
Digital Architecture for R6 PWL Function
Computation

Vı́ctor Jiménez-Fernández, Juan A. Rodrı́guez, Pedro M. Julián, Osvaldo Agamennoni, Martı́n Di Federico
Universidad Nacional del Sur

Departamento de Ingenierı́a Eléctrica y Computadoras
Av. Alem 1353, Bahı́a Blanca, Argentina

E-mail:vjimenez@uns.edu.ar

Abstract— In this paper, we present a digital architecture for
R6 piecewise linear (PWL) function computation. It provides
an input-output relationship based on the high level canoni-
cal piecewise linear (HL-CPWL) model which defines a PWL
function over a domain partitioned by simplices. In order to
reduce the time to determine the set of parameters needed for
the PWL function computation, a sorting algorithmic scheme
has been included. Programmability has also been considered in
this architecture because the PWL function is programmed in
an external RAM memory.

I. INTRODUCTION

PWL functions have proved to be a very powerful tool in
the identification of nonlinear dynamical systems. One model
structure for the identification of nonlinear dynamical systems
is the so called NOE (Nonlinear Output Error). In reference
[1] a NOE, based on the High Level Canonical Piecewise
Linear (HL-CPWL) model [2], is reported. It includes an
algorithm that identifies a nonlinear system starting with a
linear estimation and then, iteratively updates the parameters
of the HL-CPWL model. This is done by increasing grid
division going from a coarse division of the simplicial partition
of the domain to finer one. Figure 1 shows the block diagram
of the PWL NOE. The (u,y) vectors correspond to the
input and estimated-output system, and (M, N) are the model
orders.

PWL
function

z-1

z-1

z-1
z-1

z-1

z-1

uk

ykuk-1

uk-2

uk-M

yk-1

yk-2

yk-N

Fig. 1. PWL NOE model.

The PWL NOE is composed of two functional blocks: a PWL
function block, and a set of delay blocks (described in Fig.1

as z−1). This feature shows the possibility of implementing
the PWL NOE in a digital integrated circuit (IC). In this paper
a digital architecture for the PWL function block is presented
In a recent paper [3], a IC realization for computing a PWL
function has been reported. It is based on a digital architecture
with a 8-bits precision. The PWL NOE model structure shown
in Fig.1 has been simulated by considering 8-bit precision in
the PWL function block. Simulations show the necessity of
increasing numerical precision in the input data in order to
get a lower error in the identification system. Figures 2 and
3 show the real output system and estimated NOE output for
8-bit and 24-bit precision.

Fig. 2. Real system output(red) and estimated NOE output (blue)
for 8-bit precision.

Fig. 3. Real system output(red) and estimated NOE output (blue)
for 24-bit precision.

pjulian
 Actas de la Escuela Argentina de Microelectrónica, Tecnología y Aplicaciones, 2007

pjulian
1

pjulian
Regular Paper

pjulian

pjulian
ISBN 978-987-1171-78-1

Figure 3 shows that the estimated signal presents a high
error margin. The simulation, for 8-bit precision, was done by
selecting the 4 most significant bits to denote the integer part,
and the 4 less significant bits to represent the fractional part
of every input word data. The simulation, for 24-bit precision,
was done by selecting the 4 most significant bits to denote
the integer part, and the 20 less significant bits to indicate the
fractional part. Figure 2 shows a minimum error between the
real output system and the estimated NOE output, in fact both
signals look like if they were overlap. In both simulations, 8
and 24-bit, the word length that is assigned to the integer part
is the same (4-bit). The difference between these simulations
resides in the word length used to represent the fractional part
of the input variables.
Due to the simplicial partition domain in which the HL-CPWL
function is defined, the integer and fractional components of
the input data are also related to the simplicial domain. For
instance, the number of simplices in Rn PWL function is
given by 2n×IN , where IN indicates the number of bits used
for describing the integer part of the N -bits input variable. The
internal resolution of the simplex is given by 2FN , where FN

denotes the number of bits used for describing the fractional
part of the N -bits input variable. In this sense, it is important
to say that although a longer word (24-bits) has been used to
achieve a better estimated system output, the domain of the
PWL function in both cases, 8 and 24-bits, contains the same
number of simplices. The best precision obtained in the NOE
output (shown in Fig.3) is directly related to the 20-bits used to
represents the fractional part. Although the digital architecture
used in the IC of reference [3] could be scaled in bits, for
the fractional part, it presents a practical shortcoming. This
shortcoming is the time (measured in clock cycles) that the
IC requires to compute the value of the PWL function for a
given input. This time is given by

Top = 2(FN) (1)

Notice that while for N = 8, a Top of 24 = 16 clock cycles is
required, to compute an output for N = 24, 220 = 1048576
clock cycles are needed for processing an input. A greater
dimension (higher than 3) is also preferably in the PWL NOE
in order to have better nonlinear system estimation capabilities.
In this paper a digital architecture to overcome the above
explained shortcomings is presented.

II. A SCHEME TO COMPUTE HL-CPWL FUNCTION

A Rn HL-CPWL function can be expressed as a weighted
sum [5], [6], defined by

F (X) =
n∑

i=0

ciµi (2)

From eq.(2), we observe that in order to calculate the value of
F (X) at the input X, ci, and µi-parameters are required (for
i = 0, · · · , n). The set of ci-parameters represent the value of
the function at the vertices. The vertices are the boundaries of
every simplex over the PWL function domain. Because the c i

values are physically stored in an external RAM memory, in

order to evaluate eq.(2) the µi-parameters must be computed.
In references [7] and [8] a proposal for computing the
µi-parameters is presented. Such proposal consists in a set of
comparators which compare the input signals (X vector), with
a ramp. This idea was implemented in digital architecture of
the IC realization of reference [3]. Due to the number of
clock cycles required to compute the µ i-parameters given by
Eq.(1), such architecture works efficiently in low precision
applications. However, in accordance with the simulations
presented in the previous section, it was shown that a 20-bit
precision for the fractional part is needed to obtain accuracy
estimation results. In this section a scheme to compute the
µi-parameters of the HL-CPWL function is presented, that is
based on a sorting data procedure.

A. Scheme to compute µi-parameters

Let X = [x1, x2, · · · , xn] be a n-dimensional input to Rn

HL-CPWL function. Each xj-variable (for j = 1, 2, · · · , n)
is assumed to be composed by integer and fractional part
expressed by the notation xj = xintj .xfracj .
Now let Xsorted = [xs1 , xs2 , · · · , xsn] be a vector which
includes the xfracj elements sorted by the relation:
xs1 ≤ xs2 ≤ · · · ≤ xsn .
The µi-parameters can be computed as follows:

µn = xs1 (3)

µ(n−�) = xs(�+1) − xs�
(4)

µ0 = 1 − xsn (5)

for � = 1, 2, · · · , n − 1

It is important to point out that the elements of Xsorted

vector are simply the sorted elements of X vector.

B. ci addressing procedure

Equation (2) also include the ci-parameters. Although this
set of parameters do not need to be computed, it is required
a procedure for addressing the external RAM in order to
select the ci which corresponds to any specific µi parameter.
Data and address in a RAM memory are expressed as binary
numbers, therefore the addressing procedure must also be
defined in binary format.
Let V = 〈xint1xint2 · · ·xintn〉 be a binary number formed by
the concatenation of the integer part of all x i input variables,
where i follows the sequence i = {1, 2, · · · , n}.
Consider that S = 〈S1S2 · · ·Sn〉 is a binary number (with the
same word length as xint1) composed by the concatenation
of n Si-terms which value could be either 〈00 · · ·00〉 or
〈00 · · · 01〉.
Also let Λ = {σ1, σ2, · · · , σn} be a sequence which indicates
the consecutive order in which the i-th element of X appears
in Xsorted (running from the left-most to the right-most
element). The address memory, for a c i-parameter which
corresponds to any specific µi, is obtained by the following
procedure:

pjulian
 Actas de la Escuela Argentina de Microelectrónica, Tecnología y Aplicaciones, 2007

pjulian
Regular Paper

pjulian
2

pjulian
ISBN 978-987-1171-78-1

turn-on Sj , for j = {1, 2, · · · , n}
for k from 0 to n do

begin
DIRk = V + S
turn-off Sσk

end

The notations turn-on and turn-off are used to indicate the
process of setting Sj = 〈00 · · ·01〉 and Sj = 〈00 · · ·00〉,
respectively.
It is important to mention that the set of (n + 1) RAM
addressing done to pick up a specific ci-term constitute a path
in a n-dimensional hypercube.
Finally, the addition of the ciµi terms (for i = 1, 2, · · · , n)
constitute the value of the PWL function.

C. Example

In order to illustrate the addressing procedure, let us con-
sider a two-dimensional example. Consider the continuous
PWL function, depicted in Fig.4, F (x1, x2) which is defined
over a simplicial domain partitioned into four simplices with
a unitary grid step.

Fig. 4. A two-dimensional PWL function.

The value of the PWL function, ci = F (x1, x2) at the vertex
points, is collected and stored into the RAM memory as it is
summarized in TABLE I.

TABLE I

i Vertex Memory Dir. ci = F (x1,x2)

0 (0, 0) 00000000 0

1 (0, 1) 00000001 0

2 (0, 2) 00000010 0

3 (1, 0) 00010000 2

4 (1, 1) 00010001 1

5 (1, 2) 00010010 2

6 (2, 0) 00100000 1

7 (2, 1) 00100001 2

8 (2, 2) 00100010 1

In this example, the evaluation of an arbitrary input
point, for example, the point x = (1.5, 0.75) at the function
F (x1, x2) is obtained.
Observe that n = 2, and the following data are obtained:
X = [x1, x2] = [1.50, 0.75]
Xsorted = [xfrac1 , xfrac2] = [0.50, 0.75]
(notice that xfrac1 ≤ xfrac2 is fullfil)
Λ = {1, 2}
µ2 = xfrac1 = 0.5
µ1 = xfrac2 − xfrac1 = 0.25
µ0 = 1 − xfrac2 = 0.25

Consider a 8-bits word length (N = 8) with 4-bits for
representing integer and fractional parts, respectively
(IN = FN = 4).
V = 〈00010000〉, and in accordance with the addressing
procedure, the first value for S is obtained when all the S j

values are set in the turn-on state (S = 〈00010001〉). As
DIR0 = V + S, then DIR0 = 〈00100001〉

The second value for S is obtained when S1 is set in the
turn-off state (S = 〈00010000〉). Because DIR1 = V + S,
then DIR1 = 〈00100000〉.

The third, and last S-value for n = 2, is obtained when S2

is set in the turn-off state (S = 〈00000000〉). It results that
DIR2 = V + S and therefore DIR2 = 〈00010000〉.

Finally, the ci values stored in the RAM memory at the
addresses: DIR0, DIR1, and DIR2, are multiplied and added
in order to compute the value of the HL-CPWL function at
the input X, as follows:

F (x1, x2) = 0.5 × 2 + 0.25 × 1 + 0.25 × 2 = 1.75

III. THE PROPOSED ARCHITECTURE

In this section a digital architecture to implement the
procedure for computing R6 HL-CPWL function is presented.
Input data xi is 24-bit precision (N = 24), 4 bits are used to
represent the integer part (IN = 4) and 20 bits are assigned
to the fractional part (FN = 20). The proposed architecture
is based on a microprocessor scheme which includes an ALU
(Arithmetic Logic Unit), a register file and a control unit.

A. Description

Figure 5 shows the block scheme of the proposed
architecture.

1) The register file is composed by a set of (FN + 3)-
bit registers. The FN -bit field in Reg.1-Reg.6 store the
fractional part of the input data (xfraci) and the 3-bit
field is used to indicate the i-th position of xi in the
input vector X.

2) Accumulator register Acc is a (FN + 8)-bit auxiliar
register which accumulates the value of F (X).

pjulian
 Actas de la Escuela Argentina de Microelectrónica, Tecnología y Aplicaciones, 2007

pjulian
Regular Paper

pjulian
3

pjulian
ISBN 978-987-1171-78-1

3) Counter CNT is a 3-bit counter which assigns to each
input data (xi) an index i = {1, 2, · · · , 6}. This index is
needed to identify the i-th data in the sorting process.

4) Vertex register VRT is a register where the interger part
of the input data is collected. Because there are 6 xi-
inputs, and 4 bits has been used to represent the integer
part of every input, then it is 24-bit register. This register
is used to address memory.

5) Temporal registers Reg.A and Reg.B are registers which
store temporary data for the ALU inputs. Reg.A is a
(FN +3)-bit register and Reg.B a (FN +8)-bit register.

6) Output register Rout is a (FN + 8)-bit register which
stores the ALU results.

7) Label register RSX is a 24-bit register where Si address-
ing terms are stored.

8) Register SR38 is a (3 × 8)-bit shift register. The 24-bit
inputs xi (for i = 1, 2, · · · , 6) are sequentially loaded in
three 8-bit blocks. While the 4 most significant bits of
xi are stored in V RT , the 20 less significant bits are
stored into the register file.

9) ALU is an Arithmetic Logic Unit which performs the
comparison, additions, subtraction, and multiplication
operations.

10) MUX, Selector, are multiplexors and data path selector,
respectively.

Reg.1

Reg.2

Reg.3

Reg.4

Reg.5

Reg.6

Selector

Reg.B

Reg.A

RSX

Rout

VRT

CNT

Compare

Add

Subtract

Multiply

MUX MUX

RAM

SR38

Reg.7

4

20

3

28

28

23

23

3

24

8

28

23 24 28

28 28

28

28

24

Fig. 5. Block scheme of the proposed architecture.

IV. ARCHITECTURE

In the proposed PWL architecture, the processing of F (X)
is given as follows: firstly, the input data (xi for i = 1, 2, · · ·n)
is loaded, then the xfraci terms are sorted. Next, the µi-
parameters are computed, ci-values are read and finally F (X)
is computed. This processing-cycle can be divided into the
followig stages:

• Data input is a sequential process; xi enter to the system
by the following order: x1, x2, x3, . . . x6. Each xi is 24-
bit wide. Due to limitations in the number of I/O pins,
the input process is performed in three cycles of 8 bits
for each xi. After loading SR38, the 4 most significant
bits are written into VRT and the less significant 20-bits
are written into Reg.i; the value of CNT is written into
the 3 less significant bits of Reg.i. CNT is incremented
in the first of the 3 cycles.

• Sorting. The sorting procedure performs 12 comparisons
and switching operations. Each one of this operations
is executed in 3 cycles: (1) parallel-loading of Reg.i
into Reg.A and Reg.j into Reg.B , (2) compare, (3) if
Reg.A>Reg.B then parallel-write Reg.A into Reg.j and
Reg.B into Reg.i (switch).

• Evaluation. Evaluate the summatory Eq.(2). It is com-
puted as follows:

1) Load Reg.1 into Reg.A (µ1)
2) Add VRT and RSX (address computation for c1)
3) Read memory (address in Rout)
4) Multiply Reg.A and memory[Rout] (µ1 × c1)
5) Write Rout into Reg.7 (accumulation)
6) set = 0 RSX[index(Reg.1)]

(for next ci’s address computation)

for i from 2 to 6 do
begin

Load Reg.i into Reg.A
Load Reg.(i-1) into Reg.B
Subtract Reg.A - Reg.B
(µi, is always > 0 because of
the previous sorting procedure)
Load Rout into Reg.A
Load Reg.7 into Reg.B
(µi is saved in Reg.A and the partial
result is loaded in Reg.B)
Add VRT and RSX
(address computation for ci)
Read memory (address in Rout)
Multiply Reg.A and memory[Rout]
(µi × ci)

Add Rout and Reg.B
(µi × ci + Acc)

Write Rout into Reg.7 (accumulation)
set = 0 RSX[index(Reg.i)]
(for next ci’s address computation)

end

7) Load Reg.6 into Reg.B and set Reg.A = 0 (1-µ6)
8) Subtract Reg.A - Reg.B

pjulian
 Actas de la Escuela Argentina de Microelectrónica, Tecnología y Aplicaciones, 2007

pjulian
Regular Paper

pjulian
4

pjulian
ISBN 978-987-1171-78-1

(µ7, always is > 0 because of the previous sorting
procedure)

9) Load Rout into Reg.A and Reg.7 into Reg.B
(µ7 is saved in Reg.A and the partial result is loaded
in Reg.B)

10) Add VRT and RSX
(address computation for c7)

11) Read memory (address in Rout)
12) Multiply Reg.A and memory[Rout]

(µ7 × c7)
13) Add Rout and Reg.B

(µ7 × c7 + Acc)
14) Write Rout into Reg.7

(accumulation)

Note: In the subtract operation 1 − µ6 of (7), the integer
part can be omitted because the result will always be greater
than 0; then, only the fractional part is required.

V. SORTING INPUT DATA PROCEDURE

A procedure to compute µi-parameters was presented in
section II. This procedure requires xfraci to be sorted. Sorting
networks are the most popular method to sort data in VLSI
implementations [9]. They are based on compare-switch
operations which are performed in parallel. Figure 6 shows
the diagram for the Batcher’s ”odd-even sorter”, it is the most
used sorting network.

switcher-Comparator

Fig. 6. Batcher’s sorting network diagram.

The main advantage of this kind of network is its regular
structure; although it is not optimal in the number of
comparisons, the execution of this comparisons is done in
parallel, so the execution time to sort data is the same as in
other optimal irregular strategies like Bose-Nelson’s. Figure
7 shows the diagram for the Bose-Nelson sorting network.

switcher-Comparator

Fig. 7. Bose-Nelson sorting network diagram.

Although a compare-switch strategy is here used, the

comparator network is not physically implemented. The
sorting procedure is considered as a stage of the HL-CPWL
computation process, and it is performed as a sequence of
compare-switch operations. In order to justify the sorting
method here proposed, a comparative analysis with the
Batcher’s sorter is presented. Let {r1, r2, r3, r4, r5, r6} the
set of registers to be sorted.

Batcher’s implementation for 6 variables: 6 read/write
ports, 120-bit bus (20 for each xfraci) and 15 switcher-
comparator blocks are required. Each computation cycle
consists of (2or3) comparisons and (2or3) switch executed
in parallel; so the execution time T1 for 6 stages is given by

T1 = 6 × (tcomparator + tswitcher)

Proposed sorting implementation: 2 read/write ports, only one
comparator block and 2 temporal registers are required. An
optimal sequence of compare-switch operations is done (12
operations for 6 variables). In this sequence each (x, y) rep-
resents a compare-switch operation of x, and y; this sequence
is the same as Bose-Nelson’s and it is given by

(r2, r3), (r5, r6), (r1, r3), (r4, r6), (r1, r2), (r4, r5),
(r3, r6), (r1, r4), (r2, r5), (r3, r5), (r2, r4), (r3, r4)

The switch operation is done by writing back the temporal
registers into the file register. Each computation cycle performs
two write operations in parallel into temporal registers, one
comparison operation and two write operations in parallel into
the file register; so execution time T2 is given by

T2 = 12 × (twritein + tcomparator + twriteout)

On the one hand, it is important to notice that the odd-even
sorter is a combinational circuit; assuming that tcomparator

depends on the number of bits and that tswitcher is constant
(equivalent to compare one bit), let t be the time to compare
1 bit of the 20-bit xfraci-word. Time T1 is given by

T1 = 6 × (20 × t + t) = 126t.

On the other hand, the new circuit is synchronous; then the
computing time depends to the following restriction: the clock
cycle must be as long as the longest operation. Similarly,
assuming that tcomparator depends on the word length and
twrite is constant, then it yields

T2 = 12 × (3 × max(20t, t, t) = 12 × (3 × 20t) = 720t

Considering that this circuit performs more than a 6-inputs
sorting and that sorting time is about 22-percent of total
execution time, the speedup obtained using a sorting network
(in accordance with Amdahl’s law) is given by

SPU =
1[

(1 − 0.22) + 0.22
(T2/T1)

] = 1.22

Although the above speedup is not negligible, a minimum area
and a most simple design is desirable.

pjulian
 Actas de la Escuela Argentina de Microelectrónica, Tecnología y Aplicaciones, 2007

pjulian
Regular Paper

pjulian
5

pjulian
ISBN 978-987-1171-78-1

VI. EXECUTION TIME ANALYSIS

The objective of defining a new architecture is to overcome
the existing execution time limitations in the IC of reference
[3] when it is scaled to FN = 20 bits. In this section, a com-
parative analysis of execution time of both circuit architectures
is presented; the execution time depend on the number of bits
assigned to FN and on the number of dimensions of F (X).
The circuit of [3] is hereafter referred as circuit A and the
new circuit as circuit B.
Let M be the dimension of F (X) and let N be the word
length of xfraci .
Circuit A computes F (X) executing the next cycle of opera-
tions:

For i from 0 to 2N do
begin

(A1)Increment counter C
(n bit counter)
(A2)Compare C with M inputs
(N -bit xfraci)

(A3)Compute ci address
(12 bits add)

(A4)Read ci from memory
(A5)Add ci and accumulator
(8+N bits add)

end
Divide by 2 × N (shift right accumulator N bits)

By extending circuit A for N -bit inputs, it would be
necessary to extend the counter (ramp-generator) and the
comparator to N -bits, also the adder should be extended to
8 + N -bit because it will add 2N 8-bit numbers. It can be
seen than execution times for A1, A2, A3, is linearly depend
on N , so they are O(N); A2 does not depend on M because
comparison operations are executed in parallel. Otherwise, A3
and A4 do not depend on M and N , so their time is constant,
so it is O(1). In conclusion, the total execution time for one
iteration is O(3N +2) = O(N). Finally, as the cycle executes
2N times, the total execution time for circuit A is O(2N ×N).
Circuit B computes F (X) using a completely different strat-
egy; it sorts the xfraci-inputs and then computes the summa-
tory. It operates as follows:

(B1) Sort M N -bit numbers using switch-compare
operations

For i from 1 to M + 1 do
begin

(B2) Compute µi = xfraci − xfraci−1

(if i = 1, xi − xfrac1 = 0);
(if i = M + 1, xfraci = 1)
(B3) Compute ci’s address
(B4) Read ci from memory
(B5) Multiply ci × µi = fi

(B6) Add fi to Acc
end

B1 sorts M inputs of N bits. Instead of using the optimal
sequence proposed in section V, this analysis is done by using
a standard sorting method which is scalable and does not

require any additional structures, for example Bubble Sort.
This kind of sorting method will require M 2 operations.
Taking into account that data to be compared is 20 bits
word lenght, the time to execute B1 will be of O(M 2 × N).
Arithmetic operations in B2, B3 and B6 are O(N), B4 is O(1);
in contrast, B5 executes in a time of O(N 2) for a standard
implementation. In this way, the execution time for each cycle
is O(N2 + 3 × N + 1) = O(N2); so the total time for the
iterative cycle is O(M ×N 2). Finally, the total time for circuit
B is O(M2 × N + M × N2).

VII. CONCLUSION

A new digital architecture for computing HL-CPWL func-
tion with 24-bit precision was presented. The proposed archi-
tecture overcomes the shortcomings due to long time execu-
tion. The asymptotic time analysis has proved the advantages
of this new implementation when precision is increased. While
the IC implementation presented in [3] exponentially depends
on precision, the architecture presented in this paper presents
a polynomial dependency.

VIII. AKNOWLEDGMENT

This work was partially funded by project PICT 2003
No.13468, and PICT No.14628 of ANPCyT.
Juan Agustı́n Rodrı́guez has a (Type I) grant from CONICET.
P. Julián is member of Consejo Nacional de Investiga-
ciones Cientı́ficas y Técnicas CONICET”, Av. Rivadavia 1517,
Buenos Aires, Argentina.

REFERENCES

[1] L. Castro, J. Figueroa, O. Agamennoni, “BIBO stability for NOE model
structure using HL CPWL functions”, IEEE Modelling Identification and
Control Meeting. MIC 05. IASTED, Proceedings of MIC 05, Innsbruck
IASTED, 2005.

[2] P. Julian, “A high level canonical piecewise-Linear representation:
theory and applications”, Doctoral Thesis, Universidad Nacional del
Sur, Argentina, 1998.

[3] M. Di Federico, P. Julián, T. Poggi, and M. Storace, “A simplicial PWL
integrated circuit realization”, IEEE International Symposium on Circuits
and Systems ISCAS-2007, New Orleans, U.S.A., May 2007.

[4] L. Cervantes, O. Agamennoni, J. Figueroa, “Robust identification of
PWL-Wiener models: use in model predictive control”, IEEE Latin
American Applied Research journal, vol. 33, no.4, pp. 435-442. ISSN
0327-0793 ,2003.

[5] P. Julián, A. Desages, and B. D’Amico, “Orthonormal high-level
canonical PWL functions with applications to model reduction”, IEEE
Transactions on Circuits and Systems-I: Fundamental Theory and Appli-
cations, vol.47, pp. 702-712, May 2000. .

[6] P. Julián and O. Agamennoni, “High-level canonical piecewise linear
representation using a simplicial partition”, IEEE Transactions on
Circuits and Systems-I: Fundamental Theory and Applications, vol.46,
pp. 463-480, April 1999.

[7] P. Julián, R. Dogaru, and L. Chua, “A piecewise-linear simplicial coupling
cell for CNN gray-level image processing”, IEEE Transactions on Circuits
and Systems-I: Fundamental Theory and Applications, vol.49, pp. 904-
913, July 2002.

[8] P. Mandolesi, P. Julián, and A. Andreou, “A scalable and programmable
simplicial CNN digital pixel processor architecture”, IEEE Transactions
on Circuits and Systems-I: Regular papers, vol.51, pp. 988-996, May
2004.

[9] D. Knuth, The Art of Computer Programming,, Ed. Addison Wesley,
VOL.3, 1998.

pjulian
 Actas de la Escuela Argentina de Microelectrónica, Tecnología y Aplicaciones, 2007

pjulian
Regular Paper

pjulian
6

pjulian
ISBN 978-987-1171-78-1

	submission_24.pdf
	I. Introduccion
	II. Circuitos
	A. Puente Rectificador
	B. Protección por sobre Tensión
	C. Protección ESD

	III. Simulacion
	IV. Layout del circuito
	V. Conclusiones
	Agradecimientos
	Referencias

	paper_15.pdf
	I. Introducción
	II. Fundamentos
	III. Implementaciones
	IV. Conclusiones
	Referencias

