos	154

6.1. Conclusiones Generales

A lo largo de la tesis toda la concentración y el esfuerzo estuvieron dedicados a la fabricación escalable de multisensores electroquímicos permeoselectivos.

Las primeras etapas tuvieron como eje la compatibilidad entre los procesos de fabricación top-down y bottom-up. Los primeros para diseñar, fabricar y evaluar el despempeño electroquímico de los electrodos de Au de los multisensores y los segundos, para sintetizar las películas delgadas mesoporosas de diferentes tamaños de poros utilizando diferentes surfactante (Pluronic F127, Brij58 y CTAB). Las problemáticas que allí surgieron estuvieron vinculadas a la pobre adherencia de las películas delgadas mesoporosas a los electrodos y a las temperaturas de calcinación usadas tradicionalmente para condensar y eliminar el molde en dichas películas. La solución a los problemas de adherencia se basó realizar modificaciones superficiales sobre los electrodos utilizando moléculas de anclaje químicamente compatible con las películas de SiO₂. La temperatura de calcinación, típicamente ≥ 350 °C favorece los procesos difusivos de impurezas hacia la superficie de los electrodos, afectando el desempeño electroquímico de los sensores. Con el objetivo de mantener la calidad analítica de los electrodos se plantearon dos estrategias: 1) fabricar los multisensores vía calcinación pero sobre electrodos de Au de mayor pureza, libre de cantidades significativas de impurezas y, 2) disminuir la temperatura de condensación de las películas mesoporosas de SiO₂ hasta 130 °C a fin de minimizar los procesos difusivos y disminuir sensiblemente la concentración de impurezas en superficie. La primera, más simple de implementar, fue la que primero se llevo a cabo obteniéndose resultados satisfactorios. Sin embargo, la segunda era la que presentaba mayores desafíos tanto científicos como tecnológicos. Se requería estabilizar la estructura del cristal líquido, condensar el óxido manteniendo la temperatura por debajo de 130 °C, extraer el surfactante y mantener el buen desempeño electroquímico de los electrodos.

Tomando algunos aspectos de la literatura especializadas se llevaron a cabo métodos novedosos para la condensación de las películas y eliminación del molde. Para este fin se diseñaron y experimentaron cinco procesos posdepósito: simplificado, prolongado, ácido, alcalino y alto vacío. Todo el capítulo 3 está dedicado a la comparación de las propiedades y características de las películas delgadas mesoporosas obtenidas por estos procesos con las obtenidos por el método clásico de calcinación. Las caracterizaciones incluyeron técnicas como elipsoporosimetría ambiental, microscopía óptica, de barrido electrónico y de iones focalizados de galio, espectroscopía IR, ángulo de contacto y voltametría cíclica. Se evaluaron características como índice de refracción, espesor, grado de condensación, grado de extracción del surfactante, accesibilidad, porosidad y distribución de tamaño de poros y cuellos. Todos los métodos llevaron a películas porosas con características distintivas que se detallan y discuten en dicho capítulo. A pesar de que se podría haber usado cualquiera de los procesos desarrollados, se consideró el método de alto vacío el más adecuado para avanzar hacía la elaboración de multisensores electroquímicos selectivos. Esta elección esta fundamentada en que el método de alto vacío fue el proceso que mostró películas con propiedades equivalentes a las calcinadas y, además, no utiliza reactivos extra en la síntesis, lo que redunda en una síntesis limpia, libre de interferentes, productos de reacciones secundarias o moléculas sensibles de ser adsorbidas. El desarrollo de estos métodos no sólo permitió minimizar los procesos difusivos, obtener respuestas electroquímicas de calidad sino que también abre el camino para depositar películas mesoporosas de óxidos puros o mixtos sobre sustratos térmicamente lábiles, como acrílicos, PET o polímeros en general.

Durante todo el trabajo de tesis, las mediciones electroquímicas fueron una labor que se llevó en forma transversal y constante. Los resultados de las mismas está distribuidas a lo largo de todos lo capítulos de la tesis. Estas tuvieron gran relevancia y múltiples propósitos: 1) evaluar el desempeño electroquímico de las películas delgadas de (Cr,Ti)|Au destinadas a usar como electrodos, 2) comprobar la accesibilidad de moléculas dentro de las películas delgadas mesoporosas, 3) estudiar los mecanismos de transporte y obtener parámetros fisicoquímicos de los sistemas porosos, y 4) medir analíticamente la respuesta de las sondas en un multisensor conformado con electrodos de diferentes características.

El análisis minucioso y sistemático sobre los voltagramas, tanto de corriente continua como de corriente alterna, llevaron a conclusiones generales sobre el transporte de moléculas dentro de los poros. Se utilizaron sondas electroactivas de distinta carga: $[Fe(CN)_6]^{4-/3-}$ de carga negativa, $[Ru(NH_3)_6]^{3+}$ de carga positiva y C₁₁H₁₂OFe de carga neutra. Los resultados obtenidos permitieron evaluar las propiedades permeoselectivas de las membranas y, a su vez, establecer la capacidad de preconcentración, estimar la concentración de sonda adsorbida, proponer un mecanismo para el transporte de carga dentro de las películas y calcular coeficientes de difusión tanto para la permeación (D) como para la transferencia de carga mediante *electron hopping* (D_e) . Se realizaron simulaciones por el método de elementos finitos y experimentos electroquímicos con el ánimo de establecer bajo qué condiciones de contorno se pueden manifestar fenómenos de mediación rédox entre una película saturada con un mediador y un analito en solución. No fue posible reproducir experimentalmente dichas condiciones, sin embargo se realizaron simulaciones con posibles escenarios, y a partir de estos experimentos, se realizó un análisis profundo de cómo influyen la constante de difusión D_e y la constante de equilibrio K en demérito de dicho proceso de mediación.

Un resultado relevante para la aplicación de películas delgadas mesoporosas de SiO₂ en sensores permeoselectivos, fue la demostración de la disolución de las mismas catalizada por el ciclado electroquímico. Se depositaron soles agregando un 10% en masa de ZrCl₄ en su formulación, seguidas por el tratamiento en alto vacío lo que llevó a películas mesoporosasa homogéneas de composición general Si_{0.9}Zr_{0.1}O₂. La adición de Zr permitió aumentar la estabilidad química y mecánica de las películas manteniendo las propiedades permeoselectivas y sin perder capacidad de adsorción de $[Ru(NH_3)_6]^{3+}$. Con la intención de regular las propiedades de transporte se funcionalizaron estas películas, de gran estabilidad, con dihexadecilfosfato (DHDP) y 3-aminopropil trietoxisilano (APTES). Se discutieron e interpretaron cómo se afecta el transporte debido a estas funcionalizaciones; llegando a la conclusión de que la cinética y la capacidad de adsorción, en particular para ARu, se ven significativamente afectadas. Si bien los sistemas permeoselectivos estudiados comprendieron películas delgadas mesoporosas de SiO₂ y Si_{0.9}Zr_{0.1}O₂ con sondas modelo con carga positiva, negativa y neutra, las interpretaciones y conclusiones que se desprendieron de este trabajo (en particular las referentes a fenómenos y dinámica de transporte) pueden ser aplicados a sistemas donde se modifiquen las condiciones de permeoseletividad

6. Conclusiones

debido a películas con un mayor IEP (p. ej. Ti O_2 o Zr O_2) o funcionalizadas con polielectrolitos.

Se fabricaron multisensores recurrentemente a lo largo de todo el período que llevó el trabajo. Se hizo primero un diseño que luego fue reemplazado por uno más compacto y especialmente optimizado para usar en procesos electroquímicos. En esta última etapa se volcó toda la experiencia adquirida para fabricar electrodos de Ti|Au recubiertos con películas de mixtas Si_{0.9}Zr_{0.1}O₂ con poros de ≈ 9 nm de diámetro, sintetizadas por el método de alto vacío para mantener la calidad analítica de los electrodos. Finalmente se funcionalizaron las películas con DHDP y APTES sobre algunos de ellos, con el próposito de obtener un multisensor prototipo con cuatro electrodos de características diferentes. Sobre este prototipo se llevaron a cabo mediciones electroquímicas para cada una de las sondas de distinta carga: $[Fe(CN)_6]^{4-/3-}$, $C_{11}H_{12}OFe y [Ru(NH_3)_6]^{3+}$. Las múltiples respuestas electroquímicas obtenidas se analizaron con gráficos radiales a lo largo de un determinado tiempo de medición con el fin de obtener una marca sensorial para cada una de las sondas, las cuales indican de forma fácilmente observable, si hay exclusión, permeación o la cantidad de sonda adsorbida. Estas marcas sensoriales pueden ser de gran utilidad como elemento distintivo a modo de «huella digital» para clasificar familias de compuestos, clasificar comportamientos de grupos de analitos o directamente identificar de forma rápida, in situ y a bajo costo aquellos compuestos con marcas sensoriales específicas.

Los novedosos métodos posdepósito y el refuerzo dado por la adición de circonio a las películas delgadas mesoporosas, sumado al meticulosos estudio electroquímico y al análisis de sensado multivariable que se presentó en este trabajo abrirán caminos poco explorados hasta el momento, pero con gran potencial en el campo de los sensores electroquímicos basados en materiales mesoporosos.

6.2. Perspectivas para futuros trabajos

El presente trabajo presenta al menos dos líneas claramente definida para continuar con desarrollos e investigaciones en el área. La primera relacionada al estudio de la fisicoquímica en espacios confinados, transporte y cinética de adsorción/desorción por citar algunos ejemplos; y la segunda, relacionada con aplicaciones y desarrollo en sensores, propiedades permeoselectivas, marcas sensoriales especificas para distintos analitos de interés y desarrollo de métodos de análisis multivariable entre otros.

Esta sección tiene por motivación mostrar y ejemplificar muy brevemente algunos experimentos, ideas y pruebas de concepto que se llevaron a cabo paralelamente al eje central de esta tesis. No es el propósito de este apartado realizar demostraciones formales o hacer discusiones profundas de los resultados, sino presentar algunos avances y experimentos conceptuales surgidos de los conocimientos y experiencia adquiridas durante esta tesis con perspectivas a futuros desarrollos e investigaciones.

6.2.1. Integración en circuitos integrados

La ventaja de fabricar electrodos por técnicas de microelectrónica es indiscutible. Existen muchas fábricas a nivel global de microsistemas (MEMS) y circuitos integrados (IC) (conocidas en ingles simplemente como *foundry*). Dichas fabricadas elaboran sus productos con procesos estándar de fabricación por cada nodo tecnológico, con reglas de diseño claras, bien establecidas y con sistemas de depuración de errores. La integración de sensores en circuitos integrados no es algo nuevo, y, dado el nivel de integración de la electrónica de las últimas décadas, es algo que siempre se debe tener en cuenta en la etapa de prototipado de sensores.^{257–261} El desarrollo y optimización de los procesos para depositar PDM a bajas temperaturas simplifica la posibilidad de incorporar los multisensores y un potenciostato en un microchip, incorporando a su vez en la lógica del circuito integrado algoritmos para el análisis multivariable.

El INTI cuenta con un equipo de profesionales dedicados al diseño de IC, con experiencia en diseñar potenciostatos dedicados, integrados completamente en silicio e ideados para aplicaciones *ad hoc.*²⁶² A diferencia de los potenciostatos de mesada, los integrados en microchip cuenta con varias ventajas: el bajo costo de fabricación, la portabilidad y la natural comunicación con dispositivos móviles como celulares, tabletas o notebooks.^{263,264} En la figura 6.1 se muestra un potenciostato fabricado en un circuito integrado codiseñado entre el INTI y la UNSAM (Universisdad Nacional de San Martín), el cual fue fabricado específicamente para un dispositivo electroquímico portable para detección de enfermedades infecciosas.²⁶⁵

Figura 6.1: Microscopía óptica de un circuito integrado el cual incorpora un potenciostato. Diseñado en conjunto entre INTI y UNSAM y fabricado por la empresa *The MOSIS Service*. Forma parte de un dispositivo electroquímico para la detección de enfermedades infecciones para ser utilizado tanto en humanos como en sanidad animal.

6.2.2. Multisensores impresos

Otro aspecto que se trabajó durante este trabajo es la posibilidad de transferir diseños arbitrarios a las películas mesoporosas. Existen antecedentes en la literatura dónde ya han trabajado estos aspectos mediante diversos métodos: litografía con luz UV, litografía con rayos X, microscopía de fuerza atómica, electroquímica, impresión vía chorro de tinta, etc.²⁶⁶

Habiendo grupos de investigación en el INTI que trabajan en el desarrollo de tintas para la industria electrónica, se optó por el método de impresión para la transferencia de los diseños. Se usaron soles levemente modificados para las tintas y se imprimieron sobre diversos sustratos, además, de esta forma se podrían imprimir PDM de igual o distintos óxidos en un mismo sustrato. Se trabajó en colaboración con el grupo del Dr. Baumann, del *Department of Digital Printing and Imaging Technology* de la *Technische Universität Chemnitz* de Alemania (https://www.tu-chemnitz.de/mb/DigiTech/professorship.php). Allí imprimieron soles modificados con etilenglicoll en un equipo de inyección de tinta sobre una amplia variedad de sustratos. Los procesos a baja temperatura desarrollados en este trabajo, no solo hacen que disminuya la difusión entre las capas metálicas, permitiendo la integración en microchips de silicio, sino que permite depositar las PDM sobre sustratos térmicamente menos estables.

a. SF impresos sobre oblea de silicio. Recuadro: MEB donde se observa la estructura porosa.

 ${\bf c.}~{\rm SF}$ impresos sobre microelectrodos.

b. SF impresos sobre oblea de silicio con un depósito de Ti
|Au.

d. SF impresos en Ti|Au en soporte de poliestireno de alto impacto.

Figura 6.2: Fotografías de películas mesoporosas de SiO₂ impresas por inyección de tinta a partir de soles modificados y diseños arbitrarios. Los poros fueron moldeados con F127 y la condensación se realizó por el método de alto vacío. La extracción se llevó a cabo con 2-propanol y agua a pH=2.

Los resultados fueron sistemas porosos de soles de SiO_2 , estructurados con F127 impresos sobre silicio, oro, microelectrodos y poliestireno de alto impacto (PAI). Se muestran, en la figura 6.2, patrones cuadrados impresos sobre una diversidad de sustratos variando los parámetros de impresión, con el objetivo de encontrar las condiciones óptimas para una correcta transferencia.

Con la expectativa de poder realizar todo el proceso de fabricación de los multisensores con técnicas de impresión, se muestran en la figura 6.3, electrodos impresos por inyección con tintas a base a nanotubos de carbono desarrolladas en el INTI-CMNB. Actualmente estas tintas están en desarrollo y en proceso de optimización para uso en sensores electroquímicos y enzimáticos.^{263,267} En el panel de la derecha de la figura 6.3 se muestra la respuesta electroquímica para FeCN 2,5 mM, si bien no es la misma que en electrodos de Au, es una respuesta reproducible y confiable, con un enorme potencial para depositar óxidos mesoporosos sobre su superficie. Se prevé próximamente imprimir ambos componentes en un solo sustrato y en un único proceso, los electrodos basados en tintas de nanotubos de carbono y las películas delgadas mesoporosas de óxidos mixtos silicio/circonio.

Figura 6.3: Electrodos basados en nanotubos de carbono impresos por inyección de tinta en donde se muestra la flexibilidad de la tinta y su respuesta electroquímica con una sonda de FeCN $2,5 \,\mathrm{mM}$ en solución de KCl $100 \,\mathrm{mM}$ a $50 \,\mathrm{mV} \,\mathrm{s}^{-1}$.

CAPÍTULO 6

ANEXO A: INFORMACIÓN SUPLEMENTARIA

Se agregan en éste anexo los gráficos, imágenes y espectros complementarios que, para facilitar la lectura, fueron apartados del cuerpo principal de la tesis.

Figuras correspondientes al capítulo 3

Figura A.4: Microscopías ópticas para SimSF. Izquierda: sobre sustrato de Au. Derecha: sobre sustrato de Si. En los respectivos recuadros se observa el detalle por MEB junto a la transformada de Fourier del arreglo nanoporoso.

Figura A.5: Microscopías ópticas para SimSC. Obsérvese las grietas presentes cuando se sintetiza sobre Au (izquierda), mientras que sobre Si las SimSC no presentan rupturas ni discontinuidades.

 ${\bf a}.$ Isorterma de adsorción/desorción de agua realizada por PEA para una SimSF.

b. Distribución de tamaño de poro y cuello.

 ${\bf Figura}~{\bf A.6:}$ Resultados de elipsoporosimetría ambiental para una SimSF .

a. Isorterma de adsorción/desorción de agua ralizada por PEA para una SimSC.

b. Distribución de tamaño de poro y cuello.

Figura A.7: Resultados de elipsoporosimetría ambiental para una SimSC.

Número de onda / $\rm cm^{-1}$

Figura A.8: Espectro de absorción en el IR para una SimSF sintetizada con el tratamiento simplificado antes y después de extraer el surfactante. Desaparece la banda de estiramiento C-H correspondiente al surfactante luego de la extracción.

Número de onda / $\rm cm^{-1}$

Figura A.9: Espectro de absorción en el IR para una SimSC sintetizada con el tratamiento simplificado antes y después de extraer el surfactante. Todavía se puede apreciar un cantidad pequeña de surfactante luego de la extracción.

Figura A.10: Microscopías ópticas para ProSF. Izquierda: sobre sustrato de Au. Derecha: sobre sustrato de Si. En los respectivos recuadros se observa el detalle por MEB junto a la transformada de Fourier del arreglo nanoporoso.

Figura A.11: Microscopías ópticas para ProSC. Derecha: sobre sustrato de Au. Izquierda: sobre sustrato de Si.

a. Isoterma de adsorción/desorción de agua realizada por PEA para ProSF.

b. Distribución de tamaño de poro y cuello.

Figura A.12: Resultados de PEA para sistema ProSF sintetizada por el tratamientos prolongado, consistente en estabilización en humedad seguido de condensación por 7 días a 130 °C y extracción.

a. Isoterma de adsorción/desorción de agua ralizada por PEA para ProSC .

b. Distribución de tamaño de poro y cuello.

Figura A.13: Resultados de PEA para sistema ProSC sintetizada por el tratamientos prolongado, consistente en estabilización en humedad seguido de condensación por 7 días a 130 °C y extracción.

Figura A.14: Espectro de absorción de IR correspondiente a una ProSF antes y después de la extracción con 2-propanol.

Número de onda / $\rm cm^{-1}$

Figura A.15: Espectro de absorción de IR correspondiente a una ProSC antes y después de la extracción con 2-propanol.

Figura A.16: Microscopías ópticas para VacSF. Izquierda: sobre sustrato de Au. Derecha: sobre sustrato de Si. En los respectivos recuadros se observa el detalle por MEB junto a la transformada de Fourier del arreglo nanoporoso.

Figura A.17: Microscopías ópticas para VacSC. Izquierda: sobre sustrato de Au. Derecha: sobre sustrato de Si.

Figura A.18: Microscopías ópticas para VacSZF depositadas sobre electrodos de Au. Izquierda: Utilizando F127 como surfactante. Derecha: Utilizando Brij58 como surfactante.

a. Elipsoporosimetría de una SF tratamiento 7 $\,$ b. Distribución de tamaño de poro y cuello. días en alto vacío.

Figura A.19: Resultados de elipsoporosimetría ambiental para una VacSF, 7 días a 130 °C en alto vacío (P=1 \times 10⁻⁵ mbar).

 a. Elipsoporsimetría de una SC Tratamiento 7
 b. Distribución de tamaño de poro y cuello. días alto vacío.

Figura A.20: Resultados de elipsoporosimetría ambiental para una VacSC, 7 días a 130 °C en alto vacío (P=1 \times 10⁻⁵ mbar).

Número de onda / $\rm cm^{-1}$

Figura A.21: Espectro de absorción de IR correspondiente a una VacSF, antes y después de la extracción con 2-propanol.

Figura A.22: Espectro de absorción de IR correspondiente a una VacSC, antes y después de la extracción con 2-propanol.

Figura A.23: Microscopías ópticas para ÁciSF. Izquierda: sobre sustrato de Au. Derecha: sobre sustrato de Si. En los respectivos recuadros se observa el detalle por MEB junto a la transformada de Fourier (sobre silicio) del arreglo nanoporoso.

Figura A.24: Microscopías ópticas para ÁciSC. Izquierda: sobre sustrato de Au. Derecha: sobre sustrato de Si.

a. Isoterma de adsorción/desorción de agua
 b. Distribución de tamaño de poro y cuello. realizada por PEA para una ÁciSF.

Figura A.25: Resultados de elipsoporosimetría ambiental para una ÁciSF.

a. Isoterma de adsorción/desorción de agua
 b. Distribución de tamaño de poro y cuello.
 realizada por PEA para una ÁciSC.

Figura A.26: Resultados de elipsoporosimetría ambiental para una ÁciSC.

Figura A.27: Espectro de absorción en el IR para una ÁciSF antes y después de extraer el surfactante.

Figura A.28: Espectro de absorción en el IR para una ÁciSC antes y después de extraer el surfactante.

Figura A.29: Microscopías ópticas para AlcSF. Izquierda: sobre sustrato de Au. Derecha: sobre sustrato de Si. En los respectivos recuadros se observa el detalle por MEB junto a la transformada de Fourier (sobre silicio) del arreglo nanoporoso.

Figura A.30: Microscopías ópticas para AlcSC sintetizadas por el tratamiento de condensación y extracción en medio alcalino. Izquierda: sobre sustrato de Au. Derecha: sobre sustrato de Si.

a. Isoterma de adsorción/desorción de agua realizada por PEA para una SF.

 ${\bf b.}$ Distribución de tamaño de por
o y cuello.

Figura A.31: Resultados de elipsoporosimetría ambiental para una AlcSF.

a. Isoterma de adsorción/desorción de agua b. Distribución de tamaño de poro y cuello. realizada por PEA para una AlcSC.

Figura A.32: Resultados de elipsoporosimetría ambiental para una AlcSC.

Rumero de onda / em

Figura A.33: Espectro de absorción en el IR para una AlcSF antes y después de extraer el surfactante. Obsérvese la ausencia de hombro en la región $1250-1100 \text{ cm}^{-1}$, el cual es típico en sistemas de SiO₂ mesoestrucuturas.

Figura A.34: Espectro de absorción en el IR para una AlcSC antes y después de extraer el surfactante. Obsérvese la ausencia de hombro en la región 1250-1100 cm⁻¹, el cual es típico en sistemas de SiO₂ mesoestrucuturas.

Figuras correspondientes al capítulo 4

Figura A.35: Microscopía óptica de una SF luego de realizar 90 ciclos electroquímicos. Se puede observar el Au desnudo del electrodo donde se colocó el sello de la celda electroquímica, indicando la disolución de la película mesoporosa.

a. Respuesta utilizando como sonda negativa ${\rm [Fe(CN)_6]^{4-/3-}}$ 1 mM.

b. Respuesta utilizando como sonda neutra FcOH $1\,\mathrm{mM}.$

c. Respuesta sobre una SZF sin funcionalizar utilizando como sonda positiva $\left[{\rm Ru}({\rm NH}_3)_6\right]^{3+}$ 1 mM.

 $\begin{array}{l} \textbf{d.} Respuesta \mbox{ sobre una SZF funcionalizada con} \\ APTES \mbox{ 10 mM utilizando como sonda positiva} \\ [Ru(NH_3)_6]^{3+} \mbox{ 1 mM}. \end{array}$

Figura A.36: Respuesta comparativa entre SZF funcionalizadas con APTES 10 mM y sin funcionalizar. Para cada experimento se tomaron más de 90 voltagramas consecutivos en KCl 100 mM a $50 \,\mathrm{mV \, s^{-1}}$.

ANEXO A

ANEXO B: SIGLAS Y ABREVIATURAS

Lista de siglas y abreviaturas recurrentes utilizadas en este trabajo, listadas por orden alfabético.

APTES	3-aminopropil trietoxisilano
AC	angulo de contacto
AciXX	prehjo para películas sintetizadas por el método ácido
ACV	voltametría de corriente alterna
AEIE	autoensamblado inducido por evaporación
AlcXX	prefijo para películas sintetizadas por el método alcalino
ALD	depósito por capa átomica, del ingles, <i>atomic layer deposition</i>
AR	hexaaminorutenio
CAC-CNEA	Centro Atómico Constituyentes - Comisión de Energía Atómi-
	ca
CAD	diseño asistido por computadora, del ingles <i>computer-aided</i> design
$\operatorname{Cal} \mathbf{X} \mathbf{X}$	prefijo para películas sintetizadas por el método de calcina- ción
CE	contraelectrodo
cmc	concentración miscelar crítica
CTAB	bromuro de hexadeciltrimetilamonio
CV	voltametría cíclica
CVD	deposición física en fase vapor, del ingles <i>chemical vapour deposition</i>
DC	corriente directa
DHDP	dihexadecilfosfato
ECS	electrodo de calomel saturado
EPA	elipsoporosimetría ambiental
EQ	electroquímica
ER	electrodo de referencia
ET	electrodo de trabajo
Fc	ferroceno metanol
FcCN	solución equimolar de ferro/ferri cianuro de potasio
FFT	transformada rápida de Fourier, del ingles fast Fourier trans- form

FIB	haz de iones focalizados, del ingles focused ion beam
FTIR	espectroscopia infraroja por transformadas de Fourier, del
	ingles Fourier transform infrared spectroscopy
FTO	óxido de flúor estaño, del ingles fluorine doped tin oxide
HQ	hidroquinona
IC	circuito integrado, del ingles integrated circuit
IEP	punto isoeléctrico
INIFTA	Instituto de Investigaciones Físico Químicas Teóricas y Apli- cadas
INQUIMAE	Instituto de Química Física de los Materiales, Medio Ambiente y Energía
INTI	Instituto Nacional de Tecnología Industrial
INTI-CIEPS	INTI-Centro de Investigaciones en Procesos Superficiales
INTI-CMNB	INTI-Centro de Micro y Nano Electrónica del Bicentenario
ITO	óxido de indio-estaño, del ingles indium tin oxide
IUPAC	Unión Internacional de Química Pura y Aplicada
MEF	método de elementos finitos
MEMS	Sistemas microelectromecánicos, del ingles <i>Microelectromechanical systems</i> electric emchanils
MPTMS	3-mercaptopropil trimetoxisilano
PAI	poliestireno de alto impacto
PBT	tereftalato de polibutileno
PDM	película delgada mesoporosa
PEA	poroelipsometría ambiental
PET	tereftalato de polietileno
PMMA	polimetilmetacrilato
ProXX	prefijo para películas sintetizadas por el método prolongado
PVD	deposición química en fase vapor, del ingles $physical\ vapour\ deposition$
\mathbf{RF}	radiofrecuencia
\mathbf{SC}	película delgada mesoporosas de óxido de silicio estructura con CTAB
MEB	microscopia de barrido electrónico
SF	película delgada mesoporosas de óxido de silicio estructura- da con F127
$\mathbf{Sim}\mathbf{X}\mathbf{X}$	prefijo para películas sintetizadas por el método simplificado
SZB	película delgada mesoporosas mixta de óxido de silicio y circonio estructura con Brij58
SZF	película delgada mesoporosas mixta de óxido de silicio y circonio estructura con F127
TEOS	tetraetoxisilano
UV/VIS	ultravioleta/visible
VacXX	prefijo para películas sintetizadas por el método de alto vacío
XPS	espectroscopia de fotoelectrones de rayos X, del ingles X-ray photoelectron spectroscopy

ANEXO C: PUBLICACIONES

Las siguientes publicaciones y presentacinoes fueron derivadas del presente trabajo de tesis, las mismas se listan en orden cronologico.

Premio INNOVAR 2011 - 2° Premio en la categoría Investigación Aplicada por el proyecto: "Arreglo de electrodos nanoporosos funcionales permselectivos para monitoreo de agua ambiental". http://www.innovar.mincyt.gob.ar

Building memristive and radiation hardness TiO₂-based junctions. Ghenzi, N., D. Rubi, E. Mangano, G. Giménez, J. Lell, A. Zelcer, P. Stoliar y P. Levy. Thin Solid Films, 550:683–688, Enero 2014, ISSN 00406090.http: //linkinghub.elsevier.com/retrieve/pii/S0040609013018294

Estudio del transporte a través de películas mesoporosas de óxido de silicio: adsorción, preconcentración y mediación redox con Ru(NH₃)₆Cl₃. Giménez, G, G Ybarra y G.J.A.A. Soler-Illia. Conferencia en XIX Congreso Argentino de Fisicoquímica y Química Aplicada, Buenos Aires, abril 2015. http://www.aaif q.org.ar/CAFQI-AAIFQ/CAFQI-AAIFQ.php

Ion exchange properties and electrochemical behavior of mesoporous silica films deposited onto thin film gold electrodes. Giménez, G, G Ybarra y G.J.A.A. Soler-Illia. En Smart System Integration 2016 - International Conference and Exhibition on Integration Issues of Miniaturized Systems, SSI 2016, páginas 392–395, 2016. http://www.scopus.com/inward/record.url?eid=2-s2.0-84976334467&par tnerID=MN8TOARS

Impresión flexográfica de cartuchos descartables para biosensor portátil. M. Mass, M. Roberti, G. Longinotti, D. Ricalde, J. Marinoni, A. Medrano 1, G. Giménez, L. Warcok, A. Ferreira, L. Fraigi, C. Moina, G. Ybarra 1, D. Díaz, A. Chobadindegui, L. Monsalve. Poster en Ibersensor 2016: X Congreso Iberoamericano de sensores, octubre 2016, Valparaiso, Chile. http://chile2016.ibersensor.org

Fabricación y caracterización de recubrimientos de nitruro de cromo por plasma de arco catódico. C. M. Griffiths, F. M. Rodríguez, I. N. Cortés, A. Hazarabedian, D. Vega, G. Giménez, E. Forlerer. 16° Congreso Internacional de Metalurgia y Materiales, SAM- CONAMET 2016 – SIMPOSIO Materiales y Tecnologías para la Industria Metalmecánica y Aeroespacial, Córdoba, noviembre 2016. http://sam-conamet2016.congresos.unc.edu.ar/

The radiation response of mesoporous nanocrystalline zirconia thin films. Manzini, Ayelén M., Martín A Alurralde, Gustavo Giménez y Vittorio Luca. J. Nucl. Mater., 482:175–186, Diciembre 2016, ISSN 00223115. http://linkinghub.elsev ier.com/retrieve/pii/S0022311516308911. Designed nanoparticle-mesoporous multilayer nanocomposites as tunable plasmonic-photonic architectures for electromagnetic field enhancement. Gazoni, Rodrigo Martínez, Martín G. Bellino, M. Cecilia Fuertes, Gustavo Giménez, Galo J. A. A. Soler-Illia y María Luz Martínez Ricci. J. Mater. Chem. C, 2017, ISSN 2050-7526. http://xlink.rsc.org/?DOI=C6TC05195B.

Diseño de nanocompuestos multicapa nacoparticulas-meosoporosos para desarrollo de sensores. Mención Especial por Trabajo destacado en las 13° Jornadas Abiertas de Desarrollor, Innovación y Transferencia Tecnologica - INTI, Buenos Aires, noviembre 2017.

REFERENCIAS

- Feynman, R. P.: Plenty of Room at the Bottom. En Am. Phys. Soc., Pasadena, 1959. https://pdfs.semanticscholar.org/63a0/84ebf75689a90a 225ab310a7c012bbcdd015.pdf.
- [2] Taniguchi, N.: On the Basic Concept of Nano-Technology. Bull. Japan Soc. Precis. Eng., páginas 18–23+, 1974.
- Drexler, K. E.: Engines of Creation. The Coming Era of Nanotechnology. Anchor Press, 1987, ISBN 0-385-19973-2. http://e-drexler.com/p/06/00/ /EOC_Cover.html.
- [4] Deutch, J. y Whitesides, G. M.: Let's get practical. Nature, 469:21–22, 2011, ISSN 14640570.
- [5] Vance, M. E., Kuiken, T., Vejerano, E. P., McGinnis, S. P., Hochella, M. F. Jr., Rejeski, D. y Hull, M. S.: Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J. Nanotechnol., 6:1769–1780, 2015.
- [6] Faraday, M.: The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light. Phil. Trans. R. Soc. Lond., 147(Enero):145–181, 1857.
- [7] Soler-Illia, G. J. A. A.: Nanotecnología: El desafío del siglo XXI. Eudeba, Buenos Aires, 1^a edición, Noviembre 2009, ISBN 978-950-23-1688-8.
- [8] Brinker, C. J. y Scherer, G. W.: Sol-gel Science: The Physics and Chemistry of Sol-gel Processing. Academic Press, New York, 1990, ISBN 0080571034, 9780080571034.
- [9] Brinker, C. J., Lu, Y., Ganguli, R., Drewien, C. A., Anderson, M. T., Gong, W., Guo, Y., Soyez, H., Dunn, B., Huang, M. H. y Zink, J. I.: Continuous formation of supported cubic and hexagonal mesoporous films by sol-gel dip-coating. Nature, 389(6649):364-368, Septiembre 1997, ISSN 00280836. http://www.nature.com/doifinder/10.1038/38699.
- [10] Malfatti, L. y Innocenzi, P.: Mesoporous thin films: properties and applications. Chem. Soc. Rev., 42(9):4198–216, Mayo 2013, ISSN 1460-4744. http://www.ncbi.nlm.nih.gov/pubmed/23396534.
- [11] Rouquerol, J., Avnir, D., Fairbridge, C. W., Everett, D. H., Haynes, J. M., Pernicone, N., Ramsay, J. D. F., Sing, K. S. W. y Unger, K. K.: *Recommendations for the characterization of porous solids*

(Technical Report). Pure Appl. Chem., 66(8):1739–1758, Enero 1994, ISSN 1365-3075. https://www.degruyter.com/view/j/pac.1994.66.issue-8/pac199466081739/pac199466081739.xml.

- [12] Martin, C. R. y Siwy, Z.: Molecular filters: Pores within pores. Nat. Mater., 3(5):284–285, Mayo 2004, ISSN 1476-1122. http://www.nature.com/doi finder/10.1038/nmat1124.
- [13] Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. y Beck, J. S.: Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397):710–712, 1992, ISSN 0028-0836. http://www.nature.com/doifinder/10.1038/359710a0.
- [14] Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T W., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B. y Schlenkert, J. L.: A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. J. Am. Chem. Soc., (114):10834–10843, 1992, ISSN 00027863.
- [15] Zhao, D., Yang, P., Melosh, N., Feng, J., Chmelka, B. F. y Stucky, G. D.: Continuous Mesoporous Silica Films with Highly Ordered Large Pore Structures. Adv. Mater., 10(16):1380–1385, Noviembre 1998, ISSN 0935-9648. http://doi.wiley.com/10.1002/%28SICI%291521-4095% 28199811%2910%3A16%3C1380%3A%3AAID-ADMA1380%3E3.0.CO %3B2-8.
- [16] Zhao, D., Yang, P., Margolese, D. I., Stucky, G. D., Chmelka, F. y Stucky, G. D.: Synthesis of continuous mesoporous silica thin films with threedimensional accessible pore structures. Chem. Commun., 1(Table 1):2499– 2500, 1998, ISSN 13597345.
- Brinker, C. J., Lu, Y., Sellinger, A. y Fan, H.: Evaporation-Induced Self-Assembly: Nanostructures Made Easy. Adv. Mater., 11(7):579–585, Mayo 1999, ISSN 0935-9648. http://doi.wiley.com/10.1002/%28SICI%29 1521-4095%28199905%2911%3A7%3C579%3A%3AAID-ADMA579%3E3 .0.CO%3B2-R.
- [18] Ciesla, U., Schacht, S., Stucky, G. D., Unger, K. K. y Schüth, F.: Formation of a Porous Zirconium Oxo Phosphate with a High Surface Area by a Surfactant-Assisted Synthesis. Angew. Chemie Int. Ed. English, 35(5):541–543, Marzo 1996, ISSN 0570-0833. http://doi.wiley.com/10.1 002/anie.199605411.
- [19] Ulagappan, N. y Rao, C. N. R.: Mesoporous phases based on SnO₂ and TiO₂. Chem. Commun., (14):1685, 1996, ISSN 1359-7345. http://xlink. rsc.org/?DOI=cc9960001685.
- [20] Antonelli, D. M. y Ying, J. Y.: Synthese von hexagonal gepacktem, mesoporösem TiO₂ mit einer modifizierten Sol-Gel-Methode. Angew. Chemie, 107(18):2202–2206, Septiembre 1995, ISSN 00448249. http://doi.wiley.co m/10.1002/ange.19951071828.

- [21] Soler-Illia, G. J. A. A. y Innocenzi, P.: Mesoporous Hybrid Thin Films: The Physics and Chemistry Beneath. Chem. - A Eur. J., 12(17):4478– 4494, Junio 2006, ISSN 0947-6539. http://doi.wiley.com/10.1002/chem.2 00500801.
- [22] Moller, K. y Bein, T.: Inclusion Chemistry in Periodic Mesoporous Hosts. Chem. Mater., 10(10):2950–2963, Octubre 1998, ISSN 0897-4756. http: //pubs.acs.org/doi/abs/10.1021/cm980243e.
- [23] Jolivet, J P., Henry, M. y Livage, J.: Metal oxide chemistry and synthesis : from solution to solid state. John Wiley, 2000, ISBN 0471970565. https://books.google.com.ar/books?id=pPjvAAAAMAAJ&q=Metal+ Oxide+Chemistry+and+Synthesis&dq=Metal+Oxide+Chemistry+and +Synthesis&hl=es-419&sa=X&ved=0ahUKEwjLr4qW853XAhWGF5A KHeaFAPkQ6AEIJTAA.
- [24] Wright, J. D. y Sommerdijk, N. A. J. M.: Sol-gel materials : chemistry and applications. Gordon and Breach Science Publishers, 2001, ISBN 9056993267. https://books.google.com.ar/books/about/Sol_Gel_M aterials.html?id=1oEzkBplw&cC&source=kp_cover&redir_esc=y.
- [25] Pierre, A. C.: Introduction to sol-gel processing. Kluwer Academic Publishers, 1998, ISBN 0792381211. https://books.google.com.ar/books/ about/Introduction_to_Sol_Gel_Processing.html?id=CYW7-Zf3brcC&sou rce=kp_cover&redir_esc=y.
- [26] Grosso, D., Cagnol, F., Soler-Illia, G. J. A. A., Crepaldi, E. L., Amenitsch, H., Brunet-Bruneau, A., Bourgeois, A. y Sanchez, C.: Fundamentals of Mesostructuring Through Evaporation-Induced Self-Assembly. Adv. Funct. Mater., 14(4):309–322, Abril 2004, ISSN 1616-301X. http://doi.wiley.co m/10.1002/adfm.200305036.
- [27] Yang, P.D., Zhao, D.Y., Margolese, D.I., Chmelka, B.F. y Stucky, G.D.: Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature, 396(November):6–9, 1998, ISSN 00280836. http://www.engineering.ucsb.edu/\$\sim\$ceweb/faculty /bradc/pdfs/10.pdf%5Cn%3CGotoISI%3E://000077013300047.
- [28] Grosso, D., Babonneau, F., Soler-Illia, G. J. A. A., Albouy, P. A. y Amenitsch, H.: Phase transformation during cubic mesostructured silica film formation. Chem. Commun., (7):748–749, 2002, ISSN 13597345.
- [29] Crepaldi, E. L., Soler-Illia, G. J. A. A., Grosso, D. y Sanchez, C.: Nanocrystallised titania and zirconia mesoporous thin films exhibiting enhanced thermal stability. New J. Chem., 27(1):9–13, Enero 2003, ISSN 11440546. http://xlink.rsc.org/?DOI=b205497n.
- [30] Grosso, D., Soler-Illia, G. J. A. A., Crepaldi, E. L., Cagnol, F., Sinturel, C., Bourgeois, A., Brunet-Bruneau, A., Amenitsch, H., Albouy, P. A. y Sanchez, C.: *Highly Porous TiO₂ Anatase Optical Thin Films with Cubic Mesostructure Stabilized at* 700°C. Chem. Mater., 15(24):4562–4570, 2003, ISSN 08974756.

- [31] Violi, I. L.: Films delgados mesoporosos de óxidos metálicos nanocristalinos con aplicaciones en dispositivos fotovoltaicos y catálisis. Tesis de Doctorado, Universidad de Buenos Aires, 2015. http://digital.bl.fcen.ub a.ar/Download/Tesis/Tesis_5654_Violi.pdf.
- [32] Angelomé, P. C.: Films delgados mesoporosos de óxidos metálicos, mixtos e híbridos. Hacia un diseño racional de nanomateriales funcionales. Tesis de Doctorado, Facultad de Ciencias Exactas y Naturales - UBA, 2008. http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_4278_Angelome.pdf.
- [33] Bard, A. J. y Faulkner, L. R.: Electrochemical Methods: Fundamentals and Applications. Wiley, 2^a edición, 2000, ISBN 978-0471043720.
- [34] Bockris, J. M. y Reddy, A. K. N.: Modern Electrochemistry, volumen 1. 1974, ISBN 030646909X.
- [35] Koryta, J., Dvorak, J. y Kavan, L.: Principles of electrochemistry. Wiley, Chichester New York, 2^a edición, Marzo 1993, ISBN 978-0471938385.
- [36] Zuman, P. y Elving, P. J.: Jaroslav Heyrovsky: Nobel laureate. J. Chem. Educ., 37(11):562, Noviembre 1960, ISSN 0021-9584. http://pubs.acs.org /doi/abs/10.1021/ed037p562.
- [37] Hickling, A.: Studies in electrode polarisation. Part IV.—The automatic control of the potential of a working electrode. Trans. Faraday Soc., 38:27– 33, 1942, ISSN 0014-7672. http://xlink.rsc.org/?DOI=TF9423800027.
- [38] Nicholson, R. S. y Shain, Irving.: Theory of Stationary Electrode Polarography. Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems. Anal. Chem., 36(4):706–723, Abril 1964, ISSN 0003-2700. http://pubs.acs.org/doi/abs/10.1021/ac60210a007http: //dx.doi.org/10.1021/ac60210a007.
- [39] Erdey-Grúz, T. y Volmer, M.: Zur Theorie der Wasserstoff Überspannung. Zeitschrift für Phys. Chemie, 150A(1), Enero 1930, ISSN 2196-7156. http://www.degruyter.com/view/j/zpch.1930.150.issue -1/zpch-1930-15020/zpch-1930-15020.xml.
- [40] Bakker, E. y Qin, Y.: Electrochemical Sensors. Anal. Chem., 78(12):3965–3984, Junio 2006, ISSN 0003-2700. http://pubs.acs.org/doi/abs/10.1021/ac060637m.
- [41] Stradiotto, N. R., Yamanaka, H. y Zanoni, M. V. B.: Electrochemical sensors: a powerful tool in analytical chemistry. J. Braz. Chem. Soc., 14(2):159–173, Abril 2003, ISSN 0103-5053. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-505 32003000200003&lng=en&nrm=iso&tlng=en.
- [42] Harris, A. R., Zhang, J., Cattrall, R. W. y Bond, A. M.: Applications of voltammetric ion selective electrodes to complex matrices. Anal. Methods, 5(16):3840, 2013, ISSN 1759-9660. http://xlink.rsc.org/?DOI=c3ay40769 a.

REFERRNCIAS

- [43] Ciosek, P. y Wróblewski, W.: Sensor arrays for liquid sensing-electronic tongue systems. Analyst, 132(10):963–78, Octubre 2007, ISSN 0003-2654. http://www.ncbi.nlm.nih.gov/pubmed/17893798.
- [44] Kojima, K., Hiratsuka, A., Suzuki, H., Yano, K., Ikebukuro, K. y Karube, I.: Electrochemical protein chip with arrayed immunosensors with antibodies immobilized in a plasma-polymerized film. Anal. Chem., 75(5):1116– 22, Marzo 2003, ISSN 0003-2700. http://www.ncbi.nlm.nih.gov/pubmed/ 12641231.
- [45] Jaeger, R. C.: Introduction to Microelectronic Fabrication. Prentice Hall, 2^a edición, 2001, ISBN 978-0201444940.
- [46] Riordan, M., Hoddeson, L. y Herring, C.: The Invention of the Transistor. More Things Heaven Earth, 86(1):563–578, 1999, ISSN 00189219. http: //link.springer.com/10.1007/978-1-4612-1512-7_37.
- [47] Moore, G. E.: Cramming more components onto integrated circuits. IEEE Solid-State Circuits Soc. Newsl., 11(3):33–35, Septiembre 2006, ISSN 1098-4232. http://ieeexplore.ieee.org/document/4785860/.
- [48] Fagen, M. D., Joel, Amos E. y Schindler, G. E.: A history of engineering and science in the Bell System. A T & T Bell Laboratorie, 1^a edición, 1984, ISBN 0932764061.
- [49] Franssila, S.: Introduction to Microfabrication. Wiley, 1^a edición, 2004, ISBN 978-0470851067.
- [50] Madou, M. y J.: Fundamentals of microfabrication : the science of miniaturization. CRC Press, 2002, ISBN 9780849308260. https://www.crcpress.com/Fundamentals-of-Microfabrication-The-S cience-of-Miniaturization-Second/Madou/p/book/9780849308260.
- [51] Gargini, P.: The International Technology Roadmap for Semiconductors (ITRS): Past, present and future. En GaAs IC Symp. IEEE Gall. Arsenide Integr. Circuits Symp. 22nd Annu. Tech. Dig. 2000. (Cat. No.00CH37084), páginas 3–5. IEEE, ISBN 0-7803-5968-2. http://ieeexp lore.ieee.org/document/906261/.
- [52] Moore, G. E.: Lithography and the future of Moore's Law. IEEE Solid-State Circuits Soc. Newsl., 11(3):37–42, Septiembre 2006, ISSN 1098-4232. http://ieeexplore.ieee.org/document/4785861/.
- [53] Asano, M., Yoshikawa, R., Hirano, T., Abe, H., Matsuki, K., Tsuda, H., Komori, Mo., Ojima, T., Yonemitsu, H. y Kawamoto, A.: Metrology and inspection required for next generation lithography. Jpn. J. Appl. Phys., 56(6S1):06GA01, Junio 2017, ISSN 0021-4922. http://stacks.iop.org/1347-4065/56/i=6S1/a=06GA01? key=crossref.e57ff967fe2cf7e721774ce5b6f1e594.
- [54] Schoot, J. y Schift, H.: Next-generation lithography an outlook on EUV projection and nanoimprint. Adv. Opt. Technol., 6(3-4), Enero 2017, ISSN 2192-8584. http://www.degruyter.com/view/j/aot.2017.6.issue-3-4 /aot-2017-0040/aot-2017-0040.xml.

- [55] Hasan, R. M. y Luo, X.: Nanolithography: Status and challenges. En 2017 23rd Int. Conf. Autom. Comput., páginas 1–6. IEEE, Septiembre 2017, ISBN 978-0-7017-0260-1. http://ieeexplore.ieee.org/document/8081979/.
- [56] Naujok, P., Murray, K., Yulin, S., Patzig, C., Kaiser, N. y Tünnermann, A.: Thermal stability of B-based multilayer mirrors for next generation lithography. Thin Solid Films, 642:252–257, Noviembre 2017, ISSN 00406090. http://linkinghub.elsevier.com/retrieve/pii/S0040609017307046.
- [57] Wan, L.: High x polystyrene-b-polycarbonate for next generation lithography. Sci. China Chem., 60(6):679–680, Junio 2017, ISSN 1674-7291. http://link.springer.com/10.1007/s11426-017-9043-7.
- [58] Clinton, Michael, Cheng, Hank, Liao, HJ, Lee, Robin, Wu, Ching Wei, Yang, Johnny, Hsieh, Hau Tai, Wu, Frank, Yang, Jung Ping, Katoch, Atul, Achyuthan, Arun, Mikan, Donald, Sheffield, Bryan y Chang, Jonathan: 12.3 A low-power and high-performance 10nm SRAM architecture for mobile applications. En 2017 IEEE Int. Solid-State Circuits Conf., páginas 210–211. IEEE, Febrero 2017, ISBN 978-1-5090-3758-2. http://ieeexplore.ieee.org/document/7870335/.
- [59] Chang, Jonathan, Chen, Yen Huei, Chan, Wei Min, Singh, Sahil Preet, Cheng, Hank, Fujiwara, Hidehiro, Lin, Jih Yu, Lin, Kao Cheng, Hung, John, Lee, Robin, Liao, Hung Jen, Liaw, Jhon Jhy, Li, Quincy, Lin, Chih Yung, Chiang, Mu Chi y Wu, Shien Yang: 12.1 A 7nm 256Mb SRAM in high-k metal-gate FinFET technology with write-assist circuitry for low-V_iinf_iMIN_i/inf_iapplications. En 2017 IEEE Int. Solid-State Circuits Conf., páginas 206–207. IEEE, Febrero 2017, ISBN 978-1-5090-3758-2. http://ieeexplore.ieee.org/document/7870333/.
- [60] Samsung: Samsung Set to Lead the Future of Foundry with Comprehensive Process Roadmap Down to 4nm, 2017. https://news.samsung.com/global/ samsung-set-to-lead-the-future-of-foundry-with-comprehensive-process -roadmap-down-to-4nm?cid=au_affiliate_viglink_imecom2017_20170331.
- [61] IBM: IBM Research Alliance Builds New Transistor for 5nm Technology, 2017. https://www-03.ibm.com/press/us/en/pressrelease/52531.wss.
- [62] Depla, D., Mahieu, S. y Greene, J. E.: Sputter Deposition Processes. En Handb. Depos. Technol. Film. Coatings, páginas 253–296. Elsevier, 2010, ISBN 9780815520313. http://linkinghub.elsevier.com/retrieve/pii/B9780 815520313000053.
- [63] Kelly, P.J. y Arnell, R.D.: Magnetron sputtering: a review of recent developments and applications. Vacuum, 56(3):159–172, 2000, ISSN 0042207X. http://dx.doi.org/10.1016/S0042-207X(99)00189-X.
- [64] Behrisch, Rainer (editor): Sputtering by Particle Bombardment I, volumen 47 de Topics in Applied Physics. Springer Berlin Heidelberg, Berlin, Heidelberg, 1981, ISBN 978-3-540-10521-3. http://link.springer.com/10.1 007/3-540-10521-2.

- [65] Sigmund, P.: Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets. Phys. Rev., 184(2):383–416, Agosto 1969, ISSN 0031899X. http://link.aps.org/doi/10.1103/PhysRev.184.383.
- [66] Bhatt, V. y Chandra, S.: Silicon dioxide films by RF sputtering for microelectronic and MEMS applications. J. Micromechanics Microengineering, 17:1066–1077, 2007, ISSN 0960-1317.
- [67] Walcarius, Alain: Analytical Applications of Silica-Modified Electrodes -A Comprehensive Review. Electroanalysis, 10(18):1217–1235, 1999, ISSN 10400397. http://doi.wiley.com/10.1002/%28SICI%291521-4109% 28199812%2910%3A18%3C1217%3A%3AAID-ELAN1217%3E3.0.CO%3 B2-X.
- [68] Walcarius, Alain: Electroanalysis with pure, chemically modified, and solgel-derived silica-based materials. Electroanalysis, 13(8-9):701-718, 2001, ISSN 10400397.
- [69] Etienne, Mathieu, Guillemin, Yann, Grosso, David y Walcarius, Alain: Electrochemical approaches for the fabrication and/or characterization of pure and hybrid templated mesoporous oxide thin films: a review. Anal. Bioanal. Chem., 405(5):1497–512, Febrero 2013, ISSN 1618-2650. http: //www.ncbi.nlm.nih.gov/pubmed/22941177.
- [70] Walcarius, A., Sibottier, E., Etienne, M. y Ghanbaja, J.: Electrochemically assisted self-assembly of mesoporous silica thin films. Nat. Mater., 6(8):602–608, 2007, ISSN 14764660.
- [71] Vilà, Neus, André, Erwan, Ciganda, Roberto, Ruiz, Jaime, Astruc, Didier y Walcarius, Alain: Molecular Sieving with Vertically Aligned Mesoporous Silica Films and Electronic Wiring through Isolating Nanochannels. Chem. Mater., 28(8):2511–2514, 2016, ISSN 15205002.
- [72] Rohlfing, D. F., Rathouský, J., Rohlfing, Y., Bartels, O. y Wark, M.: Functionalized mesoporous silica films as a matrix for anchoring electrochemically active guests. Langmuir, 21(24):11320–11329, 2005, ISSN 07437463.
- [73] Coneo Rodríguez, Rusbel, Bruno, Mariano M. y Angelomé, Paula C.: Au nanoparticles embedded in mesoporous ZrO2films: Multifunctional materials for electrochemical detection. Sensors Actuators, B Chem., 254:603– 612, 2018, ISSN 09254005. http://dx.doi.org/10.1016/j.snb.2017.07.072.
- Walcarius, Alain: Mesoporous materials and electrochemistry. Chem. Soc. Rev., 42(9):4098–140, Mayo 2013, ISSN 1460-4744. http://www.ncbi.nlm .nih.gov/pubmed/23334166.
- [75] Calvo, Alejandra, Fuertes, M Cecilia, Yameen, Basit, Williams, Federico J, Azzaroni, Omar y Soler-Illia, Galo J a a: Nanochemistry in confined environments: polyelectrolyte brush-assisted synthesis of gold nanoparticles inside ordered mesoporous thin films. Langmuir, 26(8):5559–67, Abril 2010, ISSN 1520-5827. http://www.ncbi.nlm.nih.gov/pubmed/20166726.

- [76] Andrieu-Brunsen, A., Micoureau, S., Tagliazucchi, M., Szleifer, I., Azzaroni, O. y Soler-Illia, G. J. A. A.: Mesoporous Hybrid Thin Film Membranes with PMETAC@Silica Architectures: Controlling Ionic Gating through the Tuning of Polyelectrolyte Density. Chem. Mater., 27(3):150122154323004, 2015, ISSN 0897-4756. http://dx.doi.org/10.1021/cm5037953.
- [77] Gaitán, Martín, Gonçales, Vinicius R, Soler-Illia, Galo J a a, Baraldo, Luis M y Torresi, Susana I Córdoba de: Structure effects of self-assembled Prussian blue confined in highly organized mesoporous TiO₂ on the electrocatalytic properties towards H2O2 detection. Biosens. Bioelectron., 26(2):890–3, Octubre 2010, ISSN 1873-4235. http://www.ncbi.nlm.nih.g ov/pubmed/20692145.
- [78] Fattakhova-Rohlfing, D., Wark, M. y Rathouský, J.: Ion-permselective pHswitchable mesoporous silica thin layers. Chem. Mater., 19(7):1640–1647, 2007, ISSN 08974756.
- [79] Calvo, A., Yameen, B., Williams, F. J., Azzaroni, O. y Soler-Illia, G. J. A. A.: Facile molecular design of hybrid functional assemblies with controllable transport properties: mesoporous films meet polyelectrolyte brushes. Chem. Commun. (Camb)., (18):2553–5, Mayo 2009, ISSN 1359-7345. http://www.ncbi.nlm.nih.gov/pubmed/19532887.
- [80] Wagner, T., Haffer, S., Weinberger, C., Klaus, D. y Tiemann, M.: Mesoporous materials as gas sensors. Chem. Soc. Rev., 42(9):4036–53, Mayo 2013, ISSN 1460-4744. http://www.ncbi.nlm.nih.gov/pubmed/23232579.
- [81] Nasir, T., Herzog, G., Hebrant, M., DESPAS, C., Liu, L. y Walcarius, A.: Mesoporous silica thin films for improved electrochemical detection of paraquat. ACS Sensors, página acssensors.7b00920, 2018, ISSN 2379-3694. http://pubs.acs.org/doi/10.1021/acssensors.7b00920.
- [82] Liu, N., Assink, R. A., Smarsly, B. y Brinker, C. J.: Synthesis and characterization of highly ordered functional mesoporous silica thin films with positively chargeable -NH2 groups. Chem. Commun. (Camb)., páginas 1146–1147, 2003, ISSN 13597345.
- [83] Calvo, A, Angelomé, P. C., Sànchez, V. M., Scherlis, D A, Williams, F J y Soler-Illia, G. J. A. A.: Mesoporous Aminopropyl-Functionalized Hybrid Thin Films with Modulable Surface and Environment-Responsive Behavior. Chem. Mater., 20(14):4661–4668, Julio 2008, ISSN 0897-4756. http://pubs.acs.org/doi/abs/10.1021/cm800597k.
- [84] Soler-Illia, G. J. A. A., Angelomé, P. C., Fuertes, M. C., Grosso, D. y Boissiere, C.: Critical aspects in the production of periodically ordered mesoporous titania thin films. Nanoscale, 4(8):2549–66, Abril 2012, ISSN 2040-3372. http://www.ncbi.nlm.nih.gov/pubmed/22419250.
- [85] Photong, Somjate y Boonamnuayvitaya, Virote: Synthesis of APTMS-Functionalized SiO₂/TiO₂ Transparent Film Using Peroxo Titanic Acid Refluxed Solution for Formaldehyde Removal. Water, Air, Soil Pollut., 210(1-4):453-461, Noviembre 2009, ISSN 0049-6979. http://link.springer. com/10.1007/s11270-009-0268-5.

- [86] Brunsen, A., Calvo, A., Williams, F. J., Soler-Illia, G. J. A. A. y Azzaroni, O.: Manipulation of molecular transport into mesoporous silica thin films by the infiltration of polyelectrolytes. Langmuir, 27(8):4328–33, Abril 2011, ISSN 1520-5827. http://www.ncbi.nlm.nih.gov/pubmed/21425821.
- [87] Krohm, Fabio, Didzoleit, Haiko, Schulze, Marcus, Dietz, Christian, Stark, Robert W., Hess, Christian, Stühn, Bernd y Brunsen, Annette: Controlling polymerization initiator concentration in mesoporous silica thin films. Langmuir, 30(1):369–379, 2014, ISSN 07437463.
- [88] Walcarius, Alain y Kuhn, Alexander: Ordered porous thin films in electrochemical analysis. TrAC Trends Anal. Chem., 27(7):593-603, Julio 2008, ISSN 01659936. http://linkinghub.elsevier.com/retrieve/pii/S0165993608 001015.
- [89] Mimendia, A., Gutiérrez, J. M., Leija, L., Hernández, P. R., Favari, L., Muñoz, R. y Valle, M. del: A review of the use of the potentiometric electronic tongue in the monitoring of environmental systems. Environ. Model. Softw., 25(9):1023–1030, 2010, ISSN 13648152.
- [90] Tahara, Yusuke y Toko, Kiyoshi: *Electronic tongues-a review*. IEEE Sens. J., 13(8):3001–3011, 2013, ISSN 1530437X.
- [91] Fuertes, M. C.: Materiales funcionales multiescala basados en películas de óxidos mesoporosos. Tesis de Doctorado, UNSAM, 2009.
- [92] Soler-Illia, G. J. A. A., Crepaldi, E. L., Grosso, D. y Sanchez, C.: Designed synthesis of large-pore mesoporous silica-zirconia thin films with high mixing degree and tunable cubic or 2D-hexagonal mesostructure. J. Mater. Chem., 14(12):1879, 2004, ISSN 0959-9428.
- [93] Grosso, D., Balkenende, A. R., Albouy, P. A., Ayral, A., Amenitsch, H. y Babonneau, F.: Two-Dimensional Hexagonal Mesoporous Silica Thin Films Prepared from Block Copolymers: Detailed Characterization and Formation Mechanism. Chem. Mater., 13(5):1848–1856, Mayo 2001, ISSN 0897-4756. http://pubs.acs.org/doi/abs/10.1021/cm001225b.
- [94] Zhang, Min, Wu, Yipan, Feng, Xizeng, He, Xiwen, Chen, Langxing y Zhang, Yukui: Fabrication of mesoporous silica-coated CNTs and application in size-selective protein separation. J. Mater. Chem., 20(28):5835, 2010, ISSN 0959-9428.
- [95] Sahu, N., Parija, B. y Panigrahi, S.: Fundamental understanding and modeling of spin coating process: A review. Indian J. Phys., 83(4):493–502, 2009, ISSN 0019-5480. http://link.springer.com/10.1007/s12648-009-000 9-z.
- [96] Zhang, S.: Nanostructured thin films and coatings: mechanical properties. CRC Press, 2010, ISBN 9781420094039.
- [97] Emslie, A. G., Bonner, F. T. y Peck, L. G.: Flow of a viscous liquid on a rotating disk. J. Appl. Phys., 29(5):858–862, 1958, ISSN 00218979.

- [98] Meyerhofer, D.: Characteristics of resist films produced by spinning. J. Appl. Phys., 49(7):3993–3997, 1978, ISSN 00218979.
- [99] Hall, D. B., Underhill, P. y Torkelson, J. M.: Spin Coating of Thin and Ultrathin Polymer Films. Polym. Eng. Sci., 38(12):2039–2045, 1998, ISSN 00323888.
- [100] Crepaldi, E. L., Soler-Illia, G. J. A. A., Grosso, D., Cagnol, F., Ribot, F. y Sanchez, C.: Controlled Formation of Highly Organized Mesoporous Titania Thin Films: From Mesostructured Hybrids to Mesoporous Nanoanatase TiO₂. J. Am. Chem. Soc., 125(32):9770–9786, Agosto 2003, ISSN 0002-7863. http://pubs.acs.org/doi/abs/10.1021/ja030070g.
- [101] Doshi, D. A., Huesing, N. K., Lu, M., Fan, H., Lu, Y., Simmons-Potter, K., Potter, B. G., Hurd, A: J. y Brinker, C. J.: Optically defined multifunctional patterning of photosensitive thin-film silica mesophases. Science, 290(5489):107–111, Octubre 2000, ISSN 00368075. http://www.sciencem ag.org/cgi/doi/10.1126/science.290.5489.107.
- [102] Soler-Illia, G. J. A. A. y Azzaroni, O.: Multifunctional hybrids by combining ordered mesoporous materials and macromolecular building blocks. Chem. Soc. Rev., 40(2):1107–50, Febrero 2011, ISSN 1460-4744. http: //www.ncbi.nlm.nih.gov/pubmed/21221447.
- [103] Calvo, A.: Films Delgados mesoporosos híbridos conteniendo el grupo amino: una plataforma para el diseño y producción de membranas permselectivas. Tesis de Doctorado, Universidad Nacional de General San Martín, 2010.
- [104] Atkins, P. y De Paula, J.: The Elements of Physical Chemistry. Oxford University Press, NewYork, 8^a edición, 2006, ISBN 978-0-7167-8759-4.
- [105] Barrow, G. M.: Introduction to Molecular Spectroscopy. McGraw-Hill Inc., US, 1962, ISBN 978-0070038707.
- [106] Stuart, B. H.: Infrared Spectroscopy: Fundamentals and Applications, volumen 8 de Analytical Techniques in the Sciences. John Wiley and Sons, Chichester, UK, Junio 2004, ISBN 9780470011140. http://doi.wiley.com/ 10.1002/0470011149.
- [107] From Nicholet Thermo: High-Speed, High-Sensitivity Detectors for Use in the Mid-Infrared Spectral Range. Informe técnico, Thermo Fisher Scientific, 2007. http://mmrc.caltech.edu/FTIR/Nicolet/NicoletTechNotes/M CTdetectorThermo.pdf.
- [108] Findenegg, G. H. y Herminghaus, S.: Wetting: Statics and dynamics. Curr. Opin. Colloid Interface Sci., 2(3):301–307, Junio 1997, ISSN 13590294. http://ac.els-cdn.com/S1359029497800398/1-s2.0-S1359029497800398-m ain.pdf?_tid=e7f387aa-5838-11e7-8268-00000aab0f27&acdnat=1498238 889_75e9bbd1498aab35e799555d7cdca110.
- [109] Young, T.: An Essay on the Cohesion of Fluids. Philos. Trans. R. Soc. London, 95(January):65–87, Enero 1805, ISSN 0261-0523. http://rstl.roy alsocietypublishing.org/cgi/doi/10.1098/rstl.1805.0005.

REFERRNCIAS

- [110] Boissiere, C., Grosso, D., Lepoutre, S., Nicole, L., Bruneau, A. B. y Sanchez, C.: Porosity and mechanical properties of mesoporous thin films assessed by environmental ellipsometric porosimetry. Langmuir, 21(26):12362-71, Diciembre 2005, ISSN 0743-7463. http://www.ncbi.nlm .nih.gov/pubmed/16343015.
- [111] Tompkins, H. G. y McGahan, W. A.: Spectroscopic Ellipsometry and Reflectometry. A User's Guide. Wiley-Interscience, 1^a edición, Mayo 1999, ISBN 978-0471181729.
- [112] Rothen, A.: The Ellipsometer, an Apparatus to Measure Thicknesses of Thin Surface Films. Rev. Sci. Instrum., 16(2):26, 1945, ISSN 00346748. ht tp://scitation.aip.org/content/aip/journal/rsi/16/2/10.1063/1.1770315.
- [113] Bruggeman, D. A. G.: Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys., 416(7):636-664, 1935, ISSN 00033804. http://doi.wiley.com/10.1002/an dp.19354160705.
- [114] Garnett, J. C. M.: Colours in Metal Glasses, in Metallic Films, and in Metallic Solutions. II. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 205(387-401):237-288, Enero 1906, ISSN 1364-503X. http://rsta.royalso cietypublishing.org/cgi/doi/10.1098/rsta.1906.0007.
- [115] Martínez, E. D.: Películas delgadas nano-compuestas (nanoparticula metálica/matríz mesoporosa) con aplicaiones en Espectroscopía Raman amplificada por superfices. Tesis de Doctorado, UNSAM, 2013.
- [116] Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguezreinoso, F., Rouquerol, J. y Sing, K. S. W.: *Physisorption of gases, with* special reference to the evaluation of surface area and pore size distribution (*IUPAC Technical Report*). Pure Appl. Chem., 87(9-10):1051–1069, Enero 2015, ISSN 1365-3075. https://www.degruyter.com/view/j/pac.2015.87.i ssue-9-10/pac-2014-1117/pac-2014-1117.xml.
- [117] Gregg, S. J., Sing, K. S. W. y Salzberg, H. W.: Adsorption Surface Area and Porosity. J. Electrochem. Soc., 114(11):279C, Octubre 1967, ISSN 00134651. http://doi.wiley.com/10.1002/bbpc.19820861019.
- [118] Baklanov, M. R., Mogilnikov, K. P., Polovinkin, V. G. y Dultsev, F. N.: Determination of pore size distribution in thin films by ellipsometric porosimetry. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., 18(3):1385, 2000, ISSN 0734211X. http://scitation.aip.org/content/avs/ journal/jvstb/18/3/10.1116/1.591390.
- [119] Sing, K. S. W., Everett, D. H., Haul, R. A., Moscou, L., Pierotti, R. A., Rouquerol, J. y Siemieniewska, T.: *Reporting physisorption data for gas/solid systems*. Pure Appl. Chem., 57(4):603-619, 1985, ISSN 1365-3075.
- [120] Fernández Prini, R. y Marceca, E.: Materia y Moléculas. Eudeba, Buenos Aires, 2^a edición, 2005, ISBN 950-23-1339-9.

- [121] Kern, W.: The Evolution of Silicon Wafer Cleaning Technology. J. Electrochem. Soc., 137(6):1887, 1990, ISSN 00134651. http://jes.ecsdl.org/cg i/doi/10.1149/1.2086825.
- [122] Mack, C. A.: Fundamental Principles of Optical Lithography: The Science of Microfabrication. Wiley, 1^a edición, 2007, ISBN 978-0470727300.
- [123] Mack, C. A.: Field Guide to Optical Lithography. SPIE Publications, spi edición, 2006, ISBN 978-0819462077.
- [124] Microchemicals Team: Lithography: Theory and Application of Photoresists, Developers, Solvents and Etchants. Microchemicals GMbH, 2009.
- [125] Hieber, H.: Aging properties of gold layers with different adhesion layers. Thin Solid Films, 37(3):335–343, Septiembre 1976, ISSN 00406090. http: //linkinghub.elsevier.com/retrieve/pii/0040609076906039.
- [126] Goss, C. A., Charych, D. H. y Majda, M.: Application of (3mercaptopropyl)trimethoxysilane as a molecular adhesive in the fabrication of vapor-deposited gold electrodes on glass substrates. Anal. Chem., 63(1):85–88, Enero 1991, ISSN 0003-2700. http://pubs.acs.org/doi/abs/1 0.1021/ac00001a018.
- [127] Herzog, G., Sibottier, E., Etienne, M. y Walcarius, A.: Electrochemically assisted self-assembly of ordered and functionalized mesoporous silica films: impact of the electrode geometry and size on film formation and properties. Faraday Discuss., 164:259, 2013, ISSN 1359-6640. http://xlink.rsc.org/?DOI=c3fd00021d.
- [128] Siegbahn, K. y Edvarson, K.: β-Ray Spectroscopy in the Precision Range of 1 : 10⁵. Nucl. Physic, 1:137–159, 1956, ISSN 00295582.
- [129] Siegbahn, K. M: Nobel Lecture: Electron Spectroscopy for Atoms, Molecules and Condensed Matter, 1981. http://www.nobelprize.org/nobel_prize s/physics/laureates/1981/siegbahn-lecture.html.
- Brundle, C. R., Baker, A. D. y Thomas, T. Darrah: *Electron Spectroscopy:* Theory, Techniques, and Applications, Volume 2. Phys. Today, 32(10):62, 1979, ISSN 00319228. http://scitation.aip.org/content/aip/magazine/p hysicstoday/article/32/10/10.1063/1.2995244.
- [131] Corthey, G.: Estudio de Interfases Metal-Tiol en Superficies Planas y Nanopartículas. Tesis de Doctorado, Universidad Nacional de la Plata, 2012.
- [132] Goodhew, P. J., Humphreys, J. y Beanland, R.: *Electron Microscopy and Analysis.* CRC Press, 3^a edición, 2000, ISBN 0-748-40968-8.
- [133] Watt, I. M.: The Principles and Practice of Electron Microscopy. Cambridge University Press, 2^a edición, Marzo 1997, ISBN 9780521435918.
- [134] Joy, D. C.: Beam interactions, contrast and resolution in the SEM. J. Microsc., 136(2):241–258, 1984, ISSN 13652818.

- [135] Wu, J., Palai, R., Jadwisienczak, W. M. y Shur, M. S.: Bandgap engineering in MBE grown Al_{1-X} Ga_XN epitaxial columnar nanostructures. J. Phys. D. Appl. Phys., 45(1):5104, 2012, ISSN 00223727 13616463.
- [136] Hafner, B.: Scanning Electron Microscopy Primer. Univ. Minnesota, páginas 1–29, 2007. http://www.charfac.umn.edu/sem_primer.pdf.
- [137] Schneider, C. A., Rasband, W. S. y Eliceiri, K. W.: NIH Image to ImageJ: 25 years of image analysis. Nat. Methods, 9(7):671–5, Julio 2012, ISSN 1548-7105. http://www.ncbi.nlm.nih.gov/pubmed/22930834.
- [138] Giannuzzi, L. A. y Stevie, F. A.: Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice. Springer US, 1^a edición, 2005, ISBN 978-1441935748.
- [139] Orloff, J.: Fundamental limits to imaging resolution for focused ion beams. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., 14(6):3759, 1996, ISSN 0734211X. http://scitation.aip.org/content/avs/journal/jvstb/14/6 /10.1116/1.588663.
- [140] Martínez Gazoni, R., Bellino, M. G., Fuertes, M. C., Giménez, G., Soler-Illia, Galo J. A. A. y Martínez Ricci, M. L.: Designed nanoparticle-mesoporous multilayer nanocomposites as tunable plasmonic-photonic architectures for electromagnetic field enhancement. J. Mater. Chem. C, 5(14):3445–3455, 2017, ISSN 2050-7526. http://xlink.rsc.org/?DOI=C6T C05195B.
- [141] Orloff, J., Utlaut, M. y Swanson, L.: High Resolution Focused Ion Beams: FIB and its Applications. Springer US, Boston, MA, 2003, ISBN 978-1-4613-5229-7. http://link.springer.com/10.1007/978-1-4615-0 765-9.
- [142] Reyntjens, S. y Puers, R.: A review of focused ion beam applications in microsystem technology. J. Micromechanics Microengineering, 11(4):287– 300, 2001, ISSN 0960-1317. http://stacks.iop.org/0960-1317/11/i=4/a=3 01?key=crossref.eb603166dc8f0b0b38252c5fc2f55f3c.
- [143] Gewirth, A. A.: Inorganic Electrochemistry: Theory, Practice and Application. J. Am. Chem. Soc., 126(14):4743–4744, Abril 2004, ISSN 0002-7863. http://pubs.acs.org/doi/abs/10.1021/ja0336022.
- [144] Wang, M., Wang, Z., Gong, X. y Guo, Z.: The intensification technologies to water electrolysis for hydrogen production – A review. Renew. Sustain. Energy Rev., 29:573–588, 2014, ISSN 1364-0321. http://dx.doi.org/10.10 16/j.rser.2013.08.090.
- [145] Skoog, D. A.: Analisis Instrumental. McGraw-Hill Interamericana, 4^a edición, 1995, ISBN 978-8448101916.
- [146] Britz, D.: Digital Simulation in Electrochemistry. Monographs in Electrochemistry. Springer International Publishing, Berlin, 3^a edición, 2005, ISBN 978-3-319-30290-4. http://link.springer.com/10.1007/978-3-319-3 0292-8.

- [147] Nann, T. y Heinze, J.: Simulation in electrochemistry using the finite element method part 2: Scanning electrochemical microscopy. Electrochim. Acta, 48(27):3975–3980, 2003, ISSN 00134686.
- [148] Fick, A.: Ueber Diffusion. Ann. der Phys. und Chemie, 170(1):59–86, 1855, ISSN 00033804. http://doi.wiley.com/10.1002/andp.18551700105.
- [149] Banus, M. G.: A Design for a saturated calomel electrode. Science (80-.)., 93(2425):601-602, Junio 1941, ISSN 0036-8075. http://www.sciencemag.org/cgi/doi/10.1126/science.93.2425.601-a.
- [150] Pumera, M., Sánchez, S., Ichinose, I. y Tang, J.: *Electrochemical nano-biosensors*. Sensors Actuators B Chem., 123(2):1195–1205, Mayo 2007, ISSN 09254005. http://linkinghub.elsevier.com/retrieve/pii/S0925400506 007660.
- [151] Villullas, H. M., Ticianelli, V. A., Macagno, V. A. y González, E. R.: Electróquimica: Fundamentos y aplicaciones en un enfoque interdiciplinario. Unversidad Nacional de Córdoba, Agosto 2000, ISBN 950-33-0258-7.
- [152] Otal, E. H., Angelomé, P. C., Bilmes, S. A. y Soler-Illia, G. J. A. A.: Functionalized Mesoporous Hybrid Thin Films as Selective Membranes. Adv. Mater., 18(7):934–938, Abril 2006, ISSN 0935-9648. http://doi.wile y.com/10.1002/adma.200502215.
- [153] Longinotti, M. Paula y Corti, Horacio R.: Diffusion of ferrocene methanol in super-cooled aqueous solutions using cylindrical microelectrodes. Electrochem. commun., 9(7):1444–1450, 2007, ISSN 13882481.
- [154] Soler-Illia, G. J. A. A., Angelomé, P. C., Fuertes, M. C., Calvo, A., Wolosiuk, A., Zelcer, A., Bellino, M. G. y Martínez, E. D.: Mesoporous hybrid and nanocomposite thin films. A sol-gel toolbox to create nanoconfined systems with localized chemical properties. J. Sol-Gel Sci. Technol., 20(3):299–312, 2011.
- [155] Gu, D. y Schüth, F.: Synthesis of non-siliceous mesoporous oxides. Chem Soc Rev, 2013.
- [156] Soler-Illia, G. J. A. A., Sanchez, C., Lebeau, B. y Patarin, J.: Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev., 102(11):4093–138, Noviembre 2002, ISSN 0009-2665. http://www.ncbi.n lm.nih.gov/pubmed/12428985.
- [157] Zhang, J., Palaniappan, A., Su, X. y Tay, F. E. H.: Mesoporous silica thin films prepared by argon plasma treatment of sol-gel-derived precursor. Appl. Surf. Sci., 245:304–309, 2005, ISSN 01694332.
- [158] Di Renzo, F., Cambon, H. y Dutartre, R.: A 28-year-old synthesis of micelle-templated mesoporous silica. Microporous Mater., 10(4-6):283– 286, Julio 1997, ISSN 09276513. http://linkinghub.elsevier.com/retrieve /pii/S092765139700028X.

- [159] Huo, Q., Margolese, D. I. y Stucky, G. D.: Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials. Chem. Mater., 8(5):1147–1160, 1996, ISSN 0897-4756. http://pubs.acs.org/doi/abs/10. 1021/cm960137h.
- [160] Herregods, Sebastiaan Johan Frans, Mertens, Myrjam, Van Havenbergh, Kristof, Van Tendeloo, Gustaaf, Cool, Pegie, Buekenhoudt, Anita y Meynen, Vera: Controlling pore size and uniformity of mesoporous titania by early stage low temperature stabilization. J. Colloid Interface Sci., 391(1):36–44, 2013, ISSN 00219797. http://dx.doi.org/10.1016/j.jcis.20 12.07.098.
- [161] Boissiere, C., Larbot, A. y Prouzet, E.: Synthesis of Mesoporous MSU-X Materials Using. Chem. Mater., 12(15):1937–1940, 2000, ISSN 0897-4756.
- [162] Gonzalez Solveyra, E., Fuertes, M. C., Soler-Illia, G. J. A. A. y Angelomé, P. C.: 2D-SAXS In Situ Measurements as a Tool To Study Elusive Mesoporous Phases: The Case of p6mm TiO₂. J. Phys. Chem. C, 121(6):3623–3631, 2017.
- [163] Ichinose, I. y Kunitake, T.: Wrapping and inclusion of organic molecules with ultrathin, amorphous metal oxide films. Chem. Rec., 2(5):339–351, 2002, ISSN 15278999.
- [164] Cagnol, Florence, Grosso, David, Soler-Illia, Galo J.de a. a., Crepaldi, Eduardo L., Babonneau, Florence, Amenitsch, Heinz y Sanchez, Cl??ment: Humidity-controlled mesostructuration in CTAB-templated silica thin film processing. The existence of a modulable steady state. J. Mater. Chem., 13(1):61-66, 2002, ISSN 09599428.
- [165] Malfatti, L, Bellino, M. G., Innocenzi, P. y Soler-Illia, G.J.A.A.: One-Pot Route to Produce Hierarchically Porous Titania Thin Films by Controlled Self-Assembly, Swelling, and Phase Separation. Chem. Mater., 21(13):2763–2769, Julio 2009, ISSN 0897-4756. http://pubs.acs.org/doi /abs/10.1021/cm900289c.
- [166] Huang, Jianguo, Ichinose, Izumi, Kunitake, Toyoki y Nakao, Aiko: Preparation of Nanoporous Titania Films by Surface Sol-Gel Process Accompanied by Low-Temperature Oxygen Plasma Treatment. Langmuir, 18(23):9048–9053, Noviembre 2002, ISSN 0743-7463. http://pubs.acs.org /doi/abs/10.1021/la026091q.
- [167] Andrini, Leandro, Angelomé, Paula C, Soler-illia, Galo J A A y Requejo, Félix G: Understanding the Zr and Si interdispersion in $Zr_{1-X}Si_XO_2$ mesoporous thin films by using FTIR and XANES spectroscopy. 2016.
- [168] Clark, T., Ruiz, J. D., Fan, H., Brinker, C. J., Swanson, B. I. y Parikh, a. N.: A new application of UV-ozone treatment the preparation of substratesupported, mesoporous thin films. Chem. Mater., 12(9):3879–3884, 2000, ISSN 08974756.
- [169] Horiuchi, Y., Ura, H., Kamegawa, T., Mori, K. y Yamashita, H.: Lowtemperature synthesis of highly hydrophilic Ti-containing mesoporous silica thin films on polymer substrates by photocatalytic removal of structuredirecting agents. J. Mater. Chem., 21:236, 2011, ISSN 0959-9428.

- [170] Norrman, K., Ghanbari-Siahkali, A. y Larsen, N. B.: 6 Studies of spincoated plymer films. Annu. Reports Sect. C (Physical Chem., 101(January):174, 2005, ISSN 0260-1826. http://xlink.rsc.org/?DOI=b408857n.
- [171] Bornside, D. E., Macosko, C. W. y Scriven, L. E.: Spin coating: One-dimensional model. J. Appl. Phys., 66(11):5185–5193, 1989, ISSN 00218979.
- [172] Spangler, L. L., Torkelson, J. M. y Royal, J. S.: Influence of Solvent and Molecular Weight on Thickness and Surface Topography of Spin-Coated Polymer Films. Polym. Eng. Sci., 30(11):644–653, 1990, ISSN 0032-3888.
- [173] Fuertes, M. C.: Materiales Funcionales multicapas basados en películas de óxidos mesoporosos. Asoc. Argentina Mater., 7:50–57, 2010.
- [174] Chougnet, A., Heitz, C., Berquier, J. M., Albouy, P. A. y Klotz, M.: Substrates do influence the ordering of mesoporous thin films. J. Mater. Chem., páginas 3340–3345, 2005.
- [175] Meyer, R., Lemire, C., Shaikhutdinov, S. K. y Freund, H. J.: Surface chemistry of catalysis by gold. Gold Bull., (30), 2004. http://link.springe r.com/article/10.1007/BF03215519.
- [176] Nugen, Sam R., Asiello, Peter J., Connelly, John T. y Baeumner, Antje J.: *PMMA biosensor for nucleic acids with integrated mixer and electrochemical detection*. Biosens. Bioelectron., 24(8):2428–2433, 2009, ISSN 09565663.
- [177] Talivaldis, S.: Influence of various surface preteatments on adherence of sputtered molybdenum disulfide to silver, gold, copper, and bronze. Informe técnico February 1973, National aeronautics and space administration, Cleveland, 2017.
- [178] Etienne, M., Quach, A., Grosso, D., Nicole, L., Sanchez, C. y Walcarius, A.: Molecular Transport into Mesostructured Silica Thin Films: Electrochemical Monitoring and Comparison between p6m, P63/mmc, and Pm3n Structures. Chem. Mater., 19(4):844–856, Febrero 2007, ISSN 0897-4756. http://pubs.acs.org/doi/abs/10.1021/cm0625068.
- [179] Giménez, G., Ybarra, G. y Soler-Illia, G.J.A.A.: Ion exchange properties and electrochemical behavior of mesoporous silica films deposited onto thin film gold electrodes. En Smart Syst. Integr. 2016 - Int. Conf. Exhib. Integr. Issues Miniaturized Syst. SSI 2016, páginas 392–395, 2016, ISBN 9783957350404. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84976334467&p artnerID=40&md5=5724274e9b01979f415117ca103dc289.
- [180] Cheng, W., Dong, S. y Wang, E.: Synthesis and Self-Assembly of Cetyltrimethylammonium Bromide-Capped Gold Nanoparticles. Langmuir, 19(22):9434–9439, Octubre 2003, ISSN 0743-7463. http://pubs.acs.org/d oi/abs/10.1021/la034818k.

- [181] Smith, D. K. y Korgel, B. A.: The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. Langmuir, 24(3):644–649, Febrero 2008, ISSN 07437463. http://pubs.acs.org/doi/a bs/10.1021/la703625a.
- [182] Meena, S. K. y Sulpizi, M.: Understanding the microscopic origin of gold nanoparticle anisotropic growth from molecular dynamics simulations. Langmuir, 29(48):14954–14961, 2013, ISSN 07437463.
- [183] Wang, L., Jiang, X., Ji, Y., Bai, R., Zhao, Y., Wu, X. y Chen, C.: Surface chemistry of gold nanorods: origin of cell membrane damage and cytotoxicity. Nanoscale, 5(18):8384, 2013, ISSN 2040-3364. https: //www.ncbi.nlm.nih.gov/pubmed/23873113/.
- [184] Hamon, C., Bizien, T., Even-Hernandez, P. y Marchi, V.: Replacement of CTAB with peptidic ligands at the surface of gold nanorods and their self-assembling properties. J. Colloid Interface Sci., 332:258–264, 2009, ISSN 0021-9797.
- [185] Lim, J., Lee, N., Lee, E. y Yoon, S.: Surface Modification of Citrate-Capped Gold Nanoparticles Using CTAB Micelles. Bull. Korean Chem. Soc., 35(8):2567–2569, Agosto 2014, ISSN 0253-2964. http://koreascience .or.kr/journal/view.jsp?kj=JCGMCS&py=2014&vnc=v35n8&sp=2567.
- [186] Smith, Danielle K, Miller, Nathan R y Korgel, Brian A: Iodide in CTAB prevents gold nanorod formation. Langmuir, 25(16):9518–24, Agosto 2009, ISSN 0743-7463. http://www.ncbi.nlm.nih.gov/pubmed/19413325.
- [187] Švorčík, V., Siegel, J., Šutta, P., Mistrík, J., Janíček, P., Worsch, P. y Kolská, Z.: Annealing of gold nanostructures sputtered on glass substrate. Appl. Phys. A, 102(3):605–610, Diciembre 2010, ISSN 0947-8396. http: //link.springer.com/10.1007/s00339-010-6167-1.
- [188] Bechelany, Mikhael, Maeder, Xavier, Riesterer, Jessica, Hankache, Jihane, Lerose, Damiana, Christiansen, Silke, Michler, Johann y Philippe, Laetitia: Synthesis Mechanisms of Organized Gold Nanoparticles: Influence of Annealing Temperature and Atmosphere. Cryst. Growth Des., 10(2):587– 596, Febrero 2010, ISSN 1528-7483. http://pubs.acs.org/doi/abs/10.1021 /cg900981q.
- [189] Gosser, D. K.: Cyclic voltammetry: simulation and analysis of reaction mechanisms. Electroanalysis, 7(3):298–298, Marzo 1995, ISSN 1040-0397. http://dx.doi.org/10.1002/elan.1140070324.
- [190] Byun, Ikjoo, Coleman, Anthony W y Kim, Beomjoon: Transfer of thin Au films to polydimethylsiloxane (PDMS) with reliable bonding using (3-mercaptopropyl)trimethoxysilane (MPTMS) as a molecular adhesive. J. Micromechanics Microengineering, 23(8):085016, 2013, ISSN 0960-1317. http://stacks.iop.org/0960-1317/23/i=8/a=085016?ke y=crossref.2aa71bffd905aa2e81778693f4c8090c.
- [191] Wu, J., Ling, L., Xie, J., Ma, G. y Wang, B.: Surface modification of nanosilica with 3-mercaptopropyl trimethoxysilane: Experimental and theoretical study on the surface interaction. Chem. Phys. Lett., 591:227–232, 2014, ISSN 00092614. http://dx.doi.org/10.1016/j.cplett.2013.11.043.

- [192] Wu, J., Xie, J., Ling, L., Ma, G. y Wang, B.: Surface modification of nanosilica with 3-mercaptopropyl trimethoxysilane and investigation of its effect on the properties of UV curable coatings. J. Coatings Technol. Res., 10(6):849-857, 2013, ISSN 15470091.
- [193] Jiun-Jeng, C., Struk, K. N. y Brennan, A. B.: Surface modification of silicate glass using 3-(mercaptopropyl)trimethoxysilane for thiol-ene polymerization. Langmuir, 27(22):13754–13761, 2011, ISSN 1520-5827. http: //dx.doi.org/10.1021/la202225g.
- [194] Urade, V. N. y Hillhouse, H. W.: Synthesis of Thermally Stable Highly Ordered Nanoporous Tin Oxide Thin Films with a 3D Face-Centered Orthorhombic Nanostructure. J. Phys. Chem. B, 109(21):10538–10541, 2005.
- [195] Lee, U., Lee, H., Wen, S., Mho, S. y Kwon, Y.: Mesoporous titania thin films with pseudo-cubic structure: Synthetic studies and applications to nanomembranes and nanotemplates. Microporous Mesoporous Mater., 88:48–55, 2006.
- [196] Sakatani, Y., Grosso, D., Nicole, L., Boissière, C., Soler-Illia, G. J. A. A. y Sanchez, C.: Optimised photocatalytic activity of grid-like mesoporous TiO₂ films: effect of crystallinity, pore size distribution, and pore accessibility. J. Mater. Chem., 16(1):77, 2006, ISSN 0959-9428.
- [197] Lowell, S., Shields, J. E., Thomas, M. A. y Thommes, M.: Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, volumen 16 de Particle Technology Series. Springer Netherlands, Dordrecht, 1^a edición, 2004, ISBN 978-90-481-6633-6. http://link.springer.co m/10.1007/978-1-4020-2303-3.
- [198] Naumov, Sergej: Hysteresis Phenomena in Mesoporous Materials. Tesis de Doctorado, Universität Leipzig, 2009.
- [199] Olsen, J. E. y Shimura, F.: Infrared reflection spectroscopy of the SiO₂silicon interface. J. Appl. Phys., 66(3):1353–1358, 1989, ISSN 00218979.
- [200] Almeida, R. M. y Pantano, C. G.: Structural investigation of silica gel films by infrared spectroscopy. J. Appl. Phys., 68(8):4225–4232, 1990, ISSN 00218979.
- [201] Min Du, X. y Almeida, R. M.: Effects of thermal treatment on the structure and properties of SiO₂-TiO₂ gel films on silicon substrates. J. Sol-Gel Sci. Technol., 8(1-3):377–380, Febrero 1997, ISSN 0928-0707. http://link.spr inger.com/10.1007/BF02436868.
- [202] Innocenzi, P.: Infrared spectroscopy of sol-gel derived silica-based films: a spectra-microstructure overview. J. Non. Cryst. Solids, 316(2-3):309–319, Febrero 2003, ISSN 00223093. http://linkinghub.elsevier.com/retrieve/p ii/S002230930201637X.
- [203] Pai, P. G., Chao, S. S., Takagi, Y. y Lucovsky, G.: Infrared spectroscopic study of SiOx films produced by plasma enhanced chemical vapor deposition. J. Vac. Sci. Technol. A, 4(3):689–694, 1986, ISSN 0734-2101, 1520-8559.

- [204] Grosse, P., Harbecke, B., Heinz, B., Meyer, R. y Offenberg, M.: Infrared spectroscopy of oxide layers on technical Si wafers. Appl. Phys. A Solids Surfaces, 39(4):257–268, 1986, ISSN 07217250.
- [205] Vergöhl, M., Malkomes, N., Staedler, T., Matthée, T. y Richter, U.: Ex situ and in situ spectroscopic ellipsometry of MF and DC-sputtered TiO₂ and SiO₂ films for process control. Thin Solid Films, 351(1-2):42–47, 1999, ISSN 00406090.
- [206] Bertoluzza, A., Antonietta Morelli, M., Gottardi, V. y Guglielmi, M.: Raman and infrared spectra on silica gel evolving toward glass. J. Non. Cryst. Solids, 48(1):117–128, 1982, ISSN 00223093.
- [207] Thielemann, J., Girgsdies, F., Schlögl, R. y Hess, C.: Pore structure and surface area of silica SBA-15: influence of washing and scale-up. Beilstein J. Nanotechnol., 2(1):110–8, 2011, ISSN 2190-4286. http://www.beilstei n-journals.org/bjnano/content/2/1/13.
- [208] Groen, J. C., Peffer, L. A. A. y Pérez-Ramírez, J.: Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater., 60(1-3):1– 17, 2003, ISSN 13871811.
- [209] Mogilnikov, K. P. y Baklanov, M. R.: Determination of Young's Modulus of Porous Low-k Films by Ellipsometric Porosimetry. Electrochem. Solid-State Lett., 5(12):F29, 2002, ISSN 10990062. http://esl.ecsdl.org/cgi/do i/10.1149/1.1517771.
- [210] Fuertes, M.C., Colodrero, S., Lozano, G., Gonzalez-Elipe, A.R., Grosso, D., Boissiere, C., Sanchez, C., Soler-Illia, G. J. A. A. y Miguez, H.: Sorption Properties of Mesoporous Multilayer Thin Films. J. Phys. Chem. C, 112(9):3157–3163, Marzo 2008, ISSN 1932-7447. http://pubs.acs.org/cgi -bin/doilookup/?10.1021/jp710612y.
- [211] Zhuravlev, L. T.: The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surfaces A Physicochem. Eng. Asp., 173(1-3):1–38, 2000, ISSN 09277757. http://www.sciencedirect.com/science/article/pii/S092 7775700005562.
- [212] Guillemin, Y., Etienne, M., Aubert, E. y Walcarius, A.: Electrogeneration of highly methylated mesoporous silica thin films with vertically-aligned mesochannels and electrochemical monitoring of mass transport issues. J. Mater. Chem., 20(32):6799, 2010, ISSN 0959-9428. http://xlink.rsc.org/ ?DOI=c0jm00305k.
- [213] Mazer, J. y Walther, J.: Dissolution kinetics of silica glass as a function of pH between 40 and 85°C. J. Non. Cryst. Solids, 170:32–45, 1994, ISSN 00223093.
- [214] Niibori, Y., Kunita, M., Tochiyama, O. y Chida, T.: Dissolution Rates of Amorphous Silica in Highly Alkaline Solution. J. Nucl. Sci. Technol., 37(4):349–357, 2000, ISSN 0022-3131. http://www.tandfonline.com/doi/ abs/10.1080/18811248.2000.9714905.

- [215] Gorrepati, E. A., Wongthahan, P., Raha, S. y Fogler, H. S.: Silica precipitation in acidic solutions: Mechanism, pH effect, and salt effect. Langmuir, 26(13):10467–10474, 2010, ISSN 07437463.
- [216] Violi, I. L., Perez, M. D., Fuertes, M. C. y Soler-Illia, G. J.A.A.: Highly ordered, accessible and nanocrystalline mesoporous TiO₂ thin films on transparent conductive substrates. ACS Appl. Mater. Interfaces, 4(8):4320–30, 2012, ISSN 1944-8252. http://www.ncbi.nlm.nih.gov/pubmed/22823883.
- [217] Lange, P., Schnakenberg, U., Ullerich, S. y Schliwinski, H. J.: Disorder in vitreous SiO₂: The effect of thermal annealing on structural properties. J. Appl. Phys., 68(7):3532–3537, 1990, ISSN 00218979.
- [218] Lange, P.: Evidence for disorder-induced vibrational mode coupling in thin amorphous SiO₂ films. J. Appl. Phys., 66(1):201–204, 1989, ISSN 00218979.
- [219] Lowe, B. M., Skylaris, C. K. y Green, N. G.: Acid-base dissociation mechanisms and energetics at the silica-water interface: An activationless process. J. Colloid Interface Sci., 451:231–244, 2015, ISSN 10957103. http://dx.doi.org/10.1016/j.jcis.2015.01.094.
- [220] Kosmulski, M.: Surface Charging and Point of Zero Charge. J. Colloid Interface Sci., 253:77–87, 2002, ISSN 00219797.
- [221] Kosmulski, M.: The pH dependent surface charging and points of zero charge. VI. Update. J. Colloid Interface Sci., 426(2):209–212, 2014, ISSN 10957103. http://dx.doi.org/10.1016/j.jcis.2009.04.072.
- [222] Schwarz, J. A., Driscoll, C. T. y Bhanot, A. K.: The zero point of charge of silica—alumina oxide suspensions. J. Colloid Interface Sci., 97(1):55–61, 1984, ISSN 00219797.
- [223] Wu, S H., Mou, C Y. y Lin, H P.: Synthesis of mesoporous silica nanoparticles. Chem. Soc. Rev., 42(9):3862, 2013, ISSN 1460-4744.
- [224] Iler, R. K.: The chemistry of silica : solubility, polymerization, colloid and surface properties, and biochemistry. A Wiley-Interscience publication.
 Wiley, 1^a edición, 1979, ISBN 047102404X,9780471024040. http://gen.li b.rus.ec/book/index.php?md5=5937069147818ce413566ecc96a75ac6.
- [225] Blesa, M. A., Morando, P. J. y Regazzoni, A. E.: Chemical dissolution of metal oxides. CRC Press, 1ª edición, 1994, ISBN 0849359430. https://books.google.com.ar/books/about/Chemical _Dissolution_of_Metal_Oxides.html?id=eB5vQgAACAAJ&redir_esc=y.
- [226] Bass, J. D, Grosso, D., Belamie, E., Coradin, T. y Snachez, C.: Stability of Mesoporous Oxide and Mixed Metal Oxide Materials under Biologically Relevant Conditions. (7):4349–4356, 2007.
- [227] Karman, C., Vilà, N. y Walcarius, A.: Amplified Charge Transfer for Anionic Redox Probes through Oriented Mesoporous Silica Thin Films. ChemElectroChem, 3(12):2130–2137, Diciembre 2016, ISSN 21960216. http://doi.wiley.com/10.1002/ejic.201700789http://doi. wiley.com/10.1002/celc.201600303.

- [228] Bae, J., Han, J., Chung, T.: Electrochemistry at nanoporous interfaces: new opportunity for electrocatalysis. Pccp, 14(2):448–63, 2012, ISSN 1463-9084. http://www.ncbi.nlm.nih.gov/pubmed/22124339.
- [229] Etienne, Mathieu, Zhang, Lin, Vilà, Neus y Walcarius, Alain: Mesoporous Materials-Based Electrochemical Enzymatic Biosensors. Electroanalysis, 27(9):2028–2054, 2015, ISSN 15214109.
- [230] Alberti, S., Soler-Illia, G. J. A. A. y Azzaroni, O.: Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli. Chem. Commun., 51(28):6050–6075, 2015, ISSN 1359-7345. http://xlink.rsc.org/?DOI=C4CC10414E.
- [231] Schmuhl, R., Nijdam, W., Sekulić, J., Chowdhury, S. R., Van Rijn, C. J. M., Van Den Berg, A., Ten Elshof, J. E. y Blank, D. H. A.: Si-supported mesoporous and microporous oxide interconnects as electrophoretic gates for application in microfluidic devices. Anal. Chem., 77(1):178–184, 2005, ISSN 00032700.
- [232] Ybarra, Gabriel O., Moina, Carlos A., Inés Florit, M. y Posadas, Dionisio: Redox mediation at electroactive polymer coated electrodes: Mechanistic diagnosis criteria from steady state polarization curves. J. Electroanal. Chem., 609(2):129–139, Noviembre 2007, ISSN 15726657. http://linkingh ub.elsevier.com/retrieve/pii/S0022072807002872.
- [233] Ybarra, G.: Estudio de la conmutacion y mediacion redox de polímeros electroactivos. Tesis de Doctorado, 2005. http://www-biblio.inti.gob.ar/ gsdl/collect/inti/index/assoc/HASH0177/968f3ca1.dir/doc.pdf.
- [234] Vilà, N. y Walcarius, A.: Electrochemical response of vertically-aligned, ferrocene-functionalized mesoporous silica films: effect of the supporting electrolyte. Electrochim. Acta, 2015, ISSN 00134686. http://linkinghub.e lsevier.com/retrieve/pii/S0013468615004909.
- [235] Kolb, D. M.: Molecular Design of Electrode Surfaces. Angew. Chemie, 105(3):468–468, Marzo 1993, ISSN 00448249. http://doi.wiley.com/10.1 002/ange.19931050339.
- [236] Audebert, P., Vilà, N., Allain, C., Maisonneuve, F., Walcarius, A. y Hapiot, P.: Highly Organized Ferrocene-Functionalized Nanoporous Silica Films with an Extremely Fast Electron-Transfer Rate for an Intrinsically Nonconducting Oxide-Modified Electrode. ChemElectroChem, 2(11):1695– 1698, 2015, ISSN 21960216.
- [237] Tagliazucchi, M. y Calvo, E. J.: Charge transport in redox polyelectrolyte multilayer films: The dramatic effects of outmost layer and solution ionic strength. ChemPhysChem, 11(13):2957–2968, 2010, ISSN 14394235.
- [238] Roullier, L. y Laviron, E.: Effect of uncompensated ohmic drop in surface linear potential sweep voltammetry. J. Electroanal. Chem, 157:193–203, 1983.

- [239] Ybarra, G., Moina, C., Florit, M. I. y Posadas, D.: Current rectification by mediating electroactive polymers. Electrochim. Acta, 53(11):3955–3959, 2008, ISSN 00134686.
- [240] Manzini, A. M., Alurralde, M. A., Giménez, G. y Luca, V.: The radiation response of mesoporous nanocrystalline zirconia thin films. J. Nucl. Mater., 482:175–186, Diciembre 2016, ISSN 00223115. http://linkinghub.els evier.com/retrieve/pii/S0022311516308911.
- [241] Zelcer, A. y Soler-Illia, G. J. A. A.: One-step preparation of UV transparent highly ordered mesoporous zirconia thin films. J. Mater. Chem. C, 1(7):1359, 2013, ISSN 2050-7526. http://xlink.rsc.org/?DOI=c2tc00319h.
- [242] Dunphy, Darren R, Atanassov, Plamen, Bunge, Scott D, Chen, Zhu, López, Gabriel P., Boyle, Timothy J y Brinker, C Jeffrey: *Photoregulation* of Mass Transport through a Photoresponsive Azobenzene-Modified Nanoporous Membrane. Nano Lett., 4(4):551–554, Abril 2004, ISSN 1530-6984. http://pubs.acs.org/doi/abs/10.1021/nl0350783.
- [243] Calvo, Alejandra, Yameen, Basit, Williams, Federico J., Soler-Illia, Galo J a a y Azzaroni, Omar: Mesoporous films and polymer brushes helping each other to modulate ionic transport in nanoconfined environments. An interesting example of synergism in functional hybrid assemblies. J. Am. Chem. Soc., 131(31):10866–10868, Agosto 2009, ISSN 00027863. http://www.ncbi.nlm.nih.gov/pubmed/19722668.
- [244] Andrieu-brunsen, Annette y Soler-illia, Galo J a a: Mesoporous Hybrid Thin Film Membranes with PMETAC-Silica Architectures: Controlling Ionic Gating through the Tuning of Polyelectrolyte Density. 2014.
- [245] Calvo, Alejandra, Joselevich, María, Soler-Illia, Galo J.A.A. y Williams, Federico J.: Chemical reactivity of amino-functionalized mesoporous silica thin films obtained by co-condensation and post-grafting routes. Microporous Mesoporous Mater., 121(1-3):67–72, 2009, ISSN 13871811. http: //dx.doi.org/10.1016/j.micromeso.2009.01.005.
- [246] Jeong, Eun young, Lim, Cheang rae, Jin, Hailian y Park, Sang eon: trans-1,2-Diaminocyclohexane mesoporous silica for asymmetric catalysis: enhancement of chirality through confinement space by the plug effect. Chem. Commun., 48(25):3079–3081, 2012, ISSN 1364-548X. http: //www.ncbi.nlm.nih.gov/pubmed/22344411.
- [247] Sagiroglu, S. y Sinanc, D.: Big data: A review. En 2013 Int. Conf. Collab. Technol. Syst., páginas 42–47. IEEE, Mayo 2013, ISBN 978-1-4673-6404-1. http://ieeexplore.ieee.org/document/6567202/.
- [248] Gerven, M. van y Bohte, S.: Editorial: Artificial Neural Networks as Models of Neural Information Processing. Front. Comput. Neurosci., 11, Diciembre 2017, ISSN 1662-5188. http://journal.frontiersin.org/article/10.3 389/fncom.2017.00114/full.
- [249] Herzog, N., Kind, J., Hess, C. y Andrieu-Brunsen, A.: Surface Plasmons & Visible Light For Polymer Functionalization of Mespores and Manipulation of Ionic Permselectivity. Chem. Commun., 51:11697–11700, 2015,

ISSN 1359-7345. http://pubs.rsc.org/en/Content/ArticleLanding/2015/CC/C5CC03507D.

- [250] Silies, L., Didzoleit, H., Hess, C., Stühn, B. y Andrieu-Brunsen, A.: Mesoporous thin films, zwitterionic monomers, and iniferter-initiated polymerization: Polymerization in a confined space. Chem. Mater., 27(6):1971– 1981, 2015, ISSN 15205002.
- [251] MicroChemical: MicroChemicals TI 35E technical data sheet. Informe técnico, 2003. http://www.microchemicals.com/micro/tds_ti_35e.pdf.
- [252] MicroChemical: MichoChemical Nano SU8. Informe técnico. http://ww w.microchem.com/pdf/SU8_50-100.pdf.
- [253] Microchemicals: Photoresists and Developers, Removers and Ancillaries Solvents and Etchants, Plating Solutions, Silicon, Glass and Quartz Wafers Products. 2014.
- [254] Seah, M. P., Clifford, C. A., Green, F. M. y Gilmore, I. S.: An accurate semi-empirical equation for sputtering yields I: for argon ions. Surf. Interface Anal., 37(5):444–458, Mayo 2005, ISSN 0142-2421. http: //doi.wiley.com/10.1002/sia.2032.
- [255] Alonso, C: The Evaluation of Surface Diffusion Coefficients of Gold and Platinum Atoms at Electrochemical Interfaces from Combined STM-SEM Imaging and Electrochemical Techniques. J. Electrochem. Soc., 137(7):2161, 1990, ISSN 00134651. http://jes.ecsdl.org/cgi/doi/10.1149/ 1.2086904.
- [256] Moody, N. R., Adams, D. P., Medlin, D., Headley, T., Yang, N. y Volinsky, A.: Effects of diffusion on interfacial fracture of gold-chromium hybrid microcircuit films. Int. J. Fract., 119/120(4-2):407-419, 2003, ISSN 0376-9429. http://link.springer.com/10.1023/A:1024979829573.
- [257] Wang, J., Wu, C., Hu, N., Zhou, J., Du, L. y Wang, P.: Microfabricated Electrochemical Cell-Based Biosensors for Analysis of Living Cells In Vitro. Biosensors, 2(2):127–170, 2012, ISSN 20796374.
- [258] Liu, C. C.: Applications of microfabrication techniques in electrochemical sensor development. Appl. Biochem. Biotechnol., 41(1-2):99–107, 1993, ISSN 02732289.
- [259] Novell, M., Parrilla, M., Crespo, G. A., Rius, F. X. y Andrade, F. J.: Paper-Based Ion-Selective Potentiometric Sensors. Anal. Chem., 84(11):4695– 4702, Junio 2012, ISSN 0003-2700. http://pubs.acs.org/doi/abs/10.1021 /ac202979j.
- [260] Yu, Y., Chen, J., Li, J., Yang, S., Fan, S K. y Zhou, J.: Microfabrication of a digital microfluidic platform integrated with an on-chip electrochemical cell. J. Micromechanics Microengineering, 23(9):095025, 2013, ISSN 0960-1317. http://iopscience.iop.org/0960-1317/23/9/095025/articl e/.

- [261] Sarkar, S., Mathwig, K., Kang, S., Nieuwenhuis, A. F. y Lemay, S. G.: Redox cycling without reference electrodes. Analyst, 139(22):6052–7, 2014, ISSN 1364-5528. http://pubs.rsc.org/en/content/articlehtml/2014/an/c4 an01287a.
- [262] San Martin, G., Pedro, J., Mandolesi, P., Ybarra, G. y Aymonino, O. A.: Noise characterization for a BOD electrochemical sensor. En Argentine Sch. Micro-Nanoelectronics Technol. Appl. (EAMTA), 2011, 2011.
- [263] Longinotti, G., Ybarra, G., Lloret, P., Moina, C., Ciochinni, A., Serantes, D. R., Malatto, L., Roberti, M., Tropea, S. y Fraigi, L.: Diagnosis of foot-and-mouth disease by electrochemical enzyme-linked immunoassay. En 2010 Annu. Int. Conf. IEEE Eng. Med. Biol., número August, páginas 674–676. IEEE, Agosto 2010, ISBN 978-1-4244-4123-5. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=56262 30http://ieeexplore.ieee.org/document/5626230/.
- [264] Salomon, F., Tropea, S., Brengi, D., Hernandez, A., Alamon, D., Parra, M., Longinotti, G., Ybarra, G., Lloret, P., Mass, Mijal, Roberti, M., Lloret, M., Malatto, L., Moina, C., Fraigi, L., Melli, L., Cortina, M. E., Serantes, D. R., Ugalde, J. E., Ciocchini, A. y Comerci, D. J.: Smartphone controlled platform for point-of-care diagnosis of infectious diseases. En 2014 IEEE 9th Iberoam. Congr. Sensors, páginas 1–4. IEEE, Octubre 2014, ISBN 978-1-4799-6836-7. http://ieeexplore.ieee.org/document/6995525/.
- [265] Kuo, Y., Arana, L. J., Seva, L., Marchese, C. y Tozzi, L.: Educational Design Kit for Synopsys Tools with a set of Characterized Standard Cell Library. En IEEE Publ. Title 2018 IEEE 9th Lat. Am. Symp. Circuits Syst., páginas 0–3, 2018, ISBN 9781538623114.
- [266] Innocenzi, P., Kidchob, T., Falcaro, P. y Takahashi, M.: Patterning Techniques for Mesostructured Films. Chem. Mater., 20(3):607–614, Febrero 2008, ISSN 0897-4756. http://pubs.acs.org/doi/abs/10.1021/cm071784j.
- [267] Mass, M., Roberti, M., Salomón, F., Tropea, S., Lloret, M., Brengi, D., Malatto, L., Fraigi, L., Longinotti, G., Ybarra, G., Lloret, P., Moina, C., Melli, L., Cortina, M.E. E., Serantes, D.R. R., Ugalde, J.E. E., Ciocchini, A. y Comerci, D.J.: Development of a point-of-care platform for diagnosis of infectious diseases. Smart Syst. Integr. 2016 - Int. Conf. Exhib. Integr. Issues Miniaturized Syst. SSI 2016, páginas 2–3, 2016.

ÍNDICE ALFABÉTICO

A

accesibilidad, 44, 55, 66, 67, 77, 79, 81, $84\text{--}86,\,93,\,97,\,98,\,139,\,151$ acetona, 37 ácido, 20, 77, 80, 81, 87, 88, 92 clohídrico, 20-22, 25, 32, 65, 77, 84 fluohídrico, 23, 32, 33 adherencia, 32-35, 37, 57, 60-65, 77, 79, 80, 84, 87, 88, 134, 140–142, 150adsorción, 28-30, 45, 49, 60-64, 67, 68, 70, 72-77, 80, 84-87, 95, 96, 100-102, 106, 109, 112, 113, 115, 116, 118, 119, 121-123, 147, 151, 152 AEIE, 10, 11, 20, 23, 56 agente moldeante, 17, 20, 21, 25, 54 agua, 9, 11, 20, 21, 25, 28-30, 43, 48, 67, 68, 70, 73, 74, 77, 84, 86, 93, 154Al, véase aluminio alineadora, 34 Almeida, 70 alto vacío, 15, 25, 26, 39, 75, 76, 81, 83-88, 93, 99, 109, 114, 116, 123, 127, 140, 143, 148, 150-152, 154 aluminio, 92 3-aminopropil trietoxisilano, 26, 27, 116-122, 142-144, 148, 151,152aminorutenio, 45, 46, 48, 50, 51, 60, 61, 63, 64, 72, 73, 76-78, 84, 85, 95-97, 100-102, 104-109, 112, $113,\,115\text{--}123,\,127,\,138,\,141,\,$ 143-146, 151, 152, 169, 173 amoniaco, 25, 32, 50, 65, 78, 119, 122 Angelomé, 20, 27, 117 ángulo de contacto, 27, 29, 67, 76, 78, 79, 150ánodo, 15, 35, 134 APTES, véase 3-aminopropil trietoxisilano Ar, véase argón argón, 15, 35, 56 atmósfera, 25, 56, 65, 66, 75, 77, 78, 140 átomo, 2 Au, véase oro Audebert, 108

autoensamblado inducido por evaporación, 6, 7, 10, 11, 20, véase también AEIE Avogadro, 103

в

básico, 78, 92 Baklanov, 67 Bardeen, 13 Bass, 92 Baumann, 154 big data, 127 Boissiere, 76 $bottom\text{-}up,\ 5\text{-}7,\ 18,\ 54,\ 55,\ 126,\ 127,\ 150$ Brattain, 13 Brij56, 56, 59 Brij58, 17, 20–22, 54, 57, 59, 62, 64, 76, 77, 81, 87, 88, 150 Brij78, 56 Brinker, 10, 56 bromuro de hexadeciltrimetilamonio, 20, 21.54 Bruggeman, 28, 81 Brunauer, 67 Butler, 12 \mathbf{C} cátodo, 15, 35, 134 calcinación, 8, 11, 18, 35, 54-58, 61, 65, 66, 68, 72, 73, 80, 83-88, 114, 138, 139, 141, 142, 147, 150Calvo, 27, 86, 104, 119 Ce. véase cerio cerio, 22, 27, 54 chip, $v\acute{e}ase$ microchip circonio, 20-22, 54, 76, 87, 91, 92, 114, 116, 117, 123, 151, 152 Clark, 56

catodo, 15, 35, 134 calcinación, 8, 11, 18, 35, 54–58, 61, 65, 66, 68, 72, 73, 80, 83–88, 114, 138, 139, 141, 142, 147, 150 Calvo, 27, 86, 104, 119 Ce, véase cerio cerio, 22, 27, 54 chip, véase microchip circonio, 20–22, 54, 76, 87, 91, 92, 114, 116, 117, 123, 151, 152 Clark, 56 coeficiente de absorción, 28 cometa, 22 complejación, 117 concentración micelar crítica, 11, 62 condensación, 8, 10, 11, 17, 18, 20, 25, 29, 37, 55, 56, 65, 67, 68, 71, 72, 74–78, 80–84, 86–88, 90, 91, 98, 114, 122, 127, 142, 143, 150, 154 conectividad, 67 constante dieléctrica, 29 Cr, véase cromo crecimiento epitaxial, 6, 7Crepaldi, 114 cristal fotónico, 42 cristal líquido, 11, 23, 25, 55, 76, 150 cromo, 35, 36, 140–142 CTAB, véase bromuro de hexade ciltrimetilamoniocuello de poro, 28–30, 67, 68, 73–79, 81-83, 87, 88, 93, 150, véase también distribucion de cuellos

D

decapar, 64, 130, 131, 135, 136 depósito, 2, 11, 14-16, 20, 22-25, 33, 35-38, 57, 58, 60, 66, 76, 87, 114, 126, 127, 131, 132, 134, 135, 138, 154 desorción, 28, 29, 32, 67, 73 Deutch, 2 DHDP, véase dihexadecilfosfato difusión, 34, 39, 43-46, 49, 50, 59, 72, 86, $95,\ 98\text{--}100,\ 103\text{--}106,\ 108,\ 109,$ $111,\ 121{-}123,\ 138{-}143,\ 147,$ 151, 154 dihexadecilfosfato, 26, 27, 116-121, 123, 142-144, 148, 151, 152 dip-coating, 8, 11, 57 distribución de poro, 28, 66 doble, 74, 76-79, 81 Drexler, 2

\mathbf{E}

 ${\rm electr}{\rm \acute{o}n},\,2,\,5,\,13,\,17,\,39,\,40,\,42,\,44,\,48,$ 51, 58, 66, 77, 78, 87, 102, 103, 105, 108, 109, 111, 127, 134, 138, 139, 141, 142, 150, 153,154electrodo contraelectrodo, 31, 42, 47, 49-51, 128, 129, 137, 147 de Au, 37, 47, 51, 59, 60, 62, 63, 72, 76-78, 80, 81, 85, 87, 94, 95, 97, 98, 100, 101, 106-108, 112, 114-117, 121, 122, 127, 138, 139, 141, 143, 145, 150, 155 de calomel, 43, 47, 93 de referencia, 12, 31, 42, 43, 47, 110, 128, 129 de trabajo, 12, 31, 35, 38, 42, 43, 50, 126-129, 137, 143 microelectrodo, 17, 22, 23, 62, 126, 154, 155 electron hopping, 102, 103, 122, 151 electroquimico, 6, 7, 12, 13, 16-18, 22, 42-51, 55, 60, 61, 63, 64, 72, 78, 80, 84-88, 90, 92-98, 106-109, 116-120, 122, 123, 125-127, 129, 130, 132, $137\text{--}139,\,141\text{--}148,\,150\text{--}155$ eliminación, 8, 25, 71, 72, 83, 150

elipsoporosimetría ambiental, 55, 59, 67, 73, 78, 79, 81, 150 energía, 27, 29, 34, 37, 39 densidad de, 34, 37 epitaxial, véase crecimiento epitaxial epoxi, 37, 38, 47, 129, 130, 132, 133, 137 espectro electromagnético, 27 espectroscopía, 27, 39, 55, 68, 75, 78, 83, 140, 150 espesor, 7, 16, 22-24, 28, 30, 32, 34-37, 39, 42, 46, 55, 57-59, 67, 72, 74, 79, 81, 87, 88, 94, 99, 101, 102, 104, 106–108, 111, 126, 129-136, 138, 150 esterificación, 74, 84 etanol, 20-22, 27, 56, 143 Etienne, 102 etilenglicol, 154 EtOH, véase etanol extracción, 8, 11, 25, 27, 55, 56, 65, $73-78,\ 83,\ 84,\ 88,\ 114,\ 122,$ 127, 142, 143, 150, 154 F F127, véase Pluronic F127 Faraday, 6, 101, 104, 110 ferrician
uro de potasio, 48–51, 94, 98, 99, 113-115, 117-120, 122, 127, 138, 141, 143-147, 151, 152, 155, 169 ferroceno metanol, 45, 46, 48, 50, 51, 86, 95, 97-99, 106-109, 113, 117-120, 122, 127, 143-147, 151, 152, 169 ferrocianuro de potasio, 48-51, 94, 98, 99, 113-115, 117-120, 122, 127, $138,\,141,\,143\text{--}147,\,151,\,152,\,$ 155, 169 Feynman, 2 FIB, 23, 36, 40, 41, 58, 78, 101, 131, 134 Fick, 45 filmina, 31, 128 fosfonato, 117, 118, 127 fotolitografía, 14, 23, 30, 32, 33, 36, 93, 130, 147fotorresina, 33, 36-39, 130-132, 135, 136 foundry, 153 FTIR, 27, 70, 78, 98 Fuertes, 20 fullereno. 6 funcionalización, 26, 27, 30, 63-65, 88, 92, 116-123, 127, 143, 144, 148, 151, 152 \mathbf{G}

Ga, $v\acute{e}ase$ galio galio, 40, 41, 150 germanio, 13 grafeno, 6 Groen, 73

н

H, véase hidrógeno
hafmio, 54 HCl, véase ácido clorhídrico Heyrovský, 12 Hf, véase hafmio hidrógeno, 47 hidrólisis, 8–10, 20, 21, 37, 77, 78 hidrofóbico, 26, 117 hidrólisis, 8–10, 20, 21, 37, 77, 78, 91 hidroquinona, 113 hisopo, 143 histéresis, 29, 30, 67, 68, 73, 76 Hoerni, 13 hopping, véase electron hopping Horiuchi, 56 Huang, 56

Ι

iónico, 32, 87, 102 Iler, 91 image-reversal, 130 ImageJ, 41 índice de refracción, 17, 28, 29, 67, 76-79, 81, 82, 150 INIFTA, 39 Innocenzi, 68, 69 INQUIMAE, 46, 107 interface, 88, 93 INTI, 5, 15, 22, 24, 27, 36, 38, 141, 153 - 155inyección de tinta, 154, 155 ion milling, 2 IR, véase FTIR isopropanol, véase 2-propanol isoterma, 29, 67, 68, 73-78, 81, 82, 101, 102IUPAC, 7, 29, 30, 67

J

jeringa, 22

Κ

Kelvin, 28–30, 74 Kilby, 13

\mathbf{L}

Langmuir, 101, 102, 122 Le Chatelier, 76 lift-off, 30, 33, 36, 37, 130, 132, 135, 136, 147 litografía, 14, 15, 33, 132, 154 Longinotti, 99 longitud de onda, 14, 15, 28, 31, 33, 34, 56, 70, 79 Lorentz-Lorentz, 28

\mathbf{M}

 $\begin{array}{c} {\rm m}\acute{{\rm m}ascara},\,15,\,31,\,33,\,34,\,37,\,39,\,126,\\ 128-130,\,133\\ {\rm M}anzini,\,114\\ {\rm m}arcas \ de \ alineación,\,128-130\\ {\rm M}axwell-Garnett,\,28,\,29\\ {\rm M}EB,\,23,\,40,\,41,\,55,\,58,\,59,\,66,\,67,\\ 76-78,\,134,\,139,\,154\\ \end{array}$

mediacion rédox, 44-46, 106-113, 123, 151MEMS, 13, 41, 152 3-mercaptopropil trimetoxisilano, 37, 63 método de elementos finitos, 18, 42, 44, 45, 106, 107, 123, 151 micela, 8, 11, 55, 62, 75 microchip, 13, 153, 154 microelectrónica, 15, 30, 31, 41, 54, 147, 152microelectrodo, véase electrodos microfabricación, 2, 13-16, 18, 126, 127 microscopía, 2, 34, 36, 39, 40, 42, 58, 65, 66, 73, 76–78, 128–134, 136, 150, 154óptica, 34, 39, 65, 128, 150 electrónica de barrido, véase MEB electrónica de transmisión, véase MET de iones de galio, véase FIB mojabilidad, 27 moléculas, 2, 37, 50, 63, 95, 117, 119 monocapa, 67, 134 Moore, 13, 15 Ley de, 13, 15 MPTMS, véase 3-mercaptopropil trimetoxisilano multisensor, 6, 16-18, 31, 32, 47, 54, 90, 91, 93, 97, 117, 120, 123, 125-130, 133, 143, 144, 146-148, 150-153, 155

Ν

nanociencia, 2 nanoescala, 2, 5, 10, 40, 78 nanoestructura, 5 nanomateriales, 4, 5, 11, 117 nanoparticula, 91 nanotecnología, 2–5, 13, 18 nanotubos de carbono, 6, 155 Nernst, 12, 45, 110 NH₃, véase amoniaco Noyce, 13

0

oblea, 33, 34, 37, 47, 57, 58, 129, 135, 136, 154 olación, 10 oro, 16, 17, 22, 23, 35–37, 39, 40, 47, 54–56, 60–64, 72, 73, 75–81, 85, 87, 88, 90, 93–95, 97, 98, 100, 101, 106, 107, 112, 114–117, 120, 121, 123, 126, 127, 132–136, 138–145, 147, 150–152, 154 Otal, 98, 99 oxigeno, 69 oxolación, 10

Ρ

Pasteur, 22 película

delgada, 7, 8, 16, 35, 41, 46, 60, 61, 67, 70, 84, 90, 102, 104, 105, 107, 126, 127 mesoporosa, 7, 8, 11, 21, 23-29, 37, 39, 45, 47, 54-63, 65-67, 69,71-81, 84, 85, 87, 88, 90-98, 100-102, 108, 109, 113, 114, 119, 120, 122, 123, 126, 127,138, 139, 144, 147, 153, 154 mesoporosa Si(CTAB), 21, 22, 57-59, 61, 62, 67, 68, 71-73, 75-78, 81, 83, 157-167 mesoporosa Si(F127), 21, 22, 57-60, 63, 66-70, 72-78, 81-83, 85, 86, 93–101, 104–107, 112–116, 123, 154, 157-168 mesoporosa Zr/Si(Brij58), 21, 22, 57, 76, 77, 81 mesoporosa Zr/Si(F127), 21, 22, 26, 57, 76, 77, 81, 93, 114-122, 143, 144, 146, 147, 162, 169 permeación, 44, 46, 100, 108, 109, 122, 123, 143, 151, 152 pH, 10, 25, 43, 49, 55, 65, 78, 88, 90-94, 102, 112, 114, 119, 122, 144, 154piraña, 33 plasma, 15, 35, 36, 56 platino, 41, 47, 49-51, 80, 87, 142 Pluronic F127, 20, 21, 54, 57, 60, 71, 93, 114 polarización de la luz, 28 polarografía, 12 poliestireno, 22, 154, 155 polimerización, 10, 37, 54, 129 polipropileno, 26, 47 porógeno, 8, 10, 17 poro, 8, 28, 30, 41, 67, 68, 73, 77, 87, 88, 102, 103, véase también distribucion de poros porosidad, 7-9, 56, 66, 67, 70, 73, 76, 77, 103, 139, 150 porosimetria, véase elipsoporosimetria ambiental potencial de pico, 104, 121, 148 potenciostato, 12, 42, 47, 153 precursor, 7-11, 20, 21, 54, 55, 63, 87, 126 prehidrólisis, 21, 22 presión de vapor, 29, 67 2-propanol, 25, 71, 73, 83, 84, 86, 154 pseudoreferencia, 47, 129, 137, 147 Pt, véase platino pulverización catódica, 15, 16, 23, 30, 32, 35, 47, 62, 80, 134, 135, 147, véase también sputtering punto isoeléctrico, 90

\mathbf{R}

radiación, 70, 114 radiofrecuencia, 15, 35 Randles-Sevcik, 48, 49, 98 rayos X, 39, 140, 154 redes neuronales, 127 reflujo, 25, 73, 83 resina de doble exposición, 33 epoxi, 47, 129, 133, 137 negativa, 37 revelado, 34, 37, 39, 131, 132, 135, 136 revelador, 34 rugosidad, 30, 35, 56, 62, 80, 126

\mathbf{S}

Sánchez, 67 Seah, 134 sensor, 6, 7, 13, 17, 22, 31, 37, 47, 55, 61, 62, 64, 72, 80, 84, 87, 88, 90, 93, 94, 123, 127-130, 133, 134, 137, 142-145, 151-153, 155 Shockley, 13 Si, véase silicio Sigmund, 134 silanización, 64 silanolato, 91, 94, 102 silice, véase silicio, óxido de silicio, 8, 13, 14, 16, 17, 21-23, 29, 32, 35-38, 54, 55, 58-60, 64, 68, 69, 72, 73, 76, 78-80, 87, 93, 114, 116, 117, 123, 135, 137, 142, 151, 153, 154 oxido de, 8, 16, 20-22, 25, 29, 32, 37, 54, 56, 58-60, 65, 72, 74, 77, 78, 80, 82, 84, 87, 90-93, 102, 109, 114, 142, 147 simulacion, 18, 107, 109 sitios rédox, 44, 97, 102, 103, 105, 110 sobrerevelado, 131, 132 software, 30 sol, 10, 20-22, 54, 55, 60, 66, 87, 114, $126,\,151,\,154,\,155$ sol-gel, 6-10, 17, 20, 54, 57, 68, 79, 90, 127, 128 Soler-Illia, 6, 114 sonda, 18, 43-51, 60, 61, 63, 64, 72, 78, 79, 84-86, 88, 90, 93-109, 111-115, 117-123, 126, 127, 138, 141, 143-148, 151, 152, 155spin-coating, 11, 22, 33, 37, 57, 87, 130,133spray-coating, 11 sputtering, 15, 35, 36, 69, 70, 134, véase también pulverización catódica superficie, 16, 27, 28, 30, 35-37, 39, 43, 45, 55-58, 60-64, 66, 67, 70-72, 77, 78, 80, 81, 84, 87, 90, 91, 95, 103, 109, 126, 132, 134, 138-141, 147, 150, 155 supramolecular, 6, 10, 55 surfactante, 8, 11, 20, 21, 25-27, 29, 55-60, 62, 64, 65, 68, 70-78,

sustrato, 11, 22, 33, 34, 37, 55, 60, 62, 66, 68, 75, 77, 80, 132, 136, 140, 155 Švorčík, 139 swelling, 113

\mathbf{T}

Tagliazucchi, 104, 107 Taniguchi, 2 tensión superficial, 29, 74 tensioactivo, 8, 11 TEOS, $v\acute{e}ase$ tetraetoxisilano tetraetoxisilano, 20, 21 Thielemann, 74 Ti, véase titanio tintas, 154, 155 titanio, 4, 35–37, 42, 54, 56, 90, 92, 98, 99, 114, 117, 119, 132–134, 147, 152, 154 tolueno, 27, 37 top-down, 5, 6, 13, 18, 54, 55, 126, 147,150transferencia de los diseños, 14, 30, 31, 33, 37, 154 transporte, 17, 44, 45, 50, 51, 61, 72, 80, 84, 86, 88, 90, 93, 94, 97, 98, 102, 103, 106, 109, 110, 116, 118–121, 123, 126, 138, 143, $151, \, 152$

\mathbf{U}

ultrasonido, 37, 136 undercutting, 132 UV, 15, 33, 34, 37, 39, 54, 56

\mathbf{V}

velocidad angular, 22–24, 59

de barrido, 44, 46, 48-50, 73, 76, 98, 99, 101, 104–106, 144, 145 de rotación, 24, 38, 59 rampa de, 23 Venn, 6 vibración, 27, 68-72, 74, 75, 83, 84 vidrio, 23, 37, 39, 54, 55, 59, 60, 64, 87, 138Volmer, 12 voltagrama, 12, 42-44, 47, 49-51, 61, 63, 72, 77, 84, 85, 94-101, 105-108, 112, 115-120, 122, $138,\,139,\,141,\,143,\,145,\,151$ voltametría cíclica, 43, 44, 50, 60, 63, 84, 95, 101, 103, 104, 111, 113, 116, 123, 141 de corriente alterna, 44, 103, 105 de corriente continua, 15, 42, 43, 105, 151 de onda cuadrada, 12 escalonada, 12

\mathbf{W}

Walcarius, 16, 93 Whitesides, 2 Wu, 90

х

XPS, 39

Y

Ybarra, 110 Young, 27

\mathbf{Z}

Zhang, 56 Zr, *véase* circonio