
Design of a vanishing point algorithm for custom
ASIC

M. Villemur∗†‡, M. Di Federico∗¶, P. Julián∗†‡, A. G. Andreou‡, F. Masson∗†, E. Nebot§
∗ Departamento de Ingenierı́a Eléctrica y de Computadoras, Universidad Nacional del Sur

Av. Alem 1253, Bahı́a Blanca, Argentina,
Email: martin.villemur@uns.edu
† IIIE-CONICET, Argentina

‡ Electrical and Computer Engineering Department, Johns Hopkins University, USA
§ University of Sydney, Australia

¶ INTI, Argentina

Abstract—In this paper we present a vanishing point algorithm
variation oriented to a VLSI ASIC. We proposed a simplified
voting process and analyze the minimum resolution that can be
used for the input image and the filter kernels in order to obtain
a good performance.

Index Terms—Vanishing point detection, VLSI, ASIC

I. INTRODUCTION

This paper presents a variation of a vanishing point detection
algorithm specifically targeted to achieve a custom Applica-
tion Specific Integrated Circuit (ASIC). The methods in the
literature usually implement a directional filtering using Gabor
filters to associate a preferred orientation to every pixel, and
then perform a voting process to choose the most voted pixel,
i.e., the vanishing point of the image.

For example, [1] proposes a method based on the texture of
the terrain using Gabor filters in order to obtain the ”dominant
orientation” of every pixel. The size of the kernel is determined
empirically as a function of the wavelength of the Gabor
filters, which in turn are obtained based on the size of the
image. This work uses 72 possible orientations on 320× 240
resolution images. All pixels vote, and the voting process is
binary (not weighted). As a consequence of the high number
of orientations and the participation of all the pixels in the
voting process, the method is computationally expensive and
somehow affected by far away noise.

[2] uses 36 orientations with five different filter scales in
order to consider different spatial resolutions. The dominant
orientation is obtained by getting the maximum response value
among the five resolution filters at every pixel. In addition, a
normalized confidence is assigned to each pixel based on the
response of all filters at that location. This confidence is used
to determine whether the pixel is allowed o vote or not. The
voting is done using a Local Adaptive Soft-Voting (LASV)
and the voting regions is a half disc below the candidate. The
size of the disk is empirically selected to be 0.35×Υ, where Υ
is the length of the image diagonal. The voting is not binary.
Every voter is weighted according to the alignment with the
dominant orientation and the distance to the candidate. Even
though the voting scheme is improved with respect to [1], the
computational complexity is still high.

[3] uses four filtering orientations and computes the
dominant orientation based on the joint activity of them
over every pixel. The orientation is then calculated using a
tan−1 operation between the imaginary and real parts of the
joint activity. This method is called Optimal Local Dominant
Orientation Method (OLDOM). The voting is done based on
the Euclidian distance between the candidate and the voted,
and also considering the difference between the dominant
orientation and the line that joins the candidate and the voter.
The voting is not binary and all pixels in the image vote.
The resolution used for the images is 320× 240. This method
achieves more accuracy in the voting but at the expense of an
increased computational load. The number of orientations is
low, but on the other hand an inverse tangent calculation is
required, which requires a specialized VLSI block with high
precision.

In order to implement a vanishing point algorithm on an
ASIC, the size and number of kernels, and the resolution in
bits of the kernels and the input image must be minimized in
order to achieve a reasonable Silicon area. In order to do this,
we perform an analysis of the impact of these parameters on
the location of the vanishing points. In addition, we propose
several simplifications that help achieving a more compact
realization.

II. PROPOSED VANISHING POINT ALGORITHM

A. Texture flow estimation

The first stage of the algorithm is texture flow estimation.
The input image I(x, y) is convolved by 2× n Gabor filters:
n of them are odd Gabor filters, namely, (godd), and the other
n are even Gabor filters, namely geven.

For every pixel p = (x, y), the orientation that has the
strongest Gabor energy

Ie(x, y) = (geven ∗ I)(x, y)2 + (godd ∗ I)(x, y)2 (1)

among all filtered images, is referred to as the dominant
orientation θ(p) of pixel p. Based on this concept, two
different images are generated. The first image Iθ(x, y) is

Figure 1: Real Gabor filters, with n = 9 orientations; for 4
different levels of quantization: 8, 6, 4, and 3 bits from the
top to the bottom.

composed of the dominant orientation and the second image
Ie(x, y) is composed of the corresponding modules Ie(x, y).

Figure 2: Imaginary Gabor filters, with n = 9 orientations; for
4 different levels of quantization: 8, 6, 4, and 3 bits from the
top to the bottom.

At this stage, a technique usually found in the literature is
the definition of a “confidence rating” for the orientations. For
example, in [2] all pixels are assigned a confidence level based
on a statistical function over all Gabor responses. However,
this is very expensive for an ASIC implementation since all
n× qp values must be saved on memory.

The Gabor filters are defined by the following equations [4]:

geven(x, y, θ, λ, γ) =
e

−1

8σ2
(γ xθ2+yθ

2)

√
2πσ

cos (2πxθ/λ+ ψ) (2)

godd(x, y, θ, λ, γ) =
e

−1

8σ2
(γ xθ2+yθ

2)

√
2πσ

sin (2πxθ/λ+ ψ) (3)

where θ is the filter orientation, a = x cos θ + y sin θ, b =
−x sin θ + y cos θ, λ is the wavelength, σ is the gaussian
deviation, γ is the x-y aspect ratio of the gaussian surface.

Coefficients λ, σ and γ do not influence the hardware
requirements, so they are not analyzed in this paper.

In order to specify the number of filters, which is equivalent
to the number of angles or orientations n, several aspects
must be considered. Lower resolution images have fewer
possible orientations and fewer bits per pixels, resulting in
lower computational load. Similarly, lower resolution kernels
also reduce the computational load. However, as the resolution
of the image/filter kernel reduces, the algorithm performance
degrades up to a point where the detection is no longer possi-
ble. In addition, the computation of the convolution operation

required to filter the image grow linearly with the number
of orientations. This result in longer execution time. The
necessary memory also grows with the number of orientations.
In fact, if there are n possible orientations then log2(n) bits
must be stored per pixel. This produces more silicon area.

Regarding the kernel size k, the number of computations
grows quadratically with the number of elements, and the
execution time increases accordingly. On the other side, if
the kernels are too small, small texture orientations might
contribute at the voting stage, adding undesired noise. Figures
1 and 2 show the real and imaginary filter outputs, considering
nine orientations, with a kernel size k = 13, and different lev-
els of quantization. The parameter k is determined according
to [1] as k = 10

π × 2(log2(w)−5), where w is the input image
width. Parameters λ = k×φ

5 , σ = 0.15 × k and γ = 20, are
chosen based on the type of images that are being analyzed.

(a) n = 9. (b) n = 17.

Figure 3: Example of pattern matrix with radius of 30 pixels
for different number of orientations. Equal color represents
equal orientation, starting from the first orientation, in dark,
until the last orientation (9 or 17), in light-gray

As it can been seen from Figs. 1 and 2, real filters degenerate
when 3 bits are used. At first glance, it does not seem
recommendable to implement the filters with less than 4 bits.

B. Voting process

Once the dominant orientation image θ(p) has been com-
puted, the voting process can be started. As was mentioned
on previous work ([2], [1], [5]) a “hard-voting” scheme will
produce a large error in the estimation of the vanishing points,
and also will require a high computational cost. Therefore,

-

=

� Sector del mapa de
votaciones

� Patron de direcciones

� Resultado de la
resta entre las
matrices

P

P

Figure 4: Voting implementation example for one candidate P.

←
Im

ag
e

qu
an

tiz
at

io
n

re
du

ct
io

n

Filter quantization reduction→
Figure 5: Orientation images for different input image quantization (8, 5, 4 and 3 bits) and different filter quantization (8, 6,
4 and 3 bits).

we implement a locally adaptive soft-voting (LASV) scheme
based on the method proposed in [2]. Basically, all pixels
p(x, y) from a certain area are considered potentially van-
ishing points (PF) of the image. Then, for each candidate
P (x, y), we count the number of pixels p(x, y) belonging to a
voting region Vr whose straight line contains P (x, y). In this
particular case, the voting region was selected as a half-disk
below P (x, y) centered at it. As a result of this procedure,
a bi-dimensional map is generated that contains the voting
results.

Unlike other algorithms proposed before, this voting stage

does not take into account distance between candidates and
their voters, nor any function using angle, distance or confi-
dence levels weighting. Therefore, each voting score is based
only on the pixel predominant texture.

A more convenient implementation of LASV for the case of
a custom IC is proposed that uses an auxiliary pattern matrix
Mp. Each value of Mp is the encoded dominant orientation a
voter must have to be added on the voting process.

Figure 3 shows two different pattern matrices, with two
different number of orientations (9 and 17 respectively). In
order to calculate the voting score of a candidate P, the

←
Im

ag
e

qu
an

tiz
at

io
n

re
du

ct
io

n

Filter quantization reduction→
Figure 6: Voting maps for different input image quantization (8, 5, 4 and 3 bits) and different filter quantization (8, 6, 4 and
3 bits).

corresponding part of the orientation image is subtracted from
the pattern matrix Mp (see Fig. 4). Then, the number of
zeros is counted. This process is repeated over all the possible
candidates, so the voting map is generated by performing
several times (depending on the number of candidates) a
subtraction between two 2r × r size matrix followed by an
2r2 search for zeros in the resulting matrix.

C. Vanishing point selection

The last stage of the algorithm uses the voting map gen-
erated on the previous stage to choose the vanishing point
among candidates. This is done by finding the largest values
in the map. However, modifications can be introduced if, for
example, several local maxima must be found in cases with
more than one vanishing points (e.g., more than one road).

III. RESOLUTION ANALYSIS

In order to find the simplest possible realization, the results
of the algorithm must be evaluated for different image and
filter resolutions. At first, the resolution per pixel is the
maximum that the software can handle, typically, floating point
resolution. Afterwards, both, image and filter kernel resolution
are represented with a reduced number of bits and the results
are compared.

Figures 5 and 6 show the orientation map and the vote map
for a given image containing a road with a bifurcation. These
two figures show the results of using 8, 5, 4 and 3 bits for
the input image representation and 8, 6, 4 and 3 bits for the
filter kernel coefficients. As can be observed from Fig. 6, the
performance deteriorates when the filter kernels and the image
are represented with fewer bits. However, by using just 4 bits
for the image and the filter kernels, the results are comparable
to those obtained with full resolution. In this particular case,
the filter kernel resolution has a greater influence than the
image resolution on the voting map. The change from 6 to 4
bits produces a region of potential vanishing points appearing
on the left side of the image, corresponding to the left road in
the bifurcation.

The complexity in terms of the number of multipliers,
adders and registers required are described in The Appendix.

IV. CONCLUSION

We have presented an algorithm for vanishing point detec-
tion that can be realistically implemented on an ASIC. We
have proposed a simplified voting procedure using a pattern
matrix, that only requires a substraction followed by the count
of the number of resulting zeros. We have also performed a
numerical analysis that shows that using 4 bits to represent the
input image and the filter kernels is enough to produce similar
results to the full resolution case. The algorithm has been
tested with a variety of different images, and the results are the
same. Only one image is show in the paper due to the lack of
space. The Appendix shows the number of multipliers, adders,
registers which are needed to be implemented depending on
the architecture. There is a clear trade-off between space and
the number of cycles to complete the operation. The immediate
future steps are the design of an ASIC and its fabrication.

ACKNOWLEDGMENT

This project was partially funded by the International
Project PICT 2010 No. 2657 “3D Gigascale Integrated Circuits
for Nonlinear Computation, Filter and Fusion with Appli-
cations in Industrial Field Robotics”, ANPCyT, Ministry of
Science and Technology of Argentina.

V. THE APPENDIX

A. Computation complexity

This section presents a brief analysis of the computational
cost of filtering the image with the filter kernels using different

architectures. The image is processed using a convolution of
the form:

f [x, y] = i ∗ h =

k−1∑
i=0

k−1∑
j=0

h[i, j] i[x+ i, y + j], (4)

where [x, y] is the location of pixels in the image, i[x, y] is
the input image, h[x, y] is the filter kernel, k is the kernel
size and h is the image size. The convolution requires k2×h2
multiplications and additions. This operation can be performed
using one multiplier for the whole array, k multipliers, k2

multipliers or one multiplier per row. Assuming a 128× 128
image and a kernel of size k = 13, Table I summarizes the
number of multipliers, adders, registers and cycles required to
execute the filter.

Architecture Multipliers Adders Registers Read cycles
1 multiplier 1 1 2 2768869
k multipliers 13 26 52 212992
k2 multipliers 169 171 342 16384
1 mult. per row 128 128 256 21632

Table I: Summary of transducers and their characteristics
considered in the phantom tests.

REFERENCES

[1] C. Rasmussen, “Grouping dominant orientations for ill-structured road
following,” in Computer Vision and Pattern Recognition, 2004. CVPR
2004. Proceedings of the 2004 IEEE Computer Society Conference on,
vol. 1. IEEE, 2004, pp. I–470.

[2] H. Kong, J.-Y. Audibert, and J. Ponce, “General road detection from a
single image,” Image Processing, IEEE Transactions on, vol. 19, no. 8,
pp. 2211–2220, 2010.

[3] P. Moghadam, J. A. Starzyk, and W. S. Wijesoma, “Fast vanishing-
point detection in unstructured environments,” Image Processing, IEEE
Transactions on, vol. 21, no. 1, pp. 425–430, 2012.

[4] T. S. Lee, “Image representation using 2d gabor wavelets,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 18, no. 10,
pp. 959–971, 1996.

[5] Y. Wang, X. Wang, and C. Wen, “Fast vanishing point detection for
unstructured road using haar texture,” in Signal Processing, Communi-
cation and Computing (ICSPCC), 2012 IEEE International Conference
on. IEEE, 2012, pp. 167–170.

