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Preface

The development of Embedded Systems is crucial for the development of industry,
technology  and science;  and it  is  an area which  has  grown in  the past  years  in
Argentina and South America.   

The SASE and CASE are intended to promote the development of embedded systems
in the country and the region with the following activities:

• Presentation of scientific and technological works at the conference.
• Hands-on Workshops.
• Technical Lectures (Tutorials).
• Plenary sessions.
• Contest for students projects 
• A program to assign electronic equipment to Universities.
• Travel and lodging grants for graduate and postgraduate students, professors

and researchers of Argentina. 

The objectives of the SASE are:

• To allow a more fluid exchange between academia and industry.
• To promote the exchange between researchers and students from different

universities from Argentina and other countries.
• To allow the diffusion of scientific and technological development done in the

region and worldwide.
• To encourage students from the country to get interested in the development

of Embedded Systems.
• To coordinate and promote the actualization of  curriculum contents related

to  Embedded  Systems  in  undergraduate  and  graduate  programs  at  the
universities of Argentina.

This year, topic areas included at CASE are: Architecture of Microprocessors, ASICs,
DSPs,  FPGA and HDLs,  Implementation  of  Embedded Systems,  Embedded Systems
Linux,  Communications  and  Protocols,  Embedded  Software,  Robotics,  RTOS  and
Bioengineering. Scientific works were accepted in three categories, Regular Papers,
Technical  Forum,  and  Poster. This  book  contains  the  works  accepted  as  Regular
Papers.  After an exhaustive peer review process only seven papers were accepted in
this distinguished category and published here. Some of the other ones were moved
to the categories of technological forum or poster.

We hope you enjoy the following papers, and the conference.

CASE 2016 Organizing Committee
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LabOSat: Low cost measurement platform designed

for hazardous environments
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Abstract—In this work the characteristics and performance
of LabOSat platform to carry out experiments over electronic
devices in aggressive environments are described. Configurable,
portable, low weight and low cost are the main features. First
measurements made in our laboratory are presented before
testing in space.

Index Terms—Measurement instrument, portable platform,
space mission, non-linear devices, resistive switching.

I. INTRODUCTION

LabOSat is a universal platform to perform experiments in

harsh environments such as outer space, low pressure - low

temperature conditions or high levels of radiation. LabOSat-

01, the first version of the platform, is designed to harbour

devices to be tested electrically under this kind of conditions.

Inside LabOSat-01, there is a module, called MeMOSat, which

forces with voltage or current customized sweeps ReRAM

non-volatile memory devices and can be easily adapted to

any two-terminal device. Moreover, this module, can run

endurance tests to study how extreme conditions degrade the

memory cells. Its predecessor, MeMOSat-1, is up and running

inside “Tita”, a BugSat manufactured by the argentinian com-

pany Satellogic [1] which is presently in a LEO (Low Earth

Orbit) at approximately 500km.

Nowadays, two boards LabOSat-01 are being integrated on

the new satellites that the company is developing and there

is a third board executing the programmed experiments at our

labs as control sample. Figure 1 shows the board with an inset

of a ReRAM device.

In the following sections, a general description of system’s

hardware and software is given. Then, the capabilities of

the board are explained followed by the description of the

devices measured in this work. Finally, the characterization

of current source and the implementation of LabOSat in the

laboratory are presented. This work is the first step to validate

LabOSat as an instrument platform for performing electronic

measurements in hazardous environments.

II. SYSTEM OVERVIEW

A. Hardware description

The building blocks of LabOSat are depicted in Figure

2. The core of the board is a mixed signal microcontroller

MSP430F1612 (Texas Instruments) which controls all the

Fig. 1: LabOSat-01 board. Inset: encapsulated ReRAM device.

peripherals circuits (blocks) designated to specific tasks. This

microcontroller is frequently used in Low Earth Orbit missions

to drive CubeSats and was tested by NASA [2]. It uses

12-bit DACs outputs to precisely control the voltage or the

current that will stimulate on-board devices. The 12-bit ADCs

inputs are used to measure the response of the DUTs and

other parameters that are periodically checked to guarantee

the correct behaviour of the board. Finally, there are several

addressing pins located at the GPIO ports that are dedicated to

switch between blocks or modes of operation. The following

are the most relevant blocks of LabOSat-01:

To measure temperature we use a LM74 thermometer

(Texas Instruments) which communicates through SPI and is

configured to measure temperatures over 0◦C up to 125◦C.

Nevertheless, all commercial components of LabOSat are

designed to operate in temperature ranges from -40◦C to 85◦C.

The dosimeters block, COTS pMOS transistors characteri-

zated as radiation sensor, is designed to measure total ionizing

radiation. This module is crucial for space applications or

measurements inside a particle accelerator for example.

The MeMO block is dedicated to experiments over memory

devices, particularly, devices based on Resistive Switching

phenomena [3] which are expected to work well under big

dose of radiation. Other devices could be embedded such as

non-volatile memories like flash memories.

There is another experiment running inside LabOSat de-
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Fig. 2: Block diagram of LabOSat-01.

signed to study the performance of transistors. This block

is named xFET and basically can test any transistor device,

commercial or custom made.

The goal of the last two blocks is to electrically test

devices degradation under hostile conditions. Stimuli to test

devices can be delivered sourcing voltage or current and

controlled with high precision using DAC outputs. When

sourcing voltage, current limitation is possible. As said before,

measurements are made using the ADC inputs and each of

them is preceded by a buffer and an amplifier in order to gain

or attenuate the signal giving wide range measurements and

avoiding out-of-range ADC readings. The MeMO block allows

operation over 28 devices and the xFET block over 6.

The current source circuit was inspired by the current loop

used in the CIAA project [4] and was implemented with

minor modifications to fulfill the requirements of ReRAM

devices. This current block allows LabOSat to perform new

experiments in MeMO module in contrast to its predecesor

MeMOSat-1. When sourcing current, LabOSat can deliver up

to 23mA with a maximum power of 230mW over DUT.

PCB is made of four layers where the outer ones are

ground planes and the inner layers hold the tracks routed with

Manhattan strategy to reduce crosstalk and parasitic capacities.

LabOSat also has an external port to perform MeMO or

xFET remote experiments in a reduced-size board. The board

weights 36g and it’s dimensions are 100×100×15mm which

makes LabOSat a light-weight and portable platform.

B. Firmware description

When LabOSat-01 is turned on it starts in idle mode, wait-

ing for instructions over SPI communication port (Figure 2).

The firmware is written in C and is programmed to understand

a short set of instructions. Most relevant are described in the

following paragraph.

It’s alive: First but not the most important instruction is

alive?, which asks the board if it is listening to SPI port.

This instruction must be executed until the board answers

alive which could be translated as “I’m alive, synchronized

and waiting for new instructions”.

Execute Standard Test: The stdTest instruction or Stan-

dard Test routine comprises several steps where supply voltage

of the board (Vbattery), temperature (T ), dosimetry (dosimeters’

voltage) and response of ReRAM devices and transistors is

measured. Figure 3 shows the pseudo-code of the Standard

Test routine. This instruction can only be executed once a

day.

stdTest request

if a day has passed then

execute Standard Test

else

do not execute Standard Test

end if

stdTest execution

read dosimetry, Vbattery and T
for each ReRAM in bank 1 do

measure IV or endurance test

end for

read Vbattery and T
for each ReRAM in bank 2 do

measure IV or endurance test

end for

for each xFET do

measure modulation and output characteristic curve

end for

read Vbattery and T

Fig. 3: Pseudo-code of Stadard Test request and execution.

How measurements are reported: The sendReport in-

struction requests the last report generated by LabOSat. It

could be the report of a Standard Test or other instruction (not

explained here). The length of the report is informed within

the first bytes making the communication more robust by the

implementation of a timeout.

C. Interface and Communication

All data is saved on microcontroller’s flash memory after

execution. To download, communication through SPI with

sendReport command must be done. The length of the

report depends on the kind of instruction sent and it is reported

within the first bytes of data, inside the header of the report.

The header also contains an identification number of the

board, the report number, the CRC-16 of the report itself,

a time stamp that indicates when the last instruction was

executed and a status byte which indicates errors and logs.

The calculation of report’s CRC-16 is executed to check if

memory or communication was corrupted by a bit flip as a

result of ionizing radiation for example.

The decodification of the report is made with a Python script

which facilitates the reading of the flash data and allows to

see easily if the behaviour of each device differs from last

execution.

The LabOSat-01 is programmed to produce reports of

less than 3 kB because of satellite’s telemetry bandwidth

availability. On Earth, as we want to reproduce same operation
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conditions (except the harsh environment) the report is down-

loaded with an emulated satellite made with an Arduino Nano

using the built-in SPI to USB module and a script written

in Python. The emulation program, i.e. communication and

decodification, is called pySat.

III. DEVICES UNDER TEST

A. Single-bit ReRAMs

The on-board DUTs are tri-layer structures composed of two

metallic electrodes divided by an oxide thin film fabricated at

our laboratories. The studies are focused on non stoichiometric

titanium oxide (TiO2−x) and manganite La1/3Ca2/3MnO3. On

this devices, the Resistive Switching works, taking advantage

of oxygen vacancies inside the oxide cell. When an electric

field is applied it produces the formation of mixed filamentary

structures formed by these vacancies and metal atoms from

the electrodes. This structure reduces the resistance of the

dielectric oxide cell working as a parallel resistance of lower

value. In some cases, depending on the applied field, the

filamentary structure could short circuit the electrodes and

leave the device in a very Low Resistance State (LRS).

The switching between different non-volatile resistance val-

ues or “states” is exhibited when this filamentary structure

is disarmed (or even fused) and formed again. This is ac-

complished by applying voltage or current pulses of opposite

polarity (bipolar Resistive Switching).

Measurement principle: The way we test degradation on

devices is performing IV curves and endurance tests. The first

allow us to study the dynamic response of the cell, precisely

how SET (write) and RESET (erase) process evolve from first

IV curve. The latter let us to understand how degradation

modifies the device’s performance as a memory unit working

in a static way.

The devices can be controlled imposing a voltage or in-

jecting current through it. In the first case, as can be seen

from Figure 4a, the device is in series with a shunt resistance

and the value of V2 is measured to infer the voltage drop

over the device. On the other hand, when current control is

preferred, the device is subjected to the circuit showed in

Figure 4b and V1 gives information of the voltage drop over

it. Either the case, the stimuli of the source will depend on

the kind of experiment to be performed and the voltage or

current value imposed by the source is set with the DAC

output of the microcontroller. Each mode is configured with

multiplexers and/or switches that are addressed with GPIO

ports. As sources only apply positive voltage (current) two

switches give the control of the polarity of the devices.

a) Voltage mode: the math to obtain the voltage drop

and the current through the device when the voltage source

is selected is shown in the following equations. The source

sweep (V +), parasitic resistances (R3 and R4) and shunt are

known and V2 is measured so Kirchhoff’s law returns:

Imem =
V2

Rshunt

(1)

Vmem = ∆V = V + − V2 − Imem(R3 +R4) (2)

(a) Voltage source.
Measuring point = V2.

(b) Current source.
Measuring point = V1.

Fig. 4: Simplified circuitry when device is being controlled by different
sources. Labels “A” and “B” indicate the connections which select device’s
polarity.

b) Current mode: when current control is selected, the

source sweep (I+) and parasitic resistances (R1 and R2) are

known and V1 is measured instead. In this case, Kirchhoff’s

law returns:

Imem = I+ (3)

Vmem = ∆V = V1 − Imem(R1 +R2) (4)

If polarity is inverted, either current or voltage mode,

current flowing through memory can be considered negative

taking into account the device Bottom and Top Electrodes. In

consequence, voltage drop will be negative too.

Parasitic resistances arise from on-resistance of multiplexers

and switches. Actually, LabOSat uses DG406 and ADG5413,

respectively. Both of them have been characterized on Earth

as a function of supply voltage at room temperature but, in

order to obtain more accurate data, measured temperature

and supply voltage can be used to extrapolate the tabulated

data (datasheets available from Analog Devices and Maxim,

respectevely). As a result, this will improve the estimation of

voltage drops and currents.

As said in Section I, the devices can be subjected to two

different kind of experiments: endurance test and IV test, static

and dynamic response test, respectively.

The Endurance Test concerns application of successive

pulses of opposite polarity in order to achieve a fixed number

of commutations. For example, if the device is in High

Resistance State (HRS) and one commutation is desired to

occur, the test will run applying SET pulses until the transition

to the LOW state takes place. In case of two commutations,

after reaching the LRS, RESET pulses will be applied until

high state is recovered.

The amplitude, duty cycle and period time can be configured

and if the writing pulse (either SET or RESET) is done in

voltage mode also the shunt resistance must be configured.

Between each writing pulse a reading pulse is applied to

measure if the state of the device has changed. Additionally,

the algorithm behind the test requires two preset levels (states

or resistance values) to define a window of operation. Is

desired that each pulse commutate the device between levels
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outside this window but, if is not the case, the number of

tries, i.e. the number of pulses of SET or RESET pulses, can

be augmented.

By the same token, the IV Test can be configured to

stimulate the sample with a current sweep or a voltage sweep.

The sweep is interpreted as a sequence of triangular stimuli,

cast by the number of points (steps) and incremental positive

and negative amplitude. As a result, the triangular sweep, starts

from zero up to the maximum positive amplitude, then to

maximum negative amplitude and back to zero. The maximum

amplitude is defined by the number of steps multiplied by the

incremental amplitude. Polarity of sweep can be set to start

negative or positive. Henceforth, a starting positive voltage

stimuli would be 0 → Vpos → 0 → -Vneg → 0.

The sweep can be configured to read the resistance state

between sweep steps. Also if voltage control is selected the

value of the shunt resistance must be set. When the current

sweep is selected the shunt parameter is ignored.

In addition, as this platform is designed to work under

aggressive environments, storage of measurements is limited

due to restriction in download bandwidth. Because of this, the

number of steps per record is another parameter to set when

IV test configuration comes into play. This parameter is related

with the number of steps to be applied because it determines

how many steps would be recorded.

Fig. 5: Example of a voltage controlled IV test. Positive stimuli is conformed
of 15 steps (8+7) and the negative of 13 steps (7+6). When second stimuli
starts the device is inverted for the purpose of seeing the stress as negative.
Recording points were chosen to illustrate the possibility of sampling (or not)
the response at maximum stimulus.

To give an example on Figure 5 a voltage sweep of 15 posi-

tive steps (the configured 8 ascending steps plus 7 descending

steps) and 13 negative steps (the configured 7 ascending steps

plus 6 descending steps) with different incremental amplitude.

When second sweep starts LabOSat swaps the polarity of the

device in order to apply a negative stimuli. The number of

steps per record was set to 2 in the positive excursion and 3

in the negative. As the number of positive steps is divisible

by 2, LabOSat will register the measurement made when

maximum positive pulse is applied. In contrast, as the number

of negative steps is not divisible by 3 the response for the

maximum negative value is not recorded. This example makes

clear that forcing sweeps and reported data can be configured

independently. This option gives LabOSat a great flexibility

when managing big amount of data (long sweeps). Further-

more, when working with devices which exhibit hysteresis this

possibility allows to report specific responses in order to save

storage space still revealing the device behaviour.

Coupled with this configuration LabOSat software allows to

select how many ADC readings are going to be done in each

measurement. Possible values are one, two or four readings.

After acquisition, the readings are averaged and reported as a

single value.

B. Transistors

The fabrication of these multi-finger transistors use non-

CMOS compatible materials and were fabricated within a

cleanroom facility.

Measurement principle: Experiments on transistors are con-

figurable to perform voltage sweeps on drain with fixed gate

voltage and the opposite, sweeps on gate with fixed voltage

over VxFET, Figure 6. Source voltage, VS, is set to 1V but

can be simply configured via hardware to any desired value.

Measurements are taken from VD node and converted to drain

current using the known value of RD and the applied VxFET:

ID =
VxFET − VD

RD

(5)

This let the user plot two distinctive curves of the transistor:

the output characteristic curve (ID vs. VDS) and the transfer

curve (ID vs. VGS).

Fig. 6: Configurable experiment over custom transistor.
Encapsulation

As devices are custom-made within cleanroom facilities an

encapsulation step is needed before integration to LabOSat.

First, fabricated samples are diced to small dies to fit in

a commercial SOIC-16 where they will be wire bonded.

Second, an epoxy over the bonded devices is placed to protect

them from physical damage. After the curing of epoxy the

encapsulated devices are submitted to vacuum test up to

10−6mbar and harmonic and random shaking test from 10Hz

to 1kHz with 6.8g (RMS) maximum amplitude.

Between every fabrication step, from deposition over sil-

icon wafer to epoxy protection on SOIC, an electric test is

performed to see if the device is still working as expected.

A picture of a device after the whole fabrication process is

shown in Figure 1 (inset).

C. Dosimeters

LabOSat-01 has two commercial pMOS transistors that

were characterized before integration to boards. These devices

work as dosimeters, in the sense that incident radiaton dose

can be infered from periodic measurements of the threshold

voltage. As Vth is affected by the Total Ionizing Dose (TID), its

shift can be used to estimate the dose absorbed by the board.

This parameter is measured indirectly by biasing the source

of the pMOS with a known current and voltage (IS and VS)

while the drain is grounded. Then, reading the gate voltage

allows to observe variations in VGS which will be traduced to

Vth variations [5], [6].
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IV. RESULTS

Linearity of the platform

One of the improvements of LabOSat-01 with respect to

MeMOSat-1 is the possibility of forcing current through the

ReRAM devices. Characterizing this block is critical to under-

stand how measurements are made. The linearity of the current

block was checked forcing current sweeps of half DAC range

to a 1kΩ resistor while sampling ADC inputs and the DAC

output with a Keithley SCS-4200. Also, LabOSat was asked

to report the results in order to compare both acquisitions.

The response of the current source and acquisition stages

was found to be linear in the range 0 - 2.5V. The data measured

by LabOSat is in ageement with the curves acquired with the

SCS-4200. The characterization of this block can be seen in

Figure 7. The linearity of the system is guaranteed along the

ADC input range. Additionally, this graph shows the capability

of LabOSat when recording data. If an ADC input is out of

range, the channel is saturated. Then, LabOSat discards the

measurements taken by that channel and changes to the next

not-saturated channel to continue to sample the signal without

saturation avoiding losing changes of the device response.

Fig. 7: System linearity when sourcing current. Measurement performed
over a 1 kΩ resistance while current source is being controlled by DAC
output. Multiple ADC inputs were acquired: attenuated, buffered (follower)
and amplified. Shaded area indicates out of range ADC channels, thus not
sensed.

This measurements allowed to find DAC offset voltage,

DAC gain error and the ADC gain error for the microcon-

troller. These values were found to be lower than the maximum

reported by the manufacturer and are being used for software

correction in data processing.

Working with DUTs

As shown at the inset of Figure 8 the memory cell exhibits

the typical behaviour of a Resistive Switching device. The

non-smooth electrical hysteresis indicates that commutation is

achieved [7], [8].

During the SET process, as the device is being controlled by

current, the transition from HRS to LRS is power regulated

meaning that P = I2R will be diminished if the remnant

resistance gets lower.

The 12-bit DAC of the microcontroller and the ability of

LabOSat-01 to precisely control current and voltage over the

same device allow us to observe the dynamic behaviour of a

typical commutation. Within set process 349 pulses are applied

and 447 for reset process. The number of steps per record for

set process is set to 5 and 7 for reset, this gives a record of 63

data points for set and 69 for reset. With this in mind the curve

acquired with the platform has 132 points. This number was

chosen to equitably distribute data storage along 18 devices,

13 ReRAM devices and 5 xFETs.

Fig. 8: Dynamical response obtained with different instruments over the same
TiO2−x-based ReRAM device. Inset: IV curves of the device after two
consecutive Standard Tests.

Comparative Analysis

To illustrate the performance of LabOSat-01 as a measure-

ment and characterization instrument, same I-V curves were

performed on a Keithley SCS-4200 over the same device.

These experiments were performed using KITE software with

two routines to perform a current controlled SET sweep fol-

lowed by a voltage controlled RESET sweep. Two SMUs were

use to stress the sample. The programmed stimuli involved

142 steps for set and 302 for reset. The software allowed us

to record the responses in all steps of the sweeps. Comparison

can be seen in Figure 8.

Same behaviour is observed in dynamic response with

either instrument. The shift between curves raises from fact

that when devices are coupled into LabOSat-01 for testing,

parameters of the IV test must be tuned to obtain the desired

response as said in Section III-A. In contrast, measurements

done with SMUs can be considered to be performed without

any loads.

Experiments over transistors are shown in Figure 9 and 10.

The plots concern several sweeps of VxFET for different fixed

gate voltages and sweeps on gate for different fixed VxFET

voltages. In the modulation curves, Figure 9, besides LabOSat

forces the sweeps on VxFET with same voltage values, VDS

are not repeated between curves. As described in Section III,

VxFET is imposed and VD is directly measured so, actually,

VDS is deduced from measured data as VD - VS. This effect

is consequence of the presence of RD which allows LabOSat

to calculate current through drain in a simple and effective
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way. In more sophisticated instruments, as the Keithley SCS-

4200 used in this work, there is no effect due to loads because

the measurement principle is different from the one employed

by the platform. However, this effect does not disturb the

observation of the transistor behaviour.

Fig. 9: xFET drain current vs. drain-to-source voltage measured with LabOSat-
01 and Keithley SCS-4200 for several values of VGS indicated next to solid
curves. The line depict the effect of the load over the drain for same VxFET.

Transfer curves of transistors, Figure 10, needs to be anal-

ized taking into account that RD keeps VxFET 6= VD. When

VGS ∼ 0, VxFET ∼ VD but increasing gate polarization leads

to a bigger current flow through drain and so VxFET > VD for

VGS > 0. This difference depends on the value of the load

over the drain. At first sight, a small value seems to be the

correct choice but the ADC’s resolution sets a minimum value

in order to clearly resolve drain currents. On the other hand,

a large value would give a good dynamic range to work with

drain currents but would produce high voltage drops. In this

case, LabOSat, was designed to work with a medium load

(500Ω) to obtain ratios VD/VxFET > 0.85 (15% variation from

VxFET). The shaded area in the plot indicates the points that

differ in more than 10%, out of this area curves acquired with

LabOSat and SCS-4200 overlap within the error bars.

V. CONCLUSIONS

First measurements with LabOSat-01 returned excellent

results and exhibited to be in great agreement with the ones

performed with more sophisticated and expensive equipment.

They also showed that LabOSat is capable of forcing negative

and positive currents (or voltage) on two-terminal devices.

The ability to perform dynamic and static experiments and the

flexibility it has when recording data make LabOSat a great

instrument to study ReRAM devices.

In summary, LabOSat is a portable, configurable and low

cost platform to perform voltage and current sweeps plus

endurance test over electronic devices in harsh environment.
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Abstract—The development of an attitude and altitude control
system of an unmanned aerial vehicle for visual inspection of
aerial electrical lines is presented. The system was implemented
using quaternions algebra and the altimeter equation for the
orientation estimation with the purpose of controlling the quad-
copter. The proposed system was simulated in Matlab using a
Newton-Euler model and compared with the performance on a
real prototype operation, obtaining similar results in both cases.
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I. INTRODUCTION

The electrical line inspections play a very important role in

maintaining the quality of the energy delivered because of its

relation with the predictive and preventive maintenance. It is

clear that electrical companies should implement new methods

and techniques that allow the routinely realization of such

inspections avoiding as much as possible urgent maintenance

tasks that require the interruption of the energy provision. The

responsible institutions for the transmission and distribution

of electrical energy use different inspection methods for con-

trolling the state of the electrical lines and its accessories.

The visual inspection consist of a meticulous task where

physical damages are searched or possible difficulties that may

reduce the efficiency of the electrical system. Diverse problems

may be found when inspecting the lines, for example, at the

insulating chains leakage lines may appear, insulating loss,

breakage or cracking of the bells as well as loss of galvanized,

rust, appearance of flakes or bubbles at the ironwork; even it

is possible to see other inconveniences as damage by organic

material, weather damage, the sliding of the shock absorber

or invasion of the vegetation [1]. Visual inspection is an

activity that accompanies the predictive maintenance with the

objective of predicting failures and take preventive and/or

corrective actions, keeping the conditions safe and preventing

accidents [2]. There are four visual inspection techniques:

foot patrol, climbing robots, manned aerial vehicles and un-

manned aerial vehicles [3] [4]. The foot patrol is the most

economical type and with the least risk because the lines

are simply inspected from the ground with the support of

binoculars. However the procedure is slow and the diagnosis

is less precise. The manned aerial vehicles, specifically the

helicopters, allow advantages as the speed and accessibility

to irregular terrains, however the high costs and the danger

exposures by the approximation of the operators with live

lines do not allow their use commonly [3]. A more modern

style is the use of climbing robots which offer a more precise

inspection due to its proximity of the targets, but its complexity

in the development for overcome obstacles, the effects of

electromagnetic field over its sensors and electronics parts do

not make them an economical solution. Currently the use of

robotics platforms for observation is a growing interest field

for many companies and institutions. A visual inspection using

UAV (Unmanned Aerial Vehicle) are faster, more versatile

and more economical [3] [4] [5]. These vehicles offer the

capacity of stationary flight for a better image capture from

different points around the electrical lines without putting the

life of operators in risk. The UAVs or drones are vehicles

that do not need a crew on them to control or conclude a

specific task. It might be defined as robotic systems that land

from a ground base and are controlled remotely by pilots, or

autonomously following a mission previously programmed; or

even both instances can be combined. The characteristics and

costs vary according to the application, which it can be for

environmental monitoring, search task, facilities supervision,

surveillance, etc. The UAV may be catalogued according to

different aspects, for example the flying capacity (autonomy),

application or type of aircraft [6]. In the present work the

UAV known as quadrotor is employed. The first step of this

work is to study the mathematical modeling of the UAV which

considers the aerodynamical effects of the vehicle. Currently,

there are different variety of models [7] [8] [9] [10]. Defining

an appropriate model plays an important role at the time of

designing the control system and performing the simulation

studies. The control assumes the availability of the variables

of state, i.e., the estimation of the vehicle orientation. There
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are different control algorithms due to the fact that the model

of the quadrotor is multivariable and not lineal. Among the

available bibliography of the topic, Schermuk [7] analyze the

difference between the representations with Euler angles and

quaternions, expose the advantages of the trajectory following

around the main axis (eigenaxis) and finishes with a compar-

ison between a PID (Proportional Integral Derivative) control

and the LQR (Linear Quadratic Regulator). Bresciani [8]

introduces with details a model based on the laws of Newton

with the representation in Euler angles and its relationship

with the DCM (Direction Cosine Matrix). On the other hand

Fresk [9] proposed a control scheme based on quaternions,

where an attitude model and a square non-lineal proportional

control algorithm were implemented, both in the quaternions

space without transformations and calculations with the Euler

angles. In the present work the simulation, building and

implementation of an UAV is done, applying a CAS (Control

Augmented System) + SAS (Stability Augmented System)

with quaternions algebra that later is verified by using it for a

visual inspection of an aerial electrical line.

The rest of the paper is organized as follows, in Section

II the definition of quaternions is presented and used to

define a Newton-Euler model to describe the movement of

the quadcopter. Section III presents the design of the control

system (altituted and attitude) using the concepts of Section

II. In Section IV, the quadcopter prototype built is described;

Section V presents the results of simulating the control system

in Matlab and Section VI the measurements of the perfor-

mance of the control system during operation of the prototype.

Finally, Section VI presents the conclusion and future work to

be done.

II. THEORETICAL FRAMEWORK

The theoretical framework is divided into two parts: the

dynamic model that is related to the physical behavior of the

aircraft and the representation of the attitude of it in space,

which was made with Euler angles because they are much

more intuitive for interpreting the equations in the simulation;

and quaternions which is another way to represent the attitude

of the aircraft that was used to implement control over it to

avoid the problem of gimbal lock produced by the Euler angles

[7].

A. Quaternions

The quaternions is a four dimensional hypercomplex num-

ber that can be used to represent an orientation of a body

frame in 3D space. A quaternion Q have the following form

q0 + q1i + q2j + q3k, where q0, q1, q2, q3 are real numbers

called components of the quaternion and i, j, k are imaginary

units.

For rotation the quaternion has the following form [11]

Q = (cos
α

2
, sin

α

2
r̂) (1)

Where: q0 = cos(α2 ), q1 = sin(α2 ) rx, q2 = sin(α2 ) ry ,

q3 = sin(α2 ) rz

The angle α represents the magnitude to be rotated around

the main axis r, defined as eigenaxis in Euler’s rotation

theorem. Just as the property of orthogonal matrices rotation

[6], quaternion rotation obey the following [7]:

QAC = QAB .Q
B
C (2)

(QAB)
∗ = (QAB)

−1 = QBA (3)

Were (QAB)
∗ is the conjugated quaternion of QAB

Also being r̂ ∈ R
3x1 the rotation axis of the quaternion Q

and α the rotation angle, the following is allowed [7]:

lnQ =
r̂α

2
(4)

Considering the quaternion rotation it can be defined a

rotation matrix with the components of the quaternion [12]:




q20 + q21 − q22 − q23 2(q1q2 − q3q0) 2(q0q2 + q1q3)
2(q1q2 + q3q0) q20 − q21 + q22 − q23 2(q2q3 + q1q0)
2(q1q3 − q2q0) 2(q0q1 − q2q3) q20 − q21 − q22 + q23





By combining the property of quaternions with the sequence

of rotation 3,2,1 established in Euler angles it can be stated

that

QEuler = QψQθQφ =









cos ψ2
0
0

sin ψ
2

















cos θ2
0

sin θ
2

0

















cos φ2
sin φ

2
0
0









(5)

Equation (6) presents the conversion of quaternion to Euler

angles [12]:





φ

θ

ψ



 =









arctan
(

2(q0q1+q3q2)
1−2(q2

1
+q2

2
)

)

arcsin (2(q0q2 + q3q1))

arctan
(

2(q0q3+q1q2)
1−2(q2

2
+q2

3
)

)









(6)

B. Dynamic Model

According to Bresciani [8] there are four types of basic

movements for a quadcopter: Sustentation (U1), Roll (U2),

Pitch (U3) and Yaw (U4). These movements are represented

in equations as the forces that drive themselves to implement

these actions. Considering these four movements, the system

dynamics and the direction cosine matrix we have a model

called Newton - Euler and it is described by these equations:

ẍ =
U1

m
(sin(ψ) sin(φ) + cos(ψ) sin(θ) cos(θ))

ÿ =
U1

m
(− cos(ψ) sin(φ) + sin(ψ) sin(θ) cos(θ))

z̈ =
U1

m
cos(θ) cos(φ)− g

ṗ =
IY Y − IZZ

IXX
qr −

ITA

IXX
qΩt +

U2

IXX

q̇ =
IZZ − IXX

IY Y
pr −

ITA

IY Y
pΩt +

U3

IXX

ṙ =
IXX − IY Y

IZZ
pq +

U4

IZZ

(7)

As x, y, z represent the position in space, ω = [p, q, r]
the angular velocity according to the vehicle body frame,
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IXX , IY Y , IZZ , ITA inertial moments of the vehicle and

U1, U2, U3, U4 are the forces and moments described above.

Then these forces are related to the rotation speed of the

propellers by the following equations.

U1 = b(Ω2
1 +Ω2

2 +Ω2
3 +Ω2

4)

U2 = bl(−Ω2
1 − Ω2

2 +Ω2
3 +Ω2

4)

U3 = bl(−Ω2
1 +Ω2

2 +Ω2
3 − Ω2

4)

U4 = d(−Ω2
1 +Ω2

2 − Ω2
3 +Ω2

4)

Ωt = −Ω1 +Ω2 − Ω3 +Ω4

(8)

Where Ωn(n = 1, 2, 3, 4) represents the rotation of each

propeller and its unit is rad/sec, Ωt is the sum of all speed

rotations, b is the thrust factor, d is the drag factor and l is

the distance between the center of the motor to the center of

quadcopter body.

III. DESIGN OF THE CONTROL SYSTEM

Generally aircraft control systems can be classified into a

SAS, CAS and an autopilot system. The stability augmentation

system (SAS) aims to stabilize the vehicle controlling the

dynamics (angular speed) while the control augmentation

system (CAS) aims to maintain a desired orientation [7].

In order to make a simple control design and linearly

independent on each degree of freedom the Newton - Euler

model (7) is simplified as follows.

ẍ =
U1

m
(sin(ψ) sin(φ) + cos(ψ) sin(θ) cos(θ))

ÿ =
U1

m
(− cos(ψ) sin(φ) + sin(ψ) sin(θ) cos(θ))

z̈ =
U1

m
cos(θ) cos(φ)− g

ṗ =
U2

IXX

q̇ =
U3

IXX

ṙ =
U4

IZZ

(9)

And to use the four basic movements as input signals an

open loop control is applied with the inverse of (8).

Ω2
1 =

U1

4b
−
U2

4bl
−
U3

4bl
−
U4

4d

Ω2
2 =

U1

4b
−
U2

4bl
+
U3

4bl
+
U4

4d

Ω2
3 =

U1

4b
+
U2

4bl
+
U3

4bl
−
U4

4d

Ω2
4 =

U1

4b
+
U2

4bl
−
U3

4bl
+
U4

4d

(10)

A. Attitude Control

For attitude control we proceeded to choose a CAS + SAS

dual control (Fig. 1) because of its wide use in the field of

UAVs [10]. For CAS a proportional approach was used and

for SAS a PIDT1 (Proportional, Integral, Derivative with a

low-pass filter) [13].

The error is obtained through the rotation needed to go from

current quaternion (Qa) to desired quaternion (Qdes), such

Fig. 1. Block diagram of CAS+SAS control

rotation obtained through (3) is represented by the quaternion

error as follows:

Qerror = Q∗
a.Qdes (11)

Where Q∗
a is the conjugated of Qa.

Then from (4):

2 lnQerror = 2 ln(Q∗
a.Qdes) = r̂α (12)

As the components of r̂α vector represents the error in each

main axis [7] [14] [9].

Ex = rxα (13)

Ey = ryα (14)

From this the error for X and Y axis is obtained, however

there is a problem with the Z axis because the DMP (Digital

Motion Processor), which is in charge of fusing the data of

the IMU (Inertial Motion Unit, MPU6050), does not fuse the

data taken from the magnetometer. A solution to this is given

by using ψfalse, calculated with the formula obtained in (6)

with Qa.

ψfalse = arctan

(

2(q0q3 + q1q2)

1− 2(q22 + q23)

)

(15)

The desired quaternion (Qdes) is obtained using (5) with

ψfalse and desired rotation angles in the X and Y axis.

With this it only remains to consider the error of the Z axis

and for that a complementary filter is applied on the orientation

obtained through magnetometer (17) [15] and gyroscope (rdt)

as showed on (16). After that the error is calculated with ψdes
(18).

ψreal = ρ(ψreal + rdt) + ψmag(1− ρ) (16)

ψmag = arctan

(

mx

my

)

(17)

Ez = ψdes − ψreal (18)

Where mx and my are the values obtained with the mag-

netometer of the magnetic field of the earth according to the

X and Y axis and have to be calculated correctly and rotated

to the inertial frame with the current quaternion. And ρ>0 is

a constant that indicates the contribution of the gyroscope to

ψreal and it has a maximum value of 1.
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B. Altitude Control

The height control is highly related to the “hovering”, i.e.

keeping the altitude in a certain height and holding the attitude

without motion in a horizontal position relative to the ground

[10]. As in attitude control, to perform the control action we

proceeded to work with the same strategy of dual control,

a CAS to control the position of the quadcopter according

to a reference value and SAS to vary the quadcopter thrust

according to a desired vertical speed [16] as seen in Fig. 2.

Fig. 2. Block diagram of altitude control

The estimation of values is necessary, the current height

is obtained through barometer with the altimeter equation

(21) [17], and then filtered with a low pass filter that is

related to the speed vactual ((22) and (6)). To obtain the speed

first accelerometer data must be passed to the inertial frame,

subtracting the values of gravity so as to be able to measure

the acceleration without the influence of gravity as it shows

in (20). Then these data is filtered with LPF (Low Pass Filter)

of 50 Hz and proceeds to integration.

U1 = mg + U ′
1 (19)

aactual,Si = (aactual − gz)v3→Si (20)

z =
T0

Γ



1−

(

P

P0

)

Rspe.Γ

g



 (21)

KP1 = p(1− eC1|vactual|) (22)

hactualn = (z − z0)(KP1 + 1− p)

+ (hactualn−1
)(p−KP1)

(23)

Where p is a value ranging from 0 to 1 that regulates the

dependency of the current reading in relation to a previous

one, C1 is a negative value that regulate the dependency of

the filter to the vertical speed of the aircraft and v3 → Si

represents the rotation from the body frame to inertial frame

[6]. This filter is made to counteract the variation produced by

the barometer when the aircraft hovers.

For the altimeter equation we have that Rspec is the specific

constant of gas, P0 is the pressure at sea level, P is the actual

pressure, T0 is the temperature at sea level and Γ is the slop

for the uniform decrease of temperature relative to height. The

reference height for quadcopter is z0.

C. General Control Scheme

Once the sectors of the control system were developed

they are connected to each other according to the Fig. 3.

In the figure can be seen that is possible to choose a type

of control either manually or automatically. If the manual

control is selected, the user manipulates the force values and

the desired tilt angles; on the other hand, the automatic control

maintains the height or position by GPS and barometer. After

this, it is passed to the SAS + CAS control and the four basic

movements (U1, U2, U3, U4) are obtained and used in (10) to

get the desired rotation. Getting with it the PWM needed to

regulate the ESC to finally feedback all the control blocks

through the sensors.

Fig. 3. General Control Scheme

IV. HARDWARE DESCRIPTION

The prototype is a quadcopter Fig. 4, the motors used are

BLDC (Brushless Direct Current) type of 935 KV, which

are three-phase motors that feed on a DC continuous source,

the advantage of these engines is that they are lighter, more

dynamic and more response efficient; the propellers are 10x4.5

inches. An ESC (Electonic Speed Control) 30 A was used for

controlling the BLDC motors., this driver is also responsible

for supplying power to the electronic components of UAVs.

The main power source is a rechargeable LiPo (Lithium

Polymer) 3S 5000 mAh 25C, which is a lightweight battery

with a reduced volume. An eight channel radio control with

PPM (Pulse Position Modulation) was used to operate the

quadcopter, and covers distances up to 1.5 km and operates

at a frequency of 2.4 GHz. The main element of the vehicle

is the flight controller Crius AIOP (All in One Pro) v2.1, this

electronic board has built-in various sensors like a gyroscope

/ accelerometer MPU6050 6-axis high precision altimeter

MS5611-01BA01 and HMC5883L 3-axis magnetometer. The

integrated microcontroller ATMEGA 2560 is an 8-bit, 16 MHz

and communicates with external devices via the pins and serial

ports. Two wireless modules (2.4 GHz) were used to transmit

data from the flight controller to the ground station. In order

to display in a computer the quadcopter objective a transmitter

audio and video receptor of 500mW power operating at a

frequency of 5.8 GHz was chosen and brings a CCD cam-

era(Charge Coupled Device) with it. The power supply of the

transmitter and receiver is a 1300 mAh LiPo battery for each.

It also had incorporated a GPS module (Global Positioning

System) to know the quadcopter’s position. The total budget

of this prototype was about 700 U$ FCA (Free Carrier).

V. SIMULATION AND IMPLEMENTATION OF CONTROL

Simulations were performed using Matlab(Version R2013b)

with the previously described model [8] [18], the adopted

parameters were as follows:
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Fig. 4. Prototype

TABLE I
PARAMETERS OF THE PHYSICAL MODEL

Name Symbol Value

Quadcopter’s Mass M 1.48 kg

Thrust coefficient b 12.76× 10
−6 N.s2/rad2

Drag coefficient d 1.07× 10
−6 N.m.s2/rad2

Quadcopter’s radius l 0.23m

Inertia relative to the X axis IXX 9.86× 10
−3 kg.m2

Inertia relative to the Y axis IY Y 9.86× 10
−3 kg.m2

Inertia relative to the Z axis IZZ 16.64× 10
−3 kg.m2

Total inertia of the actuators ITA 74.12× 10
−6 kg.m2

TABLE II
CONTROL PARAMETERS

CAS

Attitude

Type Symbol Value

Proportional

KPφ 3

KPθ 3

KPψ 2

Altitude Proportional KPh 1

SAS

Attitude

Type Symbol Value

Proportional

KPφ 0.75

KPθ 0.75

KPψ 0.75

Integral

KIφ 0.35

KIθ 0.35

KIψ 0.21

Derivative

KDφ 0.01

KDθ 0.01

KDψ 0.01

Altitude

Proportional KPh 2.9

Integral KIh 0.3

Derivative KDh 0.0015

Two simulations were executed, one assuming that the

sensors are ideal and another with disturbance. In attitude

control, a reference value of 20◦ was choose and when sensors

are ideal results show an almost nonexistent peak and a rise

time of about 0.89 seconds as shows in Fig. 5. On the other

hand when input a Gaussian noise of 5% of the value taken

by the sensors the results shows a standard deviation of 0.43

degrees in the roll, 0.49 degrees on yaw and 0.54 degrees in

the pitch, the values of overshoot and time rise are held as in

Fig. 6.
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Fig. 5. Step response of the Yaw, Pitch and Roll angles without noise
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Fig. 6. Step response of the Yaw, Pitch and Roll angles with noise

At the height control reference value of 2 meters was used,

for a simulation without disturbing the rise time is 2.5 seconds

and with an overshoot less than 10% as it can be seen in Fig.

7. The simulation with Gaussian noise of 10% of the real value

produced a standard deviation of 0.022 meters showing in Fig.

8.

VI. EXPERIMENTAL RESULTS

The Table III shows the contrast of standard deviations rela-

tive to a reference value between flight simulations performed

previously and real stationary flights with the prototype.

The values of both, roll and pitch, are similar to the

simulation results and the value of yaw differs mainly because

of electromagnetic disturbance that motors produce in the

magnetometer. As for height, pressure variations produced a

standard deviation of 0.17 meters in hovering. It is necessary

to note that rates estimated with the accelerometer increases

the amount of error in the controller.

After contrast, the inspection of a medium voltage trans-

former in an overhead power line was carried out (Fig. 9).

Quadcopter position was about 7 meters above ground and

about 5 meters from the transformer and no undesirable effects
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Fig. 9. Visual inspection with the prototype seen from the ground

TABLE III
CONTRAST TABLE

Simulated Test Real Test

Roll (Degrees) 0.43 0.45

Pitch (Degrees) 0.54 0.41

Yaw (Degrees) 0.49 1.59

Height (meters) 0.02 0.17

were detected due to electromagnetic fields. The images were

captured with the camera described before in section IV and
transmitted from quadcopter to a computer on the ground.

VII. CONCLUSION

This paper presented a CAS + SAS (P + PIDT1) control

system with the use of quaternion for UAV. The simulation

of this system showed satisfactory results when comparing

with the work of Bresciani, Kharsansky and Schermuk [8]

[10] [7]. Finally, the prototype was used to perform the

visual inspection of a medium voltage transformer in a power

distribution line.

As future work, the following topics are suggested:

• Using extended Kalman filter with a more powerful

microcontroller and to make a better estimate of the

velocities and positions

• Implementing a tracking system for automated inspection

• Performing the contrast with other types of attitude and

altitude control for UAVs

• When conducting inspections on transmission towers take

into account the electromagnetic effect produced by high

voltages and properly protect electronics of the UAV

• Studying and implementing the use of a thermal camera

to identify hot spots
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Abstract—Deterministic communication
is currently a fundamental requirement for
many real-time systems, such as drive-by-
wire and autonomous driving solutions;
however, in the last few years there has
been a sustained increase in the number of
other type of on-board connected devices
such as actuators, rear vision cameras
and multimedia services using different
networks on the same vehicle, thus adding
weight and complexity. The most efficient
solution to this problem is to build a single
in-vehicle network to support the delay
and bandwidth constraints generated by
each type of device. The main goal of
this paper is to describe and analyse the
performance of a deterministic network
management module created to reduce
jitter and packet loss, given variable traffic
conditions. The most relevant parameters
are obtained by simulation work, which
permits to establish the actions and policies
to execute the prototype modules for this
kind of networks.

I. Introduction

Current in-vehicle networks must comply
with very strict constraints for applications
such as breaking and steering; the most rel-
evant of them being limited delay, extremely
low packet loss and very narrow jitter margin.
If any of these constraints is not met, the main
consequences include economic losses, system
failure and, in the worst case life loss.

Unlike standard general-purpose data net-
works such as Ethernet and 802.11 which are
based on distributed multiple access schemes,

in-vehicle networks constraints require a time-
division multiple access mechanism to guar-
antee the required bandwidth and a pre-
dictable delay. As a consequence, designs are
application-dependant as it is established by
Gupta et al. [1]. However, recent research work
has defined a number of strategies to im-
plement distributed traffic control to provide
a general network design and configuration
framework for deterministic networks. The pro-
posed architecture is composed by a high speed
TDMA (Time Division Multiple Access) net-
work where controllers, sensors and actuators
are connected. The different devices are then
connected through logical subnetworks.

Industrial and automotive type networks de-
fine at least two type of traffic classes: regular
and critical traffic. The first one responds to
predictable periodic packets, mostly generated
by instrumentation, while the second belongs
to the events such as breaking and steering,
which is aperiodic and unpredictable. In terms
of priority, the latter has the highest one, it
cannot wait for an available slot to be trans-
mitted, but the current slot must be used in
its’ place to guarantee timely delivery of critical
traffic [2].

Although several models have been proposed
for in-vehicle networks, and current standards
to enable IPv6 on deterministic networks are
under development, there is a lack of simula-
tion use cases for in-vehicle networks based on
real requirements to provide a reference con-
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struction to evaluate communications protocol
performance and limitations. Furthermore, the
inception of a Traffic Management Module for
in-vehicle networks reduces the delay and jitter
values for critical traffic, compared against the
reference case.

Our contribution in this paper is twofold.
First, we develop a simulation use case for
OMNET++ taking into consideration the most
relevant network elements present in an in-
vehicle network with their inherent charac-
teristics, and second, we present the design,
implementation and validation of a Manage-
ment Module to improve the results, taking
into account all the previously characterized
requirements of the convergent traffic. To the
best of our knowledge, this is first time a refer-
ence simulation environment for a mainstream
simulator and a traffic management module are
designed, implemented and validated for in-
vehicle realtime networks.

The rest of the paper is distributed as fol-
lows: Section II Describes the State of the
Art on the area; Section III describes the pro-
posed management module; Section IV shows
the simulation scenario and configuration; Sec-
tion V describes the simulation results and
finally Section VI concludes this work.

II. State of the Art

A. In-vehicle networks

In the beginning, the number of electrical
and electronic devices available in vehicles such
as cars, trucks and buses was small. The bat-
tery, the starting motor, the lights, a few fuses
and switches were the main components. The
continuous evolution of hardware and software
has enabled auto makers to include new func-
tionalities to improve security and driving ex-
perience, like information and entertainment
services, traffic information and navigation
systems, security and stability controls and
advanced driver assistance systems (ADAS).
Nowadays, most of the functionalities available
in vehicles are controlled by the Electronic
Control Units (ECU), which can exchange up
to 6000 different signals, such as vehicle speed
throughout in-vehicle networks [3]. Because of
this, a number of specific bus technologies were

Fig. 1. Typical in-vehicle network. [4].

developed with the aim to satisfy the different
reliability needs, response time, flexibility and
application bandwidth. Figure 1 shows an ex-
ample of the different types of devices present
in this type of networks, and the interconnec-
tion technologies.

B. Current network technologies

• Controller Area Network (CAN)
CAN [5] uses a bus to send and receive
control messages in realtime at a bit rate
of up to 1Mbps. The message length is
variable between 1 and 8 bytes and uses
its’ own ID, which is unique within the
bus. CAN supports full realtime commu-
nication. When a collision happens on the
bus, the highest priority message takes
control of the bus immediately.

• Local Interconnect Network (LIN)
LIN [6] communications bus uses broad-
cast transmission in master-slave mode. It
was developed by the LIN consortium as a
less expensive network alternative to CAN
for non-critical in-vehicle devices.

• FlexRay FlexRay [5] was developed to
solve CAN’s limited bandwidth. It en-
ables data rates up to 10Mbps and it is
compatible with event or time triggered
communications. Multiple access is imple-
mented using TDMA for realtime mes-
sages, while non-critical messages become
time-triggered. This strategy improves bus
usage efficiency while complying with re-
altime constraints.
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• Media Oriented System Transport
(MOST) MOST is a communications
standard for multimedia and entertain-
ment services for the automotive industry.
This technology was designed to provide
efficient delivery of audio, video, data and
control information between the on-board
devices. It provides maximum bandwidth
of 150Mbps using fiber or copper with a
higher cost than CAN and FlexRay.

C. In-vehicle device domains

The different kinds of devices available in
vehicles are classified into ”domains” [7].

• Powertrain Is the group of components
which provide energy to the vehicle. This
includes the engine, axes, wheels, as com-
ponents, plus several sensor devices to
measure flow, pressure, speed, volume and
stability. The controller must define the
parameter sampling frequency, which in
this case is very high, given the critical
function they are in charge of.

• Chassis The powertrain plus the driv-
ing components such as breaks, steering
system and suspension are attached to a
structure called chassis. It has the same
time restrictions as the powertrain: maxi-
mum controlled latency.

• Bodywork and Comfort This domain
includes elements such as heating and air
conditioning, window and seat control,
lights and door locks. These sensors and
controllers need a small amount of band-
width and they can withstand high latency
in the order of miliseconds.

• Driver assistance This domain includes
those systems designed to help the driver
in the driving task, plus complimentary
systems to increase security of the passen-
gers and pedestrians. Examples of these
components are GPS, cruise control and
automatic parking.

The interconnection of all the in-vehicle de-
vices is becoming more complex and expensive
because of the number of different networks
implemented for different needs and follow-
ing different standards. With the convergence
to a single standard, all the communications

TABLE I. Delay, bandwidth and reliability
requirements for in-vehicle domains [3] [7]

Domain
End-to-

end
delay

BandwidthReliability

Powertrain <10 µs Low High
Chassis <10 µs Low High

Bodywork
and

Comfort
<10 ms Low Low

Driver
assis-
tance

<250 µs
o <1 ms
Depend-
ing on

the
system

20 -
100

Mbps
per

camera

Medium

between components can coexist in the same
network, which would enable a scalable, reli-
able and unified network, thus reducing weight,
cost, and, as a consequence, reducing fuel con-
sumption.

D. Deterministic Ethernet

The current technology that best fits the
former constraints is Ethernet, because of the
associated low cost, high bandwidth and the
wide range of protocols already available. Al-
though specific technologies such as CAN and
MOST originally covered their original require-
ments, their current bandwidth and delay limi-
tations are bringing them to their design limits.
However, standard Ethernet was not designed
for realtime nor deterministic data transport,
which are fundamental for in-vehicle commu-
nications; this required a specific standard to
enhance the original Ethernet specification, to
guarantee low latency and limited jitter, result-
ing in the IEEE 802.1 AVB and TTEthernet
(Time-Triggered Ethernet) proposals. Due to
space constraints, in this work, we concentrate
on the TTEthernet specification.

TTEthernet implements traffic configura-
tion and medium access policies for real-
time communications over switched Ethernet
networks. TTEthernet has a similar realtime
medium access strategy as IEEE 802.1Qbv
and PROFINET. These standards are based
on the use of a preconfigured schedule with
dedicated timeslots for realtime transmission,
thus adding determinism and predictable de-
lays. Even though FlexRay was designed for
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realtime traffic, TTEthernet integrates real-
time with best-effort traffic. A comprehensive
comparison between FlexRay and TTEthernet
can be found on the works of Steinbach et al. [8]
and Zeng et al.[9]. Furthermore, TTEthernet
can be seen as an extension of realtime pro-
tocols such as RT Ethernet, as proposed by
MÃĳller et al. [11].

III. Management Module

According to Finn et al. [13], the applications
where critical traffic is critical, must include
methods to control flow transmission of those
packets in a hop-by-hop basis and allocate
resources on each of the interconnection devices
to have absolute guarantees for minimal and
maximal latency. In this section we specify the
parameters to design the prototype of proposed
management module. We have surveyed the
available literature in detail for in-vehicle net-
work management modules, and we found that
the closest approach was originated in 1994
with the CAN scheduler, a matter which was
later studied and revised by Davis et al. [?].

The main disadvantage of a preconfigured
scheduler, such as the one proposed on TTEth-
ernet, is the inability to respond to packet
reception variability. The main consequence is
the artificial delay generated when a packet ar-
rives to the transmitter and the corresponding
slot has already passed. This means that the
packet must wait until the next allocated slot is
available. One possible solution is to establish
longer timeslots to increase the chance of a
packet of arriving to the corresponding slot,
however, this technique would increase latency.
In the quest for a new strategy our proposal
provides resource allocation flexibility so as to
add support for asynchronous traffic.

Our prototype is composed of two main
elements. The first one is a modification of
the TTEthernet switches in order to add new
functionalities to the traffic traversing them
and the corresponding slot allocation. The sec-
ond is a general manager connected to all the
switches which enables the distribution of new
configuration or slot allocation messages.

Figure 2 shows the conceptual model of the
system, which presents a simplified schema

Fig. 2. System model: Management module
interaction map

of the interaction between the two aforemen-
tioned elements and the rest of the network.
The appControl module is part of the Switch
module.

Our proposed mechanism increases the
switch functionalities as follows: The origi-
nal switch function only redirects packets to
the correct port; the modified version enables
the switch to dynamically adapt each flow
by changing the receiver window size, dura-
tion and transmission window to minimize the
packet delay due to queueing time to reduce
end-to-end latency. In order to do this, the
management module has access to the MAC
layer parameters, while the PHY layer is fixed
to 10 Gbps Ethernet. We fix the window du-
ration in 12 clock ticks, equivalent to 1.2 µs.
Using the same technique, once the type of flow
is identified, slot selection is modified in order
to comply with the requested maximum delay.
The reserved slot duration is 1.2 µs. Finally, the
“observed time” field is added to the message
so as to enable the global manager to calculate
the slot time on the other switches the message
will traverse.

Finally, the global manager interconnects all
the switches on the network to receive the pack-
ets sent by the appControl module, identify
the source switch and then distribute the in-
formation among the other switches. Since the
traffic flow is not symmetric on the network,
the “observed time” must be compensated.
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Fig. 3. Network topology.

IV. Simulation

Figure 3 shows the network topology we
selected as the simulation scenario. We have
included representative elements for each of
the domains described on Section II-C. We
have used OMNET++ Simulator with the
CoRE4INET extension, which implements the
TTEthernet specification.

Taking into account the proposed scenario,
we have decided to include 3 types of messages
to better represent this type of networks: time-
triggered (TT), best effort (BE) and audio
video bridging (AVB).

We have used TT traffic class to characterize
all the critical and signal traffic inside the vehi-
cle as realtime traffic. For on-board WiFi, the
class type is BE, giving low priority to traffic
such as navigation and instant messaging. Mul-
timedia traffic uses B class and front and rear
cameras use class A, both defined on the IEEE
802.1 AVB standard. We have used a 10 Gbps
bandwidth (10GBASE-T) which is currently
proposed to fulfill in-vehicle communication
needs. The use of a 10 Gbps network is based
on the fact that, given the same tests on 1 Gbps
networks, none of the delay requirements could
be fulfilled.

Our topology is composed by 3 switches and
17 nodes (12 TT, 4 AVB and 1 BE).

Table II shows the simulation configuration.
Bakcground traffic is generated by multimedia
and WiFi sources.

The corresponding domains follow:

• Powertrain:Engine and transmission.

TABLE II. Simulation Traffic characteristics

Type
Payload
[Bytes]

Service
rate [ms]

Priority

Control 0...750 0...6 TT

Driver
assistance

camera
350 2...3

AVB
SR

Class
A

Media
(radio)

200 2...3

AVB
SR

Class
B

Media
(video)

1428 2...3

AVB
SR

Class
B

WiFi 750 0.5...0.6
Best-
Effort

• Chassis:Brakes and steering.
• Bodywork and comfort: windows, air

conditioning, lights, locks, radio, video,
streaming.

• Driver assistance: Front and rear cam-
eras.

A. Simulation characteristics

In our simulation, we have used 60 different
seeds, which define a random value with uni-
form distribution to establish the node trans-
mission time, in order to avoid any type of
synchronization effect. The initial cycle length
is defined on 6 ms and each node must transmit
a packet during this cycle. The duration of all
simulations is 15 s and we execute 30 runs
per configuration. The simulation duration was
calculated to obtain 2500 cycles during the
specified time.

V. Results

Figure 4 shows the delay distribution when
using a 6 ms cycle, which is not uniform. Since
the node-generated traffic is asynchronous,
there is a high probability that the packet
arrives before or after with respect to the
corresponding transmission slot, thus missing
one cycle until the effective transmission. It can
be observed that the Chassis and Bodywork
and Comfort domains have a much higher la-
tency than those specified on Table I. Table III
synthesizes the behavior for all the domains,
showing that they are out of specification using
this configuration.
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Fig. 4. Delay CDF for the first case.

TABLE III. Average Delay and Jitter for a 6
ms cycle.

Domain
Delay
[ms]

Jitter
[µs]

Powertrain 0.050958 0.0011227
Chassis 2.8 1.0516

Bodywork
and comfort

3.2 1.388

A. Transmission cycle length

Taking into account the asynchronous events
problem, The first parameter to examine in
order to obtain a performance improvement
in delay and jitter is the transmission cy-
cle length. We propose to duplicate the cycle
length to 12 ms.

Table IV shows the simulation results with a
12ms cycle length. Duplicating the size without
doubling the slot length duplicates the number
of available slots, however, the delay at the
transmission queue increases.

B. Timeslot length

The second parameter to analyse is the slot
length along the different devices on the net-
work. TTEthernet implementation defines two
types of windows: The first indicates the mes-
sage arrival time, while the second fixes the
outgoing time for each message. Complimen-
tary to this configuration, there is the Per-
manence Point in Time which determines the
maximum time a message can wait until it is

TABLE IV. Average delay and jitter for a 12
ms cycle

Domain
Delay
[ms]

Jitter
[µs]

Powertrain 0.086678 0.483218
Chassis 6.5 5.9369

Bodywork
and Comfort

8.4 7.4451

25us 50us
0

5 · 10−5

1 · 10−4

D
el

ay
(s

)

Powertrain
Chassis
Bodywork and Comfort

Fig. 5. Effect of changing the Slot length

transmitted. In order to analyse the impact
of the slot length, the nodes on the networks
are configured to transmit synchronously. We
established two window sizes to test this
setup:25µs and 50 µs. Figure 5 shows the re-
sults for each window size, indicating that the
delay is sensitive to the slot length.

Figure 6 shows the CDF of the delay for Pow-
ertrain, Chassis, Bodywork and Comfort, and
on Table V the results are quantified. When
compared to Figure 4 and the corresponding
Table III, the delay and jitter are reduced:
For a 6ms cycle, on Powertrain from 51 us to
2.7 us, on Chassis from 2.800 us to 3.41 us

and for Bodywork and Comfort from 3200 us

to 24.75 us. In the case of jitter, under the
same conditions, the module improvement on
Chassis is reduced from 1051.6 ns to 2.24ns, on
Bodywork and Comfort it is reduced from 1388
ns to 4.13 ns while keeping the same order of
magnitude for the Powertrain value.
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TABLE V. Average of the Delay and Jitter
for a 6ms cycle.

Domain
Delay
[µs]

Jitter
[ns]

Powertrain 2.7658 1.1981
Chassis 3.4152 2.2378

Bodywork
and Comfort

24.755 4.1281

1) Cycle length: The effects of an increase
in cycle length with the management module.
Unlike the the cycle length increase when there
is no management module present, in this case,
doubling the number of slots does not generate
a relevant increase on the proposed domains,
thus showing the effectiveness of the proposed
management module to support asynchronous
traffic.

2) In presence of background traffic: In order
to test the management module response under
background traffic conditions, we use the con-
figuration defined on Table II: Two nodes gen-
erate rear and forward camera video for driver
assistance, two nodes represent audio and video
traffic and one BE traffic generator is included
to represent WiFi-type traffic. Figure 7 shows
that there is a small variation in latency on the
Bodywork and Comfort domain, while system
performance keeps unchanged.

TABLE VI. Average of the Delay and jitter
for a 12 ms cycle.

Domain
Delay
[µs]

Jitter
[ns]

Powertrain 2.7667 0.0015287
Chassis 3.8260 1.06987

Bodywork
and Comfort

23.018 1.2784
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Fig. 7. CDF of the Delay with the imple-
mented module and background traffic

VI. Conclusion and Future work

In this work, we have proposed and evalu-
ated the design of a traffic management module
for in-vehicle deterministic networks for differ-
ent device domains: Powertrain, Chassis and
Bodywork and Comfort, in order to comply
with bandwidth, delay and jitter constraints.
We have shown that our proposed management
module reduces message transmission delay
and jitter. Furthermore, we have also shown
that the system keeps the maintains the same
performance under AVB and BE background
traffic conditions. We expect to continue work-
ing on this module by adding traffic load anal-
ysis for each link to enable load balancing, and
adding redundancy to the network to increase
robustness and reliability. Finally, we would
like to analyse the effect on AVB traffic of the
duplication of the cycle time to understand the
performance limitations of the network.
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Abstract—Control applications are implemented using real-
time operating systems. Digital control theory is based on
sampling intervals that have to be strictly met in order to get
predictable behaviors. However, a real-time system may introduce
execution jitters that may cause unpredictable effects on the
control application. Stability, overshoot and settling time may
be affected when an inadequate real-time system is used. Several
papers have proposed different mechanisms to measure the jitter
that a real time system produces. However, jitter can not be
translated as a performance criterion in control theory. On the
other hand, frequency domain techniques are widely applied
in control theory for designing control strategies, as well as
analyzing and measuring the performance of control mechanisms.

In this paper, frequency domain analysis is used to measure
the perturbations that a real-time operating system may produce
on a control application. Harmonic distortion is defined as
a criterion to evaluate the control performance of the the
application. Experiments show that higher priority tasks are
likely to be used for control tasks since the perturbation produced
up to an utilization factor of 70% is adequate for most control
applications.

Index Terms—Control applications, Real-Time Systems, Real-
Time Operating Systems.

I. INTRODUCTION

Several Real-Time Operating Systems (RTOS) are proposed

for control applications. Digital control utilizes real-time sys-

tems to implement the control functions that the controller

must achieve [1]. Real-time tasks perform each one of these

control functions. These real-time tasks need to be executed

periodically with exact timing constraints to guarantee that the

system stays under control, meeting the design specifications.

However, real-time tasks are executed by a processor accord-

ing to the priority of each one of them that require to be

executed. Lower priority tasks are relegated from be executed

by higher priority tasks. Because the pattern of requesting

tasks is not fixed in most of system, the time that a task is

delayed from execution is not constant and consequently it

produces a jitter in the task execution.

Several mechanisms have been proposed in real-time theory

to measure the jitter that a real-time system produces on

a control application. However, there is not a relationship

between the jitter produced in the real-time domain and the

perturbations caused by the jitter in the control domain: jitter

is not a performance criterion for control theory.

Frequency domain analysis is widely utilized in control

theory. The behavior of a control application may be described

according to the response it produces to each input frequency.

A typical control system is shown in Fig 1. The controller

should be designed to accomplish the adequate attenuation

and amplification of the different input frequencies to produce

the desired response of the application [2]. Hence, from a

frequency domain point of view, a controller is a filter designed

to generate the correct close-loop response.

When temporal constraints are not met, the controller does

not behave as a linear filter anymore and produces undesirable

output frequencies. These frequencies are transmitted to the

application through the actuators and may produce undesirable

effects such as: vibration, heat, instability and noise.

A typical real-time system consists of several control func-

tions in addition to other non-control functions (like user

interaction, system maintenance, data communication, etc.).

A scheduler mechanism is needed to share the processor

among the different system tasks. Usually, the scheduler is

implemented as a task of a RTOS. The scheduler implements

a priority discipline that defines the next task that grants the

processor for execution. Several priority disciplines have been

proposed in real-time systems. EDF and FP are two of the most

analyzed ones because of their real-time features. In [3], the

real-time features of EDF and FP are compared but no analysis

of these disciplines in control application is performed.

In [4], True-Time and Jitterbug are proposed as simulation

tools for real-time systems in control applications. True-time

proposes a stability region which bounds the jitter that a

control application may support. This boundary is based on

an energy analysis and consequently it produces a conserva-

tive conclusion about stability but none about performance

nor perturbation. Jitterbug is a set of simulation models for

Simulink/Matlab. It allows to simulate the behavior of a com-

pound real-time/control application. However, as simulation is

based on particular case studies, we cannot perform a general

analysis of the features of the priority disciplines. Both tools

are intended for simulation of case studies but no design

criterion is proposed for control applications. In [5], [6] and

[7], scheduling algorithms are proposed to stabilize control

applications. However, the real-time scheduling algorithms do

not provide criteria about the improvement on the control
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Fig. 1. Continuous-time Control System.

performance. In [8], a bandwidth reservation mechanism for

control applications is proposed, but no control performance

improvement is proposed in control measurements.

In this paper, we applied frequency domain analysis to

describe the perturbations that a RTOS produces in control ap-

plications. A set of random generated real-time systems were

executed to measure the frequency perturbations produced for

different utilization factors. We show, through these experi-

ments, that the performance of a real-time system scheduled

by a RTOS is adequate for utilization factors less than 70%.

The paper is organized as follows: Section II introduces the

main concepts on state-space model and discrete-time control.

Section III describes the typical task model applied to real-

time theory. Section IV explains the main concepts of the

frequency domain techniques utilized in classical control the-

ory. Section V describes the mechanisms to implement control

application in real-time systems. The real-time scheduling pre-

emption is detailed in Section VI. Experiences are described in

Section VII. Results are analyzed in Section VIII. Conclusions

are drawn in Section IX.

II. CONTROL MODEL

A controlled system consists essentially of a plant and a

controller. The plant is the system to be controlled and the

controller reads information from the plant and computes the

actions required to achieve some control performance.

Modeling techniques are developed to express the behavior

of both the plant and the controller. A model of a system is a

simplified, abstracted construct used to predict the dynamics of

the system. It is often possible to obtain an analytical system

model using the laws that determine its behavior.

The state-space modeling is a classical control technique

to model a system. For a linear, time-invariant, continuous-

time system, a state-space description consists of a first-order

differential equation vector, named state-space equation, for

x(t), named state variables,

x(t) = A · x(t) +B · u(t) (1)

y(t) = c · x(t) + d · u(t) (2)

where A is the system matrix, B is the input matrix, c is the

output matrix, d is the feedthrough matrix, u(t) is the input

variable and y(t) is the output variable.

The prototype control system encountered in classical con-

trol theory is shown in Fig.1. In this figure, the measured

feedback signal is directly the system output y(t). The input

r(t) is the reference input and e(t) is the error signal.

Fig. 2. Discrete-Time Control System.

The design aims to specify the transfer function of the

controller, C(s), to give to the closed-loop the desired con-

trol characteristics. These characteristics include stability and

possibly some specification on the step response such as

overshooting, settling time, and steady-state error.

A. Discrete State-Space Models

When a controller is implemented on a computer system, a

discrete-time model should be utilized. Fig.2 shows a diagram

of a discrete-time control of a continuous-time plant.

C(z) is implemented as software and it is executed by a

processor. The state-space model of a discrete-time system is

expressed by difference equations:

x(k + 1) = Φ · x(k) + Γ · u(k) (3)

y(k) = c · x(k) + d · u(k) (4)

In [2], it is proved that, given a state-space description of

a plant characterized by (A,B, c, d) in equations (1) and (2),

and a sampling interval T , the equivalent discrete-time system

is given by Φ, Γ, c, d, where

Φ = eAT ,Γ =

∫ T

0

eAT ·B · ̺τ (5)

The discrete-time model derived from this transformation is

not an approximation but an exact description of the behavior

of the plant at sampling instants.

The computational execution of the discrete model takes

some time to complete. If the computational delay is very

small compared with the dynamics of the system, it can

be neglected. If the delay introduced by the computation is

constant, then it may be considered in the transfer function of

the controller.

On the other hand, if the computation produces a non-

constant delay then the discrete-time model is not valid

anymore, and consequently the same actions may produce

different effects, leading to an undesirable behavior [2].

B. Specification of the Sampling Period

The selection of the sampling period of the system is

important. If the sampling period is chosen too long, the

continuous-time signal will not be able to be reconstructed.

On the other hand, if it is chosen too small, the workload on

the computer will increase and possibly the output update will

not take place on time.

There exist several rules of thumb to determine the range

to select the sampling frequency, defined as ws = 2 · π/T
rad/sec. Most of these rules are based on relationships between
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the sampling frequency and the closed-loop bandwidth of the

system, denoted by wB .

A higher sampling rate could turn the system very sensitive

to the precision of the parameters and to round-off errors.

III. REAL-TIME SYSTEM SCHEDULING

The discrete-time control model needs the periodical com-

putation of the controller strategies. These strategies are per-

formed by control tasks that are executed concurrently by

a processor. A scheduler mechanism is needed to share the

processor among the system tasks.

Real-time systems theory allows analyzing the temporal

properties of a set of concurrent tasks. The general process

model of a real-time system consists of a set Π of N periodic

and non-periodic tasks [9]. Each task, τi is characterized by

either its period in case of periodic tasks or minimum inter-

arrival time for non-periodic ones, Ti, deadline, Di, worst-case

execution time, Ci, offset, Oi and priority, Pi.

Π = {τi = (Ti, Di, Ci, Oi, Pi), 1 ≤ i ≤ N} (6)

Each time that a task requires the processor to be executed,

it is said that the task is invoked. The ready task with the

highest priority Pi is the next task selected to be executed. The

notion of jitter is important for our discussion. Sampling jitter

is the maximum difference between the exact sampling period

of two consecutive invocations of the same task. Similarly,

the output jitter is the maximum difference between the exact

output instants of two consecutive invocations of the same

task.

Exact, necessary and sufficient scheduling analysis condi-

tions exist to guarantee that the temporal requirements will be

satisfied in a real-time system. The most advanced technique

computes the worst case response time of any task to guarantee

that completes before its deadline.

The time that a task has to wait to be executed depends

on the computation time required by higher priority tasks

that are ready to be executed. Because the pattern of releases

is not fixed, and execution times of a task may vary from

invocation to invocation, this results in a variable interference

and therefore a variable response time of the task. These time

variations produce a jitter on both input sampling and output

updating that may cause undesirable effects on the control

system [10]–[12].

IV. DIGITAL CONTROL AND FREQUENCY DOMAIN

ANALYSIS

The basic operation of a digital control system (Fig.2) is to

read information from multiple sensors, calculate the output

and send the results to actuators. C(z) is implemented as

software and it is executed by a processor. The input data

to C(z) is a sequence of numbers obtained from an A/D

converter and the output is a sequence of numbers that is

converted to a piecewise control signal by the D/A converter.

Both A/D and D/A converters are sampled at regular intervals

and transform the continuous-time transfer function G(s) into

a discrete-time model of the control application.

Fig. 3. Case A - control Task1 is executed at a low priority level. The task
suffers jitter due to higher priority tasks.

The controller should produce an output control signal

adequate to control the application. When a classical con-

trol system is considered (linear and time-invariant), then

the frequency of the signal at controller’s output should be

equal to the frequency of the signal at its input. This output

control signal can be transformed to a summation of sine

and cosine signals according to the Fourier transform. When

jitter exist on the execution of the control task, then undesired

frequencies appear on the output signal that are transmitted

to the application through the actuators and may produce

unwanted effects such as: vibration, heat, instability, noise.

Consequently, the harmonic distortion may be used as an

indicator of the perturbation that a control task produces when

it is executed with jitter.

In this paper, we analyze the perturbation that concurrent

execution of a RTOS and multiple real-time tasks produces

over control tasks.

V. SCHEDULING CONTROL TASKS

A control task can be divided into three subtasks with

different real-time requirements:

• Sampling Subtask: this subtask has to be periodically exe-

cuted to read the inputs of the system. Its execution has to

be strictly periodic (D << T ) to avoid non-linearities and

time-variances that can lead to uncontrollable dynamics.

The period of the sampling subtask is defined by the

sampling period of the discrete-time control model and

may vary in narrow range.

• Calculation Subtask: this subtask is executed after its

corresponding sampling subtask has completed and it

computes the control strategy. Its execution time depends

on the complexity of the control strategy implemented.

• Actuation Subtask: this subtask may be executed either:

(1) when the calculation subtask is completed or (2)

after an fixed offset from the invocation of the sampling

subtask. It should be executed as soon as it is invoked.

The control subtasks can be arranged in four main config-

urations:

A. Case A

The sampling subtask is executed periodically. The cal-

culation subtask is executed when the sampling subtask is

completed and then the actuation subtask. Fig.3 shows a real-

time system that consists of two tasks: Task0 and Task1. While

Task0 is a non-control task, Task1 is a control task constituted

by its three corresponding subtasks: sampling subtask, Si,

computing subtask, Ci and actuation subtask, Ai, where i
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Fig. 4. Case B - the sampling subtask is assigned to a higher priority to avoid
sampling jitter.

Fig. 5. Case C - Both sampling and actuation subtasks are assigned to a
higher priority to avoid both sampling and actuation jitter. Actuation delay is
introduced.

is the invocation index. In Fig.3, Task0 is assigned with a

higher priority than Task1 to show the interference from higher

priority tasks.

In this case, the arrival of a higher priority task may delay

either the release of the task or the final actuation resulting

in both input and output jitter. In Fig.3, sampling jitter on the

Task1 takes place because of, for instance, the interval between

S2 and S3 is greater than T1 while interval between S3 and

S4 is less than T1. Actuation jitters can be noted because of

the interval between A0 and A1 is greater than T1 whilst the

interval between A3 and A4 is less than T1.

B. Case B

The above problem of input jitter can be alleviated if the task

is split into two computational entities (threads), the sampling

subtask and the rest and where each part is executed at a

different priority. By running all sampling subtasks at a higher

priority, the input jitter is reduced dramatically. Fig.4 shows

the execution of the three subtasks of Task1 in two different

priority levels.

C. Case C

The previous configuration solves the problem of input jitter,

but not output jitter. A simple extension to overcome the

problem is to run the actuation subtask at a higher priority

together with the sampling task.

In this case, the sampling subtask is executed periodically.

The actuation subtask is executed just after the sampling

subtask is completed, however it outputs the result of the cal-

culation of the previous invocation. All computation subtasks

run as before at lower priorities. Because this is a fixed delay

of precisely T units, its impact can be modeled precisely in

the discrete-time control model. In this situation we have no

output jitter but only a longer delay in the actuation. Fig.5

shows the execution of the three subtasks of the Task1.

Fig. 6. Case D - The actuation subtask is invoked at a determined offset.
Sampling and actuation jitter are eliminated.

D. Case D

The previous case is a particular case of the most gen-

eral problem of having the subtasks at different priorities.

In this case, the sampling subtask is executed periodically.

The actuation subtask is executed with a fixed offset from

sampling period. Response time analysis techniques can be

used to compute the smallest offset that ensures that the

computation subtask will always have completed before the

actuation subtask is released. In this case, there is no output

jitter and a smaller delay than in the previous case.

Fig.6 shows the execution of the three subtasks of Task1 in

two different priority levels. When the priority of the actuation

subtask is just below the sampling subtask and O1 = T1, this

case reduces to case C.

Complexity and overhead are the disadvantages of this ap-

proach. This configuration requires almost as much resources

of the systems as if they were three independent tasks. Besides,

an optimal priority assignment is not trivial.

Real-time tasks that implement control functions can be

scheduled according to any of the cases described above.

However, when two or more control functions have to be

performed simultaneously, the real-time scheduling mecha-

nism will produce perturbations on the control application

independently of the case selected.

VI. SCHEDULER PREEMPTION

Hard real-time theory considers that no deadline can be

missed. Real-time schedulers may implement non-preemptive

as well as preemptive algorithms to make it suitable to the

application. Non-preemptive algorithms are designed so that

once a task switches to the execution state, it is not removed

from the processor until it has completed. In non-preemptive

algorithms, the context switching is called only when the task

completes or blocks. On the other hand, preemptive algorithms

are driven by the notion of prioritized computation [10], [13].

The task with the highest priority should always be the one

currently assigned to the processor. If a task is being executed

and a new task with a higher priority is released, the task on

the processor should be removed and returned to the ready

state until it is once again the highest-priority ready task in

the system.

Non-preemptive algorithms introduce a limited scheduling

overhead because of the reduced number of context switches.
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On the other side, executing a non-preemptive scheduling

algorithm might lead to limited schedulability performances

due to the large blocking imposed on tasks with smaller

deadlines [9]. Preemptive schedulers improve the response

time of the highest priority tasks.

Weakly and firm real-time systems are proposed to design

systems that may miss deadlines in a controlled manner [14].

However, no analysis are performed for this kind of real-time

systems for control applications.

In this paper, we evaluate the control performance of a real-

time system implemented over a RTOS with a preemptive

algorithm with a Fixed Priority policy.

VII. EXPERIMENTAL SET-UP

In this section we perform a performance evaluation ex-

periment to analyze the frequency perturbation produced by

a RTOS used in control applications. We choose FreeRTOS

version 8.1.2 as the RTOS for the experiment.

We generated a set of real-time systems with the following

features:

• We considered real-time systems with 5, 7 and 10 tasks.

• We considered utilization factors of 10, 15, 20, 25, 30,

35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90 and 95

percent.

• Task execution times were randomly generated with a

uniform distribution in 3 different ranges: (1) between

25µs and 1000µs, (2) between 25µs and 10000µs and

(3) between 25µs and 100000µs.

A thousand real-time systems were generated for each

combination of number of tasks, utilization factor and task

execution times. Each real-time system was executed long

enough to have at least 300 invocations of each task. All the

real-time systems were executed on a MBED LPC1768 board

with an ARM R©CortexTM-M3 MCU running at 96MHz.

Each task of the system was programmed to perform the

following activities: (1) read a value from a table, (2) wait

some time in order to produce the required execution time

and (3) write the data into a memory variable. The reading is

associated with the sampling action of the control task while

the writing is associated with the output updating action.

The table stores 32 values of a sine wave. Each time that

the task is invoked, it reads a value and increments a pointer to

the next value of the table for the next invocation. Therefore,

as writing is performed periodically, it produces an output of

a sine wave. Each time that a writing event takes places, it is

logged in a file for further frequency domain analysis.

Frequency domain analysis was applied to the data ob-

tained to show the perturbations that each one of the priority

disciplines produces on the control tasks. Ideally, if a task

τi is executed with no jitter, then the spectrum analysis

shows a very sharp component at frequency fs = 1/(Ti ·
lenght of the table). When the task is executed with jitter,

different harmonic frequencies appear in the spectrum analysis

(Fig.7).

The perturbation produced by the RTOS and the higher

priority real-time tasks is then calculated subtracting from the
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Fig. 7. Example of the frequency spectrum of an ideal (no jitter) real-time
execution, and the frequency spectrum of a high harmonic distorted signal
(with jitter). The sin(x) values come from a precomputed table.
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Fig. 8. Maximum, Average and Minimum perturbation for frequency com-
ponents for lowest priority task of a system of 10 tasks and utilization factor
equal to 90%.

frequency spectrum obtained for each task, the ideal frequency

spectrum that should be produced in a jitter-free execution.

Fig.8 shows the minimum, average and maximum perturba-

tion for each frequency component. The figure is an example

of the lowest priority task of a real-time system with 10

tasks and utilization factor of 90%. The component number

8 is the component corresponding to the frequency of the

sine wave produced by the execution of the real-time task

(fundamental component). It can be noted that the perturbation

is maximum for this component in which the minimum,

average and maximum values are very close. The percentage

of the perturbation for the fundamental component reaches up

to 30% and up to 2% for the rest of the components.

Fig.9 shows the average of the maximum percentage of
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Fig. 9. Percentage of average of the maximum perturbation for the lowest
priority task for real-times system with 5, 7 and 10 tasks.

component perturbations for the lowest priority task for system

with 5, 7 and 10 real-time tasks. The average of the maximum

perturbation is around of 24%-26% for the lowest utilization

factors, increasing for higher utilization factors. It also can be

noted that the perturbation produced depends on the utilization

factor and the behavior is similar for different number of tasks.

VIII. DISCUSSION

Real-time system jitter produces perturbations on control

applications. Frequency analysis shows that perturbation may

reach 32% when multiple real-time tasks are executing con-

currently, and a RTOS is utilized.

It can be noted that the perturbation is distributed among all

the frequency components of the spectrum with a maximum

perturbation in the fundamental component. Fig.8 shows a

pattern that persists for all the task of the system, for systems

with different number of real-time tasks.

The magnitude of the perturbation should be taken into

account when real-time systems are design for control applica-

tions. Control actions should transfer energy to the application

in order to obtain a controlled behavior. Control theory is

utilized to define the adequate actions for each application.

However, perturbations produced by real-time system may: (1)

produce an unpredictable behavior of the system and (2) pro-

duce a waste of action control energy. Low power consumption

mechanisms in real-time systems should be compared to the

wasting of energy that perturbations produce in control actions.

IX. CONCLUSION AND FUTURE WORK

Real-time systems are used to implement controllers in con-

trol applications but there is not a straightforward relationship

between real-time systems and control applications. Real-time

theory deals with periodic tasks, missed deadlines and schedul-

ing disciplines. Classical control theory applies frequency

domain techniques to design and evaluate the performance of

the controllers. These controllers are designed to produce a

linear, time-invariant response. An inadequate implementation

of the controller may cause undesirable and unpredictable

consequences on the control application. However, real-time

scheduling analysis cannot be utilized to evaluate the control

performance of the controller implemented as a real-time task.

In this paper, the real-time performance of a RTOS-based

system for control applications is tested. The experiments

measured the harmonic distortion that the real-time tasks

produce. This approach could be helpful in the evaluation of

a real-time system with control parameters, and give insights

for an adequate implementation of a control application.
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Abstract— In the development of a satellite, there are key 

subsystems that can be classified as critical to the success of the 

mission, since a failure in any of them could threat the fulfillment 

of the objectives of the mission. These subsystems require the 

application of rigorous verification and validation methodologies 

in order to ensure a high degree of dependability. This article 

describes the independent software verification and validation 

process conducted on the SAR antenna release and deployment 

system, as part of the development of SAOCOM mission. 

Keywords— ISVV; Embedded Systems; Software; 

Dependability; Verification; Validation; Space Systems 

I.  INTRODUCTION 

In the frame of the National Space Plan, CONAE is 
developing the SAOCOM satellites constellation, which 
comprises two L-band Synthetic Aperture Radar (SAR) 
satellites. SAOCOM satellites constitute a system of Earth 
observation, dedicated to the use of remote sensing data for 
optimization of socio-economic and scientific studies, that will 
integrate the SIASGE (Italian – Argentine Satellite System for 
Emergency Management), jointly with the satellites of the 
COSMO-SkyMed Italian constellation. 

The SAOCOM SAR antenna dimension in deployed 
configuration is intended to be 10 x 3.5m. In order to fulfil the 
launcher envelope the antenna is divided in 7 panels, a central 
one and two wings folded at both sides of the spacecraft. An 
embedded system based on 8051-architecture microcontroller 
is dedicated to control the release and deployment of the 
panels. Considering that a failure in this control unit could 
result in a wrong deployment sequence, or even in a missing 
of the deployment, this subsystem can be classified without 
doubts as a mission-critical system. 

Moreover, the Independent Software Verification and 
Validation (ISVV) is a process carried out by an organization 
independent of the software supplier that is intended to 
improve quality and reduce costs of a software product. ISVV 
is fundamentally targeted at critical systems, and because of 
that the European ECSS Software Engineering standard [1] 
recommends it as part of space software project processes.  

In this context, in the role of customer of software 
development, CONAE decided to perform an ISVV process 
over the software embedded in SAOCOM SAR release and 
deployment control unit. 

Following sections describe the verification and validation 
techniques and methodologies selected by SUR Emprendi-
mientos Tecnológicos to perform the ISVV process over the 
SAOCOM SAR release and deployment system. Although 
specific technical details about the system under analysis, as 
well as the ISVV specific results, are not included due to non-
disclosure agreements affecting this information, the aim of 
the article is to present the case as an important precedent of 
adopting this practice in Argentina space industry.  

II. ISVV OVERVIEW 

The key technical objective of ISVV is to find faults and to 
increase the confidence in the software, which should 
therefore reduce the development risks. This objective can be 
reached by performing additional and complementary 
verification and validation of a software product by an 
organization that is independent from the software supplier. 

The "independence" notion of the ISVV is valuable and 
should permit to have a "fresh viewpoint" on the product and 
on the applied process. The ISVV supplier focuses on finding 
possible weaknesses and faults, using different methods and 
tools from those of the development organization, with a 
“destructive” attitude. Depending on the maturity of the 
software under analysis, it is also possible and desirable to 
infer in the software design. Otherwise, the main objective of 
ISVV execution is to acquire more information about the 
developed software, and find as many weak points as possible, 
allowing to establish a plan for dealing with them. It is 
important to remark that the independent V&V process is 
performed parallel to the software development process, and 
delayed with respect to it. One of the main goals is to feedback 
the development process with the ISVV findings. 

European Space Agency (ESA) provides a guide to 
support ISVV processes applied to ESA projects [2]. This 
guide defines the ISVV process with management, verification 
and validation activities, and provides advice on ISVV roles, 
responsibilities, planning, and communication as well as 
methods to use for the various verification and validation 
tasks. The ESA guide was taken into account as a framework 
for proposing and carrying out the activities described in 
current article, that were performed in following stages: 

 ISVV level definition. 

 Verification of software technical specifications (TS). 
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 Verification of software design. 

 Verification of software source code.  

 Validation of the software product. 

For all stages the same methodology was adopted: at first 
planning the activities and selecting the techniques and tools 
to be used, then executing the activities on the corresponding 
software items, and finally collecting results, findings and 
evidences, and reporting them to customer. 

III. ISVV LEVEL DEFINITION 

The objective of the ISVV level definition is to limit the 
scope and guide subsequent verification and validation 
activities as well as the methods proposed to be used to 
perform them. In this stage, each software component or unit 
is classified with a different ISVV level: 'No ISVV activities 
required', 'Basic ISVV is required' or 'Full ISVV is required', 
based on its criticality category. 

Two complementary methods were executed for analyzing 
software criticality: Software Failure Modes, Effects and 
Criticality Analysis (SFMECA) [3][4], and Hardware-
Software Interaction Analysis (HSIA) [4].  

Due to the development was in an advanced stage at the 
time of ISVV starting, software architectural and detailed 
designs were available and then they were taken as the main 
input for SFMECA, in order to determine which would be the 
software components and functionalities to be analysed. In 
addition, hardware failures analysis performed by system 
supplier were used for starting the HSIA analysis. 

A. SFMECA technique 

Several techniques exist that could be applied, such as the 
mentioned SFMECA, the Software Fault Tree Analysis 
(SFTA), and the Software Common Cause Analysis (SCCA). 

The SFMECA is an extension of the hardware FMECA, 
applied to software. The main purpose of the SFMECA is to 
identify potential software-caused failures, through a 
systematic and documented analysis of the credible ways in 
which a software component can fail, the causes for each 
failure mode, the effects of each failure, and the criticality of 
the analysed software based on the severity of the 
consequences of the potential failure modes. 

In the context of ISVV process the SFMECA presented an 
important advantage over the other methods. Since the 
software functionalities could be traced to the code units, the 
possible failures identified by this method could be used as 
inputs to be reviewed in the stage of source code verification. 
Also, this method allowed to reveal potential system failures 
caused by software. Then SFMECA was the technique chosen 
for criticality analysis. 

1) General procedure 

Each software functionality was individually analysed for 
finding possible ways in which it could fail. Each failure mode 
had an associated kind of effect, at local and at system level, 
and according to the effect, a severity category was assigned. 
If existed any compensating provision to the failure mode, it 

was considered to possibly reduce the criticality category. 
Finally, criticality category was assigned for each detected 
failure mode, depending on the severity of effects and the 
existing compensating provisions. Steps described before were 
fully registered in a SFMECA table, where a failure mode was 
presented per each row, and different columns were completed 
with the analysis results. 

It is important to remark that there were detected 
dependencies between some functionalities. For instance, 
sometimes in order to make certain functionality work, 
another one needs to work properly too. In these cases, it was 
analysed the lowest level functionality first, and the results 
were propagated to the upper dependency level functionalities. 

2) Failure modes and causes 

Failure modes were postulated considering the following 
four possible kinds of events:  

 Functionalities not performed. 

 Functionalities performed wrongly (e.g. wrong/null 
data provided, wrong effect). 

 Functionalities performed too late. 

 Functionalities performed too early. 

3) Effect types and severity classification 

In traditional hardware FMECA, the failure effects 
resulting from each failure mode shall be determined at the 
level of the item under investigation (local effect) and at the 
level of the product under analysis (end effect). For software 
analysis, the following considerations were taken into account: 

 If the effects of the failure mode did not cross the 
boundaries of the software being analysed, they were 
considered as local effects. e.g.: a function fails. 

 If the effects of the failure mode propagated through 
the interfaces of the software, and it could be 
established that the failure mode under analysis could 
be a cause of a system failure, then they were 
considered as end effects. e.g.: a command fails.  

4) Criticality categories 

In hardware analysis, the criticality value for a specific 
failure mode is assigned combining the severity and the 
probability of the failure mode. As in software there is no an 
assignment of a probability value, the criticality of a software 
failure mode is assigned based on the final effects at system 
level, considering any prevention/compensation mechanism.  

Finally, in SFMECA analysis, a criticality category was 
assigned individually for each software functionality. Then the 
criticality of a module was defined as the highest of the 
criticality categories of the functionalities included in the 
module. Software criticality categories defined in ECSS 
software product assurance standard [5] are showed in Table I. 

TABLE I.  SOFTWARE CRITICALITY CATEGORIES [5] 

Category Definition 

A Catastrophic consequences 
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B Critical consequences 

C Major consequences 

D Minor or negligible consequences 

B. HSIA method 

The HSIA is conducted on the hardware/software 
interface, primarily to identify the software response to 
hardware failure. The HSIA identifies the event chains and 
relationships between events. The objective of a HSIA is to 
systematically examine the interfaces between hardware 
circuits and software systems to ensure that hardware failure 
modes are being taken into account in the software 
requirements. Conversely it may also cover the analysis of the 
potential stress induced to hardware components by the 
software and especially in case of anomalous behaviour. 

The HSIA is a method recommended by ECSS Software 
Product Assurance Handbook as a support to the software 
dependability analyses and assessment techniques. The HSIA 
is a way to link analyses made on the hardware, to the 
software. In practice and especially in on-board space systems, 
the emphasis is put on software in charge of the management 
of hardware failure cases. 

Consequently, and ideally, the HSIA should be performed 
concurrently with the FMEA/FMECA for all hardware 
products involving software. If the analysis is performed 
sufficiently early in the programme, it can influence the 
hardware design and the software requirements. Particular 
attention should be paid to each failure mode of hardware: 

 involved in compensatory provisions (redundancy, 
protection), especially to identify potential side 
effects, common modes and dependencies (e.g., 
through software) that may prevent the fault handling 
mechanisms from working properly; 

 controlled by software, to identify and assess the 
corresponding software requirements. 

The HSIA is used to verify that the software specifications 
cover the hardware failures according to the applicable 
requirements, namely Fault Detection, Identification and 
Recovery (FDIR) requirements describing especially the 
management by the software of the considered hardware 
failure cases. The following information is typically 
considered for each hardware failure mode: 

 Symptoms triggering the software action (parameters 
accounting for the failure mode); 

 Action of the software (failure isolation and 
recovery); 

 Independency between the failure mode and the 
ability of the software to react as expected; 

 Effect of the software action on the product 
functionality (through induced possible 
software/hardware cascading effects); 

 Identification of complementary means (from the 
ground operators for instance). 

1) HSIA execution 

In practice, the HSIA is supported by the elaboration of a 
list of questions to apply to each identified failure mode of the 
considered hardware components. The  method  is  highly  
dependent  on  the  selected  list  of  questions,  which  should  
be  structured  as rigorously and systematically as possible, to 
provide an efficient and reliable support to the analysis. The 
analysis concludes with a set of recommendations that could 
be recommended changes, or complementary analyses. 

Then the formal procedure used to elaborate the HSIA is 
summarized in the following steps:  

1. Looking up the FMECA made by the supplier for 
hardware failures that are incumbent on software. 

2. Classify the cases of hardware failure, resulting in a 
set of risky situations to be analysed  

3. Making a list of questions to apply to each identified 
failure mode of the considered hardware components.  

4. Apply the questionnaire to the cases mentioned in 
step 2.  

5. Elaborate an individual register for each hardware 
failure analysed, that includes the questionnaire, the 
analysis of answers and the conclusions. 

IV. VERIFICATION OF TECHNICAL SPECIFICATIONS 

Next step in ISVV process is the verification of software 
technical specifications, including interface requirements.  

Reviewing the software development process [6], it starts 
with the requirement baseline (RB) definition, which is made 
by the customer. This first set of requirements should define 
the software need in the system (the WHAT), explaining the 
software behaviour with respect to interfaces with other 
systems, hardware that should control, operations that should 
support, etc. Then, software supplier takes the RB definition 
as main input to establish the software technical specifications 
(TS), which should answer to the needs through a functional 
implementation taking into account software and hardware 
constraints in the system (the HOW). In summary, TS should 
represent a specific software solution for needs described by 
RB. 

The independent verification of software TS attempts to 
verify that the RB representation in terms of function, 
capability, performance, safety, dependability, qualification, 
human factors, data definitions, documentation, installation 
and acceptance, and operation and maintenance is complete, 
correct, consistent, accurate, readable, and testable. 

As main parameter to perform this verification, ECSS 
technical requirements specification standard [7] was taken 
into account. Documents prepared by software supplier 
‘Software Requirement Specification’ and ‘Interface Control 
Document’ were verified against ECSS standard and results 
allowed to improve software technical specification. Findings 
of this activity allowed to update and complete supplier 
documentation, and in some cases the findings would be 
analysed again in the independent verification of source code. 
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V. SOFTWARE DESIGN VERIFICATION 

After the TS Analysis, and having performed the criticality 
analysis at the software unit level, the following step in the 
ISVV process is the Design Analysis. The Design Analysis 
consists on the evaluation of the design of the software 
products, focusing in aspects such as dependability, error 
handling mechanisms, initialisation / termination of software 
components, interfaces, processes synchronisation and budget 
analysis, among others.  

Because of the maturity of the software under analysis at 
the time of starting of ISVV process, there was no space to 
perform the design analysis, as there was no opportunity to 
infer in its design, neither architectural nor detailed. 

However, it should be remarked that design documentation 
was used to construct a traceability matrix from software TS 
to source code units, that later constituted one of the main 
inputs to independent source code verification. 

VI. INDEPENDENT SOURCE CODE VERIFICATION 

The software source code verification consists on the 
evaluation of the source code of software product focusing on: 

 reliability, availability and safety, ensuring that the 
sufficient and effective fault detection and isolation 
and recovery mechanisms are included, 

 error handling mechanisms, 

 initialisation / termination of software components, 

 interfaces between software components and between 
software and hardware components, 

 threads / processes synchronisation and resource 
sharing, and 

 budget analysis, including schedulability analysis 
detection of any programming error causing the 
software to behave in a way that violates any of the 
applicable specifications. 

For the verification of the source code, three different 
techniques were used: inspection, static analysis, and 
simulation testing. The techniques were used in a 
complementary manner, enhancing the verification process. 
For example, the findings aroused in the code inspection in 
some cases served as triggers to design test scenarios to 
verifying them by simulation. 

For each finding the associated risks and consequences 
were analysed. The materials generated for verification (e.g., 
code executed on simulation), the description of the aroused 
findings and its evidence, and the risks analysis performed for 
each one, were delivered to customer at the end of this ISVV 
stage. Then, the customer and the supplier could analyse these 
materials and assess the necessity for doing modifications on 
the source code to resolve the detected vulnerabilities. 

1) Source code inspection 

Source code inspection is a systematic examination 
performed by trained individuals who look for potential 
defects using a well-defined process.  

Particularly in ISVV process, the aim of the source code 
inspection along with the other methods for verification is:  

 to ensure that the code is correct, and in conformity 
to software requirements and coding standards;  

 to ensure that the  code  implements  proper  events 
sequences,  consistent interfaces, correct data and 
control flow, completeness, appropriate allocation of 
timing and sizing budgets, and error handling;  

 to ensure the  code  implements  safety,  security,  
and  other  critical  requirements correctly.  

During the code inspection, in particular, in order to be 
avoided, the following situations were looked for: 

 Counters with a type different from unsigned. 

 Implicit comparisons, e.g: if(Function()) or 

if(!Function()) 

Also, for organising the inspection, the following rules 
were followed: 

 Faced with functions with the same criticality, give 
priority to those containing conditional/nested loops 

 Faced with functions with the same criticality and 
conditional / nested loops, give priority to those with 
higher level conditional / nested loops, including 
combinations of both 

 Faced with functions with the same criticality and 
conditional / nested loops of the same level, including 
combinations of both, give priority to those with the 
greatest amount of exit options. 

2) Source code static analysis 

The goal of static analysis is to check the code properties 
without executing the code. Static analysis is carried out by 
using a specialized software tool, and it has a different 
perspective than a compiler. Rather than finding a way that the 
program can be interpreted, it looks for ways in which the 
program might be misinterpreted. 

It is not necessary to design algorithms for testing. Static 
analysis is responsible for conducting a comprehensive 
analysis focused on syntax, logic and run-time errors like: out 
of bounds checking, check for uninitialized variables and 
unused functions, portability checking, order of evaluation, 
constants checking, static initialization, size of scalars, weak 
definitions, standard codification checking (e.g. : MISRA). 

Results of static analysis are reported as a list of messages 
and references to the source code lines that generates the 
message. Each message is classified as 'error', 'warning' or 
'info', due to its severity. 'Errors' and 'warnings' were checked 
message by message searching for the reason that led to the 
alert, while 'info' were globally analysed and classified. 

3) Simulation testing 

The last technique utilized in the source code verification 
was simulation testing. The aim of simulation testing is to test 
features that will be impossible to test in software validation.  
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One of its greatest advantages is the possibility to visualize 
internal registers from the microcontroller; this also gives the 
possibility to test time restrictions that will be impossible to 
test through validation. Another valuable feature of simulation 
testing is the possibility of generating worst case scenarios as 
well as introducing any kind of errors to the software. 

The adopted approach for implementation of test cases was 
analysing the software behaviour against actions triggered by 
commands or sequences of commands, or actions that 
normally take place in software initialization, but without 
performing any modification on software under analysis.  

The input data to the “Function Under Test” is applied 
using the payload of the command (when a command with 
payload is employed) or modifying the microcontroller 
memory. The control points where input data is applied or 
output data is verified are defined for each test case.  

 

Figure 1 - Ideal model of test case implementation 

Figure 1 exemplifies an ideal model of test case (TC) 
implementation. Some differences arise in real TC. In some 
cases, many control points are needed to perform a complex 
input or a sequence of commands. In other cases, the function 
under test is part of the software initialization. Therefore, the 
software was not forced to one execution path, as the normal 
software flow is the one to be tested. The control points were 
then used to record the state of some variables, without a 
reaction. A special case is the testing of Power On Self Test 
(POST) functions, where failure injection was used to modify 
the software execution path. 

TC were implemented by code scripts with following flow: 

 Set software data preconditions. 

 Perform a software reset. 

 Wait to the end of software initialization. This means 
that the TC Execution Engine waits until the software 
reaches the main loop. 

 Record some state. 

 Send a command. 

 Wait for some time or some event. 

 Record the final state. 

 Compare to the expected state and computes result. 

VII. VALIDATION OF THE SOFTWARE PRODUCT 

The last step in the ISVV process is the independent 
software validation. The aim of this activity is testing the final 
embedded software, already installed on its target hardware 
platform, to demonstrate that the implementation meets the TS 
in a consistent, complete, efficient and robust way. 

Independent validation looks for acquiring more 
information about the software performance under both 
nominal and adverse conditions.The execution of this activity 
is expected to reveal the existing software vulnerabilities, 
when they exist, and enables to prepare according software 
operation procedures to manage them, when it is possible. In 
case of detecting inevitable failures occurrence, validation 
process also allows to collect information about the failure and 
to recommend proper software modifications. 

1) Prerequisites 

To ensure efficiency of the independent validation activity, 
it is important that the software under test is in a mature and 
healthy state. To accomplish it, the prerequisites are: 

 The independent verification process shall be 
previously performed in order to support the 
identification of the test cases. 

 The software under validation shall be the same 
analysed in independent verification process, in order 
to obtain consistency in the results of both processes. 

 The software under test shall be already validated by 
the software supplier. The ISVV activities are not 
expected to redo or replace the software supplier’s 
validation activities. 

 A suitable software validation facility (SVF) or 
operational test platform is available. 

SVF provided by software supplier was integrated by:  

 Engineering Model of subsystem under analysis, 
including hardware and software (the corresponding 
to source code independently verified). 

 Electrical Ground Support Equipment (EGSE) 
designed to support integration and test activities 
during development process. This equipment 
provides the necessary means for communicating the 
system under analysis with Ground Segment (sending 
telecommands and receiving telemetry data). Also, 
EGSE simulates external interfaces between the 
system and other subsystems, emulating their 
behaviour under specific scenarios of interest. 

2) Identification of test areas and test cases 

The purpose of this task is to identify areas to be subject to 
independent validation. The identification of TC is an iterative 
process, where new TC might be identified during the 
establishment and execution of previously identified TC. 

As a start point, test cases already designed by software 
supplier were analysed in order to understand its scope and to 
complement them with new derived subtests. This first 
analysis allowed to find certain vulnerabilities in software 
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development documentation, as well as information to be 
completed in some test cases definition. 

Since validation task is performed after the independent 
source code verification, test areas and test cases emerged in 
TS Verification and Source Code Verification in conjunction 
with the test areas and cases arising in ISVV Level Definition, 
were taken into account for test areas and test cases designing. 

Additional tests were developed to cover the product 
behaviour at the boundaries or even beyond the limit: 

 Stress tests to verify the combinatory of the 
boundaries. 

 Robustness tests to verify beyond the constraints and 
the error propagation. 

 Performance tests to verify the software behaviour in 
operational cases; this concerns mainly the CPU load, 
the long duration. 

In the tests that software is subject to conditions beyond 
the limit, knowing that tests will fail, the aim is to get to know 
how it failed, and if the failure is observable, identifiable and 
recoverable. By this approach the system could be 
characterized under different scenarios, and operational action 
could be designed to handle eventual contingencies. 

The output of this task is a description of each identified 
test case, including the steps to be followed, expected results 
and pass/fail criteria. 

3) Implementation of test cases into test procedures 

Test procedures are the implementation of test cases, i.e., 
test cases expressed in the test language as provided by the 
SVF. The key of this activity is to achieve knowledge about 
the SVF or operational test platform. 

4) Execution of tests procedures 

Once the test procedures are written, the execution of 
validation tests can be done. Additional information about 
how to perform the tests shall be collected and later included 
in the independent validation report. 

The main outputs of this task were the results collected in 
the Log Books, which included following information: 

 Test area: Test cases are classified in test areas. 

 Test ID: Unique ID used to identify each test case. 

 Test rationale: Explains the objective of the test. 

 Test overview: Description of the aim of the test. 

 Input data: Necessary information to complete the 
test. It may include telecommands and payload data. 

 Output data: Information necessary to decide if the 
test passes/fails. Data observed or received from 
subsystem under analysis. 

 Starting conditions: System conditions in order to 
start the test. It may include the status of external 
interfaces or subsystems emulated by EGSE. 

 Steps: Brief description of the followed steps. 

 Pass/fail: Test status according pass/fail criteria 
previously stablished. 

Additional observations and test evidences were collected, 
and later included in independent validation report. 

5) Investigation of failed tests 

Failed tests shall be analysed in order to ensure that the 
detected failures are due to problems in the software under 
test, and not to inconveniences in the software validation 
facility or errors in the test procedures. 

In this stage, validation execution results were also 
reported to customer, and it was expected that both software 
customer and supplier review the validation procedures and 
results, and give additional information, especially in cases in 
which tests failed. This feedback was required to properly 
close this stage. 

6) Report of independent validation results and findings 

After reviewing the validation failed tests, complete set of 
test results was delivered to customer. A report was prepared 
describing how tests were executed, including observations 
and errors found. All Log Books containing test results, as 
well as the evidences collected, were attached to the report. 

Findings revealed during independent validation activity 
were reported and analysed separately. Risks and 
consequences associated to each vulnerability were identified 
and detailed described in the finding reports. 

VIII. CONCLUSIONS 

Activities carried out along ISVV process allowed to 
detect the main software vulnerabilities and their associated 
risks. This valuable information could be analysed and 
assessed by both software customer and supplier, and in some 
cases resulted in software modifications as well as 
documentation updates. 

REFERENCES 

 
[1] ECSS Secretariat, “ECSS‐E‐ST‐40C Space engineering - Software” 

ESA Requirements and Standards Division, March 2009. 

[2] ESA, “ESA Guide for Independent Software Verification and 
Validation”, December 2008. 

[3] ECSS Secretariat, “ECSS-Q-HB-80-03A Space product assurance – 
Software dependability and safety” ESA Requirements and Standards 
Division, January 2012. 

[4] ECSS Secretariat, “ECSS-Q-ST-30-02C Space product assurance – 
Failure modes, effects (and criticality) analysis (FMEA/FMECA)” ESA 
Requirements and Standards Division, March 2009. 

[5] ECSS Secretariat, “ECSS-Q-ST-80C Space product assurance – 
Software product assurance” ESA Requirements and Standards 
Division, March 2009. 

[6] ECSS Secretariat, “ECSS-E-HB-40A Space engineering - Software 
engineering handbook” ESA Requirements and Standards Division, 
December 2013. 

[7] ECSS Secretariat, “ECSS-E-ST-10-06C Space engineering - Technical 
requirements specification” ESA Requirements and Standards Division, 
March 2009. 

 

2016 Seventh Argentine Symposium and Conference on Embedded Systems (CASE)2016 Seventh Argentine Symposium and Conference on Embedded Systems (CASE)
ISBN: 978-987-45523-9-6   E-Book: 978-987-46297-0-8  Printed IEEE CATALOG: CFP1646V-PRT  IEEE XPLORE: CFP1646V-ART

32



Breaking the Barriers to Advanced Power 
Management in Systems on a Chip 

 

Elías Todorovich, Ramiro Carlucho, Guillermo 
Paoletti  

Fac. de Ciencias Exactas, Univ. Nac. del Centro de la Pcia. 
de Bs. As., Argentina 

etodorov@exa.unicen.edu.ar 

Ray Brinks, Silvano Rossi 
Fac. de Ingeniería, Univ. Nac. del Centro de la Provincia de 

Buenos Aires 
Argentina 

srossi@fio.unicen.edu.ar 
 

 
 

Abstract— Complexity in System on a Chip (SoC) design is 
rapidly escalating with the advent of more advanced nodes and 
the ability to integrate 100’s of cores on a single die. This 
highlights the need to understand the power consumption of the 
device in the early architectural phases of SoC design. The Power 
Analysis tooling, centered on Network on a chip, and developed 
as part of this project allows for quick iteration of power 
management topologies and tradeoffs in power management 
policies. The approach followed allows for successive iteration 
and composability of the solution as the design progresses and 
additional details become available. Flexibility is present in the 
system to assign both degree of uncertainty and replace the 
imprecise information with new information as the design 
process is completed. 

Keywords— Network on a chip; System on a chip; Power 

estimation; Programmable logic 

I.  INTRODUCTION 
Processor, memory, and peripherals are no longer the only 

key considerations of SoC design, the on-board network is the 
communication backbone that frequently determines the 
success or failure of the chip being designed.  Moores’ law and 
architectural innovations enabled a rapid development of 
processors that achieved unprecedented performance increases 
(35,000X since 1978 [1]). New, larger memories were also 
developed to satisfy the computing requirements of complex 
applications running on these powerful processors. Since 2002 
the high power consumption of air-cooled single-processors 
chips lead to a new approach to get more performance: 
multiple processors per chip. Furthermore, complex computing 
systems on a chip (SoC) continue to grow. The industry is 
witnessing an explosion in the number of processor cores and 
other programmable hardware cores in a SoC, such as DMA-
capable initiators [2]. These systems require efficient 
interconnection far more sophisticated than earlier buses with 
new challenges in system design and validation. In line with 
the reasoning above, modern network on a chip (NoC) 
technologies have technological resources available for 
functionalities unthinkable a decade ago including the ability to 
efficiently and rapidly detect power saving opportunities. This 
paper highlights (A) a new approach towards a power-aware 
SoC design, and (B) an EDA tool for power estimation in a 

NoC-based system. A case study on a modern SoC-FPGA is 
presented that validates the opportunities for power savings 
when using a state of the art NoC. 

In a NoC-based SoC, modules such as processor cores, 
memories and other intellectual property (IP) blocks exchange 
packetized data using the NoC as a subsystem for data 
transport. Network interfaces, routers and point-to-point links 
define a NoC. NoCs have the following main features: (1) 
energy efficiency and reliability; (2) scalability of bandwidth 
when compared to traditional bus architectures; (3) reusability; 
and (4) distributed routing decisions [2] [3]. 

It is possible to include power awareness in the NoC 
development roadmap based on the following ideas: 1) 
Hardware response times can save power over software 
response times, 2) Early detection of power saving situations 
represent incremental power saving opportunities, 3) Fast 
reaction to wake up events/requests minimizes the performance 
impact. An accurate power estimation environment can provide 
a better approximation of the potential power savings that 
could be obtained in the system; it also allows quick SoC 
topology iterations to understand the correct grouping and 
power partitioning to be created in the SoC. 

This paper describes the development of an EDA tool that 
coupled with a commercially available NoC, such as Sonics 
Giga Network (SGN), allows for the creation of a power 
efficient system.  Together with a correct power management 
domain partitioning various power management policies can be 
explored to determine the best tradeoffs for the design. 

II. PREVIOUS WORK 
Various aspects on NoC, including hardware, 

communication structures, application mapping issues and 
power consumption have been tackled and explored in the last 
decade [4-6], many of them focused on NoC-centered low 
power design [7-10]. Several relevant papers closely related to 
power-aware NoC have been published in the last years. 
However most of the previous work is focused on low power 
techniques applied to specific NoC components or particular 
target architectures. Unlike those papers, this work proposes a 
widespread and high-level NoC-centered power estimation tool 
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Fig. 1. SGN interconnect example. 

that enables designers to study power consumption figures at 
different stages including very early design exploration. For 
example, a high level power estimation methodology is 
introduced in [11] whereby is possible to provide cycle 
accurate power profile for enabling power exploration at 
system level for a NoC router. In [12] adaptive virtual channel 
is proposed as an efficient novel technique to reduce power 
dissipation of NoC switch. An approach focused on input 
buffers of packet-switched NoC, proposing an innovative dual-
crossbar design that combines advantages of buffered and 
bufferless networks is presented in [13], achieving satisfactory 
results in power saving over buffered networks with virtual 
channels. In [14] a preference-based multi-objective 
evolutionary decision support system is presented with the aim 
to aid NoC designers assigning and mapping a prescribed set of 
IPs into an application task graph and into a NoC physical 
structure. A power management technique based on distributed 
frequency scaling (DFS) scheme for NoC-based 
Multiprocessor System-on-Chip (MPSoCs) was implemented 
in [15]. An analytical modeling and simulation with optimal 
power and minimal IC area for a high performance NoC 
synthesis was presented in [16]. That paper introduces a 
topology generation technique for performance and power 
efficient MPSoCs using a Tabu search based optimization 
method. In [17] the authors present a solution for power-aware 
NoC through routing and topology reconfiguration, called 
Panthre, showing relevant results in reduction of network total 
power with a minimal degradation in performance.  

III. ADVANCED POWER MANAGEMENT IN A SOC 
Advanced power management is enabled by new 

capabilities present in commercially available Networks-on-
Chip (NoCs) which allow the creation of many power and 
clock domain partitions. This in turn enables chip designers to 
make finer grained power islands and leverage periods of 
inactivity in the chip sub-systems. 

A. SGN NoC 

This work is based on advanced commercially available 
NoCs from Sonics Inc., particularly the SGN technology. SGN 
is a configurable, on-chip network enabling the design of 

advanced SoC communications networks using a high-speed 
scalable fabric topology structure [18]. Target applications 
include smart mobile devices, networking, battery operated, 
wearable, and home consumer devices (See Fig. 1). 

SGN provides a high performance network for the 
transportation of packetized data, utilizing routers as the 
fundamental switching elements. Routers allow for pipelining 
and buffering, enabling designers to tailor these elements to 
their exact requirements for area and frequency. 

SGN virtual channels [19], plus non-blocking flow control, 
and quality-of-service allow advanced concurrency. Besides 
that, serialized, virtual channel based, packetized fabric reduces 
wiring area and wiring congestion. It is possible to manage 
multiple power, voltage, and clocking domains globally and 
within local subsystems. Power management allows for very 
fast wake-up and shut-down. SGN has socket support for ARM 
Advanced eXtensible Interface (AXI3/AXI4/AXI ACE,  
Limited AXI Coherency Extensions) and Open Core Protocol 
(OCP) 3.0 protocols that yields no loss of performance or area 
for protocol conversion [20][21]. AHB and APB are supported 
through optimized bridges. 

SGN IP cores, including verification IP cores, are 
configured and generated using Sonics EDA tools. An SGN 
interconnect is built using a socket-based design methodology. 
It supports industry-standard interfaces to the IP cores that 
make up an SoC. Cores connect to agents within an SGN 
interconnect that decouple the functionality of each IP core 
from the interconnect communications required among the 
cores, automatically adjusting for mismatches in data width, 
clock frequency, and protocols. This approach allows core 
designers to tailor the communications for each core, while still 
permitting SoC integrators to balance the characteristics of 
inter-core communication paths with respect to metrics such as 
latency, physical span, clock frequency usage, power domain 
usage, area, and power consumption. SGN NoCs can be 
implemented on FPGA as shown in [22]. 

This advanced communication infrastructure allows an 
arbitrary number of power and clock domain crossings in the 
fabric.  The automation present in the system can leverage the 
ease of use and need of the designer to partition the chip into 
power and clock domain islands. 

B. Power Estimation and Analysis 

The SoC can be viewed as a set of composable elements 
that merge onto a single die multiple IP blocks that carry out 
independent tasks using common infrastructure resources such 
as DRAM. In this same fashion the power utilized by each of 
the units can be viewed as a set of composable elements that 
can be analyzed independently. The Power Analysis tool 
breaks down the functionality into its sub-components and 
allows for each of these to be modeled independently. The 
modeling can be carried out at various abstraction levels 
allowing for careful analysis of critical system components and 
a more abstract representation of the less important sub-units. 

Three tasks are needed to complete the system design of the 
power management of the chip: 
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Fig. 3. Power Analysis Tool Flowchart 

 
Fig. 2. Power Domain Connections 

a) System level power and clock topology design. The 
entire SoC is partitioned into power management slices that 
can in turn be hierarchical containers for additional 
partitioning. These blocks define a set of signals that can be 
used to identify the level of activity and the ability to transition 
the slice into various stages of power conservation. Examples 
could include reducing frequency, removing clocks, reducing 
voltage levels and finally removing all power from the slice. 
The key information required includes power consumption of 
each IP core in each of its selected power management modes. 

b) The second task is to group the activity signals into 
logical equations that determine when each power finite state 
machine can advance to the next step. The power management 
events can be summarized as a set of equations with inputs 
from each of the on-chip power or clock management domains. 
This coupled with the topology chosen and the power 
management policy to be applied determines the sequencing of 
power in the system. Many tradeoffs are present at this time 
that can be explored using the tooling described in this 
document. 

c) The third task specifies the activity level in the system to 
model the power (or energy) consumption in the chip. Activity 
in each slice can be modeled using the supplied activity models 
or the event detection signals can be stimulated directly to 
create behavior patterns. It is also important to specify state 
transitions in each Slice (See Fig. 2).The activity level of each 
IP in the system is composable by power/clock domain, 
therefore the activity level only needs to be specified at the unit 
level. If no activity level is known a simpler method using 
signals that model activity can be used in lieu of the actual core 
activity. 

IV. POWER ANALYSIS TOOL 
The Power Analysis tool flow supports two starting points 

and integrates the three tasks defined above as shown in the 
Fig. 3. 

A. Power Intent (IEEE 1801-2013) 

If the design under evaluation has a Power Intent file 
compliant with the IEEE 1801-2013 [23] standard, much of the 
required information can be imported directly. The tool 
includes a parser that captures the structure of the power 
domains and declared signals. These signals are then used to 
create a set of equations that represent power management 
events that are then mapped to a power management state. In 
the absence of a Power Intent file the system can be created 

manually.  

Power Intent functions with useful information for this tool 
are: Create_power_domain, Add_power_state, 
Create_logic_net, Create_logic_port, Connect_logic_net. 

Different predefined signal activity models can be selected 
and loaded for each signal in the design. The generic models 
are specified in XML format. These files contain a set of 
constructs, parameters and values that drive the events for the 
selected signal. An event is considered a value change of a 
signal, so these models can represent single signals, part of a 
core, or a complete core. The tool reads these files and 
generates the structure to map the activity pattern to a specific 
signal in the design. Some configurability is present in the 
models that allow the user to approximate the behavior of the 
cores in the real system.  

B. Built in Models 

Not all system design methodologies use Power Intent files 
so an alternative method to quickly incorporate design blocks 
to the system is to use the pre-defined models that are part of 
the tool. The available models are: Ethernet, Generic Model, 
HDMI progressive, Serial ATA, USB, Video Custom, Video 
Processing. Each of these has various degrees of 
configurability. For example, the HDMI progressive model 
includes a description of the active video area, consistent with 
the resolution of the screen. In this way, a 1920x1080p screen 
has 1920 horizontal pixels and 1080 active lines. Apart from 
the active picture region there are blanking intervals: horizontal 
blanking, that correspond with an end-of-line, and vertical 
blanking that is the equivalent to an end-of-frame. All the 
pixels of a single line are transmitted together until the end-of-
line is triggered. After all of the lines are transmitted, the end-
of-frame is triggered. In progressive video all the lines of each 
frame are written together. The refresh rate gives information 
on how many frames are refreshed on the screen in one second. 
Two of the available parameters to the user are Width_1 and 
Height_1, the screen width and height, respectively.  

Besides these predefined parameters in the models, the user 
can define new ones with specific signal activity patterns. 
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Fig. 4. Power Domains in the Zynq Base Targeted Reference Design. 

 

TABLE 1. HP0 STATES AND TRANSITION DEFINITIONS 

State Video 

Capture 
Video Display 

ON (0) On x 

ON (1) !On On 

Standby (0) Standby !On 

Standby (1) !On Standby 

Off Off Off 

Power domain states and transitions are modeled by a finite 
state machine that is specified in a tabular format for ease of 
use by the designer (see Table 1). This abstracts the actual 
logic in the system from the RTL implementation. The Power 
Management IP block is implemented according to this 
specification to create the power finite state machines. 

Once the system is fully specified, the user sets a 
simulation time and runs the simulation to generate the power 
analysis information for the system as designed. 

The power management analysis tool provides the 
following information: 1) Log of the state changes made by the 
tool under the analyzed scenarios, 2) Time in each state of the 
simulated scenarios, and the corresponding partial and total 
power consumptions, 3) Comparative analysis of the results 
based upon scenario contrasting, and 4) Impact of different 
signals and subdomains. 

V. CASE STUDY 
The accuracy of the Power Analysis tool was contrasted to 

an actual application running on an FPGA implementation of a 
Video Processing system.  The results predicted by the tool 
were then compared to the actual results measured on the 
FPGA board. 

The selected case study is based on the Zynq Base Targeted 
Reference Design (TRD) developed by Xilinx to demonstrate 
the impact of High Level Synthesis (HLS) technologies on 
performance and developing time on the ZC702 Evaluation Kit 
[24] [25]. It implements a video processing pipeline 
implemented in Programmable Logic (PL). The AP SoC allows 
the user to implement a video processing algorithm that 
performs edge detection on an image (Sobel filter) either as a 
software program running on the Zynq-7000 AP SoC 
Processing System (PS) or as a hardware accelerator inside the 
PL. The user can switch between a software and a hardware 
implementation and evaluate the cost and benefit of each 
implementation. This TRD was selected because it has a 
complex enough video processing system that uses AXI 
interconnections and is compatible with the new Xilinx Vivado 
development tool [26]. Moreover, it can be considered a 
challenging application for power management due to the hard 
timing constraints present in full-HD image processing. In 
Vivado the interconnection network is managed as other IP-
cores in such a way that it can be replaced in a relatively easy 
fashion by the SGN NoC. Details on that NoC replacement are 
reported in [22]. 

The TRD is organized in 6 power domains in a 

compositional hierarchy as shown in Fig. 4. 

Power Domain Monitors were developed to sample specific 
signal from the NoC of each power domain. States such as On, 
Idle and Off are defined for these Power Domains as shown in 
Fig. 4. With this information, the power manager can 
determine the next state for each domain. For development 
purposes, the Power Manager is implemented so that it stores 
in the FPGA memory all the specified state transitions together 
with a timestamp. For example, in the Video Capture domain 
the monitor captures end-of-line and end-of-frame events. 

The information stored in the FPGA is accessed via 
CoreSight [27], using an ARM DSTREAM module. For 
further details, see [22]. 

The retrieved raw data needs to be imported for formatting, 
processing, visualization, and analysis using an additional 
application. This program reads the state log and shows it in a 
user friendly interface. In this way, the behavior of each Power 
Domain and the whole system can be tracked and analyzed. In 
this case 65,000 events were captured in each run. 

A unique challenge arises using an FPGA to create the 
reference design and modeling the power management effects.  
Since the FPGA fabric is essentially a single power domain 
there is little opportunity to measure the power of each domain 
in each state directly.  Therefore the project uses the 
timestamped activity and behavior to determine percentage of 
time in each state. This captured timestamp behavior is then 
contrasted to the predicted behavior from the Power Analysis 
tool.  For ease of communication of results each sub-unit is 
assigned power consumption values coming from Vivado 
estimations. Since both the modeled and FPGA designs use the 
same power factors this does not contribute an error in the 
work performed. 

A. Experimental Results 

Table 2 shows detailed results for each power domain from 
both the runs on FPGA, and the simulations on the developed 
tool. In order to increase the confidence in the results, the 

2016 Seventh Argentine Symposium and Conference on Embedded Systems (CASE)2016 Seventh Argentine Symposium and Conference on Embedded Systems (CASE)
ISBN: 978-987-45523-9-6   E-Book: 978-987-46297-0-8  Printed IEEE CATALOG: CFP1646V-PRT  IEEE XPLORE: CFP1646V-ART

36



TABLE 2. POWER DOMAIN RESULTS: ON FPGA AND ESTIMATED 

 
 Power [mW] 

Time [%] Uncertainty [%] 
FPGA Simulated Simulated 

GP0 
On 23 2.6 2.5 47.5 

Off 2 97.4 97.5 14.0 

AXI HP0 

On 56 95.5 97.3 6.7 

Standby 32 3.6 2.7 23.6 

Off 17 0.9 0.0 0.0 

Video Processing 
On 60 84.6 84.4 4.5 

Off 10 15.4 15.6 23.1 

Video Capture 

On 72 83.8 83.3 4.3 

Standby 17 12.3 12.8 13.9 

Off 1 3.9 3.9 40.7 

Video Display 

On 37 84.1 83.3 1.1 

Standby 8 11.8 12.8 2.3 

Off 1 4.1 3.9 18.0 

 
Fig. 5. Activity pattern definition in Video Capture 

experiment was run multiple times. In Table 2, the averaged 
values are shown in column Time. To represent error values 
and its influence to the user, uncertainty is introduced. It 
considers the errors in behavioral signal patterns and how they 
affect the final estimated result. When choosing a behavioral 
model the user can define a confidence level, where 100% 
indicates that the model is exact. If a lower confidence level is 
entered, the behavioral model incorporates the uncertainty in 
the timing of the transitions between power states.  

In this case study, confidence is obtained experimentally. 
The behavior of the components is known in 90-95% of the 
time, but there is a 5-10% when the behavior is random and 
hence the confidence level arises. 

In order to evaluate the developed tool, the steps explained 
in Section IV were completed to compare experimental and 
simulated results.  

The HP0 Slice states depend on its contained Slices. As 
shown in Table 1, the HP0 Slice turns off when both sub-Slices 
are off, turns on when at least one of the sub-Slices turns on, 
and is in the standby state when one of the sub-Slices is in 
standby and none of them is on. 

Video Capture configuration is based on an HDMI activity 
pattern and the corresponding parameterizable model is used. 
Thus, the Capture_HDMI signal is set as shown in Fig. 5. 

Video Capture behavior is well understood with idle time 
after each end-of-line and each end-of-frame. The power 
management states were mapped as on while reading data, 
standby after the end-of-line and off after the end-of-frame. 

The Video Display Slice uses another HDMI signal, the 
Display_Buffer, to model its activity. It is similar to the 
Capture_HDMI module. 

To configure the Video Processing Slice we know that it 
needs to run for 13,980 clock cycles and it is idle for 2,680 
cycles. A signal representing this behavior is set. GP0 is 
configured so that 2.5% of the time is on. 

Table 2 shows that the simulation and the experimental 
signal activities are almost identical in this case. In Table 3 
estimated power consumptions and potential power savings are 
reported in a real scenario, i.e., considering a mix of different 
states in each power domain. The power savings are obtained 
by comparing the power consumption of the power domain in 
the ON state during the entire execution against the power 
consumption with the power domains changing its states. It is 
clearly observed that, although a very fast response times are 
required, the effort in low power design techniques should be 
on the video-related modules. These challenging response 
times could be obtained by state-of-the-art power-aware NoCs. 
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TABLE 3. SYSTEM-LEVEL POWER RESULTS: ON FPGA AND ESTIMATED 

 
Consumption [mW] Power Saving [%] Uncertainty [%] 

FPGA Simulated FPGA Simulated Simulated 

GP0 2.5 2.5 89.0 89.0 14.9 

AXI HP0 54.8 55.4 2.2 1.2 7.1 

Video Processing 52.3 52.3 12.8 13.0 7.4 

Video Capture 62.5 62.2 13.2 13.6 6.9 

Video Display 32.1 31.9 13.1 13.8 1.9 

Global 204.3 204.2 17.6 17.7 7.1 

VI. CONCLUSIONS 
The complexity of SoC design requires understanding the 

power consumption of the device during the architectural phase 
of the project.  At this time a high level understanding requires 
very fast iterations to explore multiple topology options.  The 
Power Analysis tooling allows for successive approximations 
to the power understanding and the composability nature of the 
solution allows for replacement of sub-units as the design is 
better understood. 

A complete analysis over a medium-complexity case study 
was performed to demonstrate the proposed concept. The 
developed tool can be integrated in an EDA tool chain and it 
was shown capable of instantiating a system in a simple way 
including support for the IEEE 1801-2013 standard. The Power 
Analysis tool simulates the system under evaluation and 
computes the time in each state of the emulated scenarios and 
its corresponding power consumption. As the tool enables 
rapidly modeling, it is relatively easy to compare the results 
based upon different scenarios. Thus, the impact of different 
SoC-based power management architectures can be evaluated 
to trade-off power consumption against system complexity. 
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Abstract— This work presents an orderly path for the 

description and simplification of finite state automata (FSA) 

representation of embedded systems. This approach takes into 

account some typical features of this kind of systems, i.e. in a 

given state of a FSA, usually only a few among a large set of 

system inputs are taken into account. In addition to this, the 

system presents identical reaction to many inputs in several 

states.  These and other considerations allow the proposal of a 

modeling strategy that belongs to the “divide and conquer” 

paradigm. 

Keywords—embedded systems; finite state automata; modeling 

methods. 

I.  INTRODUCTION 

In this work, we present some methodological proposals 
concerning the adoption of an orderly description of finite state 
machines (FSM) as a formal modeling language for embedded 
applications. FSM are well suited for modeling and designing 
embedded applications and are valuable in both hardware and 
software implementations [1] [2] [3]. Nevertheless, as the 
complexity of applications grows, classical FSM approach 
suffers from a lack of hierarchical structure, which produces a 
combinatorial explosion of the number of states and transitions. 

The better a system is described, the more likely it is that a 
good implementation will emerge [4] [5]. A good FSM 
description should express with precision the required level of 
detail to understand the intended system behavior. It is 
common practice to begin with a global description of the 
system behavior and then to add details during a refinement 
process consisting in the addition of states and transitions. 
Hence, the initially ordered automaton becomes more and more 
complex, as well as less and less readable and maintainable. 
Furthermore, this procedure is error-prone, as all the 
consequences of adding new inputs and/or states are frequently 
not fully taken into account. Therefore a methodical approach 
to overcome this limitation becomes mandatory during the 
modeling and design stages. 

An approach to overcome the above-described drawback 
consists in the application of Statecharts [6], which requires 
specific professional working environments or toolboxes such 
as https://www.itemis.com/en/yakindu/statechart-tools/. On the 
other hand, as proposed in this work, it is possible apply 
practical rules such as representing many states and transitions 
as a single activity, combined with a mechanism to filter and/or 
aggregate input signals.  

The diversity of modeled systems makes it difficult to 
define methods based on a systematic application of a 
reasonable number of rules. Rather than a rigid prescription of 
steps and rules, in this work we propose to adopt a flexible 
approach based on the identification of some features that 
could characterize many systems to be modeled: (1) often only 
a few among a set of numerous inputs are taken into account at 
a given system state and (2) multiple different combinations of 
inputs usually trigger the same reaction. We also consider the 
distinction between bounded stay states (bounded states for 
short), in which the automaton remains only for a limited lapse 
of time, usually controlled by a timer, and unbounded stay 
states (unbounded states for short), where the system stays 
most of the time waiting for inputs to occur. Usually these 
unbounded states implement the main functional operations of 
the system and they can be preempted, generally by user-
triggered activities such as reconfiguration.  

This work proposes a modeling approach that belongs to 
the divide and conquer paradigm and is based in the following 
set of assumptions: 

• A given system may assume a high number of states. 
Many of them are bounded states and therefore the 
system spends a very low proportion of its execution 
time on them. On the other hand, unbounded states 
usually represent the system’s behavior in normal 
conditions that include most of the user’s functional 
specifications, e.g. an alarm system that is in a disarmed 
state. It is important to incorporate description tools 
adapted to each one of the situations mentioned above.  

• The number of system inputs may be high but most of 
the states are sensitive only to a reduced subset of input 
signals. As an example, consider an FSM that controls 
an elevator: if a state represents a floor, next state 
depends only in neighboring floor sensors, and only 
these inputs are relevant for transitions to a new state.  

• Usually, there exist many different inputs to which the 
system produces the same output from many of its 
internal states. As an example let us consider a system 
where the input of any critical sensor has to trigger an 
alarm, no matter in which state the system is.  

It would be desirable to be able to take advantage of the 
characteristics of the assumptions described above.  
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To illustrate how these features could be exploited to build 
a simpler FSA model of reactive systems, the case study of a 
home alarm system will be briefly described. 

II. CASE STUDY: A HOME ALARM SYSTEM 

A. General Description 

In a high level of abstraction, the behavior of a home alarm 
system may be described by a FSM with only three states:  
INACTIVE, DISARMED and ARMED.  

B. Refining the Model 

The ARMED state can be refined by adding new states that 
describe different armed behaviors. 

• ARMED PRESENT: allows the presence of people 
inside the house, some sensors are inactive but not all. 

• ARMED ABSENT: all sensors are active.  

• ARMED PRESENT FORCED: similar to “armed 
present” but faulty sensors are deactivated. 

• ARMED ABSENT FORCED: similar to “armed absent” 
but faulty sensors are deactivated. 

• ARMED TEMPORARY: intermediate state that allows 
the transition between PRESENT and ABSENT states. 
Some sensors are activated after a predefined time 
interval so that the user may leave the house. 

Likewise, the DISARMED state needs to be refined by 
adding a new state DISARMED TEMPORARY: some sensors 
are temporarily disarmed to allow entering the premises. 

It should be considered that to perform a transition from an 
ARMED state to a DISARMED state, a password consisting of 
five numerical keys followed by a special “Enter” key has to be 
typed. Thus, a refined state diagram would have to add six 
intermediate states. It becomes clear that successive refinement 
operations would lead to a rapid growth of the number of states 
and transitions, resulting in an unreadable state diagram.  

In many cases, similar to the one described above, the 
system behavior has to include particular sequences of 
intermediate states. Each of these sequences will be called an 
“activity”. This kind of activity may induce purely sequential 
thinking, which is error-prone. A common error of sequential 
thinking results from not taking into account other possible 
parallel events that could disrupt the main sequence (e.g. 
entering a password). In this case the first digit of the password 
would lock the system in waiting only for the following 
numerical keys. Taking into account all possible pre-empting 
events results in even a more complex state diagram. The 
following sections introduce the definitions and tools necessary 
to simplify the FSA that represents a given system.   

III. SIMPLIFYING TOOLS 

A. Initial Definitions 

1) Reaction: 

Let a system be in state Si, a reaction to a system 
combination of inputs may consist on at least one of the 
following actions: (1) there is a transition from Si to Sj and (2) 
there are new outputs from the system. 

2) Stimuli: 
A stimulus is a combination of input signal values that 

causes a system reaction at a given state of the system, i.e. 
there is at least one system state Si such that if Si is active and 
the stimulus takes place, there will be a reaction. It is important 
to note that, depending on the state assumed by the system, the 
same combination of inputs might not get any reaction. 
Likewise, the same stimulus may cause different reactions in 
different states of the system. 

3) Activities: 
Let the system be in an initial state Si, an activity is defined 

as the complete sequence of stimuli, reactions and bounded 
states that allows the system to transition to a new state Sj.  

We note that usually Si and Sj are unbounded states, 
although this is not a necessary condition. On the other hand, 
states that belong to an activity have to be bounded states.   

As an example, consider the activity that takes place in the 
system described in the case-study to transition from an 
ARMED state to a DISARMED one: the user has to input a five 
number password and an “enter” key in order to disarm the 
system.  The user has a limited amount of time to perform this 
operation; otherwise a time-out will abort it.  

According to the number of stimuli, it could be useful to 
classify activities into: 

• Atomic activities triggered by a single stimulus. Other 
stimuli cannot interfere in any way. As an example, let 
us consider the case study again. Suppose there is one 
key “ARM”: pressing it generates an atomic activity 
that brings the system to the ARMED state.  These 
activities are fast when compared to the time elapsed 
between any two stimuli. 

• Non-atomic activities composed by a succession of 
stimuli and their corresponding reactions. This kind of 
activities could be exclusive or not. Exclusive activities 
should be considered as atomic activities, since no 
interference is possible. On the other hand, non-
exclusive activities could be pre-empted by one or more 
activities before they get to the final state of the 
sequence. As an example, consider the case study 
previously described: if a user types a five-digit 
password to disarm the system and a sensor is activated 
in parallel, the alarm should go off and the input activity 
aborted.  

We point out a functional difference between atomic 
activities and exclusive non-atomic activities: an activity 
composed by only one stimulus is atomic “per se” whereas a 
non-atomic activity has to be defined as exclusive or not by the 
designer, in response to system requirements and 
specifications.   
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B. Sequences of bounded states viewed as activities 

Consider the case of a system transition between two states, 
S0 and Sn, which goes through n-1 bounded states, as illustrated 
by Fig 1. 

S0 S1
... Si

... Sn

σ0/α0 σ1/α1 σi−1/αi−1 σi/αi σn−1/αn−1

 
 

Fig. 1. A sequence of bounded states. 

The sequence is triggered by stimulus σ0 and the system 
transitions through states S1; S2; …; Sn-1 up to state Sn  

producing a sequence of actions α0; α1; …; αn-1 in response to 
particular stimuli σo; …; σn-1 . In the simplest case, when this 
sequence is atomic, i.e. it cannot be interrupted by any other 
stimulus, it can be defined as an activity and the state diagram 
can be simplified as in Fig. 2, by using the statechart style of 
description [4]. Strictly speaking the activity includes 

transitions σo/α0, σn-1/ αn-1 and super state A.  

S0

A
Sn

σ0/α0 σ1/α1

 

Fig. 2. An atomic activity represented in a statechart.  

In many cases the activity is required to be non-atomic. The 
sequence from state Si to state Sk may be preempted by 

stimulus σp. This can be modeled by super state Sp (a statechart 
OR state). The statechart language offers the possibility to 
restore the state that was active at occurrence of the preempting 
stimulus, by using a history connector, as illustrated by Fig. 3. 

S0

Sp

H

Sn

Sm

σ0/α0 σn−1/αn−1

σp/αp

σm/αm

 

Fig. 3. Preemting stimulus in the statechart diagram.  

A simpler approach is shown in Fig. 4: a thick arrow, called 
activity “A”, replaces the sequence of Fig. 1. Stimulus σp may 
be considered as a starting stimulus of a different activity; the 
problems of interaction among activities are left to a 
subsequent and separate step of the divide and conquer 
technique.  Thus, it will not interfere with the simplicity of the 
high level description being introduced. 

S0 Sn

A

 

Fig. 4. Activity A hides the complexity of interaction among activities 

A tool to analyze interactions among activities consists of 
an interaction table that will be presented in a follow-up article. 
Statecharts may be also used in this new step to further refine 
the description of activities interaction. 

C. Differential perception of stimuli 

Activities are reactions of the system to one or more stimuli 
and result in output signals (external reaction) and/or changes 
of state (internal reaction). Different states may allow different 
system reactions to the same stimulus. 

1) Stimuli perception: when the system transitions from 

state Si to state Sj, the set of awaited stimuli changes. Some 

stimuli in Si do not affect Sj , hence they are not stimuli of Sj. 

It is said that in Sj the system has no “perception” of some 

stimuli that affect Si.  

2) External reaction to stimuli: the system outputs due to 

the same stimulus may be different depending on the system 

state. 

3) Internal reaction to stimuli: from a state, Si, the system 

may transition to different states depending on the next 

stimulus occurrence. 

D. Unifying states 

Let a subset of states S of a system be such that: (1) 

identical perceived stimulus generates the same external 

reaction on every state of S, and (2) any transition caused by 

identical stimulus to different states of S may bring the system 

to any state belonging to S or to a unique state Q out of S. 

Then S can be unified in a single state U, yielding a simplified 

state set. Note that states in S may not react to the same 

stimulus but if they do, the external reaction must be equal for 
each one of them. Different states may only transition to the 
same state out of S under identical stimulus.  

In order to show that the previous statement is true, it 
suffices to take into account that transitions among states may 
be produced only in the following cases:  

1) Self-loops on U that change the perception of stimuli, 

are equivalent to transitions between states belonging to S. 

2) Outgoing transitions from states in S to states not in S, 

caused by the same stimulus, lead to a unique state Q with the 

same external reaction by definition. Therefore they can be 

replaced by a single transition from U to Q. 

3) Transitions, caused by the same stimulous, entering to 

any state of S from a state W not in S, can be replaced by a 

unique transition from W to U, since subsequent reactions will 

be identical following the two previous points. 

Therefore, stimuli that cause the same reaction from any 

state in S will give the same reaction from state U and the 

behavior of the system is not modified.  

We remark that our approach to simplifying FSMs differ 
from those related to non-completely specified automata 
models [7]: modifying system perception ensures that any input 
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stimuli not specified for state Si will never be present when this 
state is active. 

Although minimization algorithms [8] are based on the 
formal definition of state equivalence relations, the 
simplification showed above is not: states in S may be unified 

in U even if they do not react to the same input sequence. 

Furthermore, one state Si in S may react to a given stimulus 

whereas other State Sj in S may not “perceive” it.  

It follows that the simpler equivalent state diagram contains 
not only states and activities, but also different perceptions of 
stimuli.  

E. Modifying System Perception 

To implement the modification of the system perception as 
a consequence of transitions in the state diagram, a simple 
stimuli-masking operation is carried out. Each activity leading 
to a new state of the system must perform this operation when 
necessary.  

Consider, as an example, the case of up to 64 binary 

stimuli, ordered as a 8x8 matrix Σ. Each position (i, j) 

represents a stimulus. Σi,j = 1 means that stimulus (i, j) is 

present, whereas Σi,,j = 0 means it is not. Let the matrix PM
k
 be 

the perception mask of activity k such that PM
k
i,j = 0 if stimulus 

(i ,j) is masked out for activity k and PM
k
i,,j = 1 if if it is not. 

The perceived stimuli matrix for activity k, PS
k
, is given by: 

                                    PS
k
 = Σ ∧ PM

k
                              (1)  

The input/output subsystem updates matrices Σ and PS
k
 [9]. 

The last executed activity updates matrix PM. Perception 
matrices may be constant and fixed beforehand for each 
activity or they may vary, depending on the particular system 
that is being modeled. 

IV. EXAMPLE: CASE STUDY REVISITED 

To illustrate the case of a state diagram simplified by means 
of activities, consider the alarm system introduced in section 2. 
Fig. 5 shows a high level state diagram that we will describe 
now. 

Initially, all sensors are disabled and the system may react 
only to input keys, as the only allowed activity consists in 
decoding a special password. The present state is INACTIVE. 

Once the special password is entered, the perception of 
permanent sensors (fire and anti-tampering) is enabled. A 
stimulus coming from any perceived sensor would trigger the 
alarm. The system stays in state DISARMED. 

The arm-present activity adds the perception of external 
sensors, allowing for the movement of people inside the house. 
Perceived stimuli would trigger the alarm. The system gets to 
ARMED PRESENT state. 

The reader may easily check that the ARMED PRESENT 
FORCED state is similar to the ARMED PRESENT state, 
except that the transition activity does not enable the perception 
of sensors, which, due to malfunctioning or other reasons, 
remain active. A similar case occurs with other ways to arm the 
system, i.e the ARMED ABSENT state. 

Every different way of arming the system would require a 
new different armed state (i.e. ARMED PRESENT, ARMED 
ABSENT, …). The fact that each arming activity modifies the 
system perception allows unifying them in a unique state 
ARMED, as shown in Fig. 5.  Since not all of the systems 
arming activities are represented in Fig 5 for simplicity’s sake, 
every activity and the way it affects perceptions of the system 
is presented in Table I.  

The system admits two different passwords: one to 
transition between INACTIVE and DISARMED states, and 
another one for switching between DISARMED and ARMED 
states. To define which of the many arming activities will take 
place, the user has to type a function key before the password. 

In order to disarm the system, the user needs to get into the 
house through a path of delayed-sensors and enter a password. 
The first activation of a delayed-sensor will enable a time-out 
action (TIMER2) that consists of masking out the whole set of 
these sensors for a short time. If TIMER2 expires before typing 
the right password, the system stays in the ARMED state and 
the alarm is triggered. 

 

Inactive Disarmed Armed

Special password /
Enable permanent sensors

Permanent sensor activation /
Trigger alarm

Password /
Enable non delayed sensors &
Start delayed output timer

Expiration delayed output timer /
Enable delayed sensors

Non delayed
sensor activation /
Trigger alarm

Delayed sensor activation /
Start delayed input timer
& Disable delayed sensors

Expiration delayed input timer /
Trigger alarm

Password /
Disable non permanent sensors

Special password /
Disable permanent sensors

 

Fig. 5. High-level state diagram of the alarm system. 
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TABLE I.   

Activity 

Perception Changes 

Initial 

State 

Final 

State 
Effect on Perception 

Special password 

1 2 Enable permanent sensors 

2 1 Disable all sensors 

Password 
2 3 Enable non delayed sensors 

3 2 Disable non permanent sensors 

Expiration delayed 

output timer 
3 3 Enable delayed sensors 

Delayed Sensor 

Activation 
3 3 Disable delayed sensors  

a.
 Effect of Activities into the system perception 

A future version of the system may require arming a 
particular zone Z of the house whereas the rest remain 
unarmed. It is straightforward to define a new perception 
matrix that would allow only permanent sensors and Z sensors 
to be active. A new activity ARM ZONE would add this new 
perception matrix when bringing the system to the ARMED 
state. This example shows that the simplifying tools provide an 
important contribution to the maintainability of the system.  

V. CONCLUSION 

Activities are the main tool to build a simpler state 
representation of FSMs mainly due to the following reasons: 
(1) they change the perception of a system, thus allowing many 
equivalent states to be unified, (2) they contain bounded states, 
providing a way to further reduce the number of states, and (3) 
they provide an upper level of abstraction. Activities 
interactions do not need to be considered. This can be left for a 
following step. Statecharts and many tools from real time 
systems [10] may be used at this stage. 

The example revisited in section IV shows that the tools 
introduced in this article contribute to better system 
maintainability. We believe that there are many systems for 
which these tools could bring the same advantage.  

Complexity and memory requirements of this simple 
representation are transferred to activities and perception 
masks. This new approach may be considered as a way to 

apply the divide and conquer strategy, yielding a simpler 
higher-level hierarchical representation.  

The activities approach allows the definition of software 
threads for their implementation in a programmed logic 
environment, such as a microcontroller, for an embedded 
system.  

Bounded states, belonging to activities, usually differ in 
functionality from unbounded ones. The former are often 
related to exceptional cases, usually not present in the early 
phases of user specification. They may represent unusual and 
complex conditions, which could affect important features of 
the system such as security, reliability and disponibility. Since 
activities may be carried out as software threads, their design 
can be carried out with well-known programming languages 
(C, for instance).  
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