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Abstract—A digital H controller for a two-terminal cryogenic current comparator is designed. To this end, a set of mathematical 

models covering the actual system is proposed. Simulation results compare the open and closed loop systems based on the proposed 

controller and the traditional integral control. According to these results, the new controller can significantly reduce the noise in the 

SQUID sensor. 

 

Index Terms—Current comparators, current measurement, H-infinity control, resistance measurements, Superconducting 

Quantum Interference Device (SQUID). 

I. INTRODUCTION 

HE cryogenic current comparator (CCC) bridge is widely used in high accuracy metrology. It is the chosen system for many 

national metrology institutes (NMIs) to calibrate standard resistors against the quantum Hall resistance. In this system, a SQUID 

sensor (Superconducting Quantum Interference Device) is used to fix the current ratio. A SQUID can detect extremely small 

changes of magnetic field and it is a non-linear device. This combination of characteristics can produce rectification, flux jumps 

or saturation of the SQUID controller. These non-desired effects can increase the standard deviation, produce systematic errors 

[1] or even impede the measurement. Since its origin, the SQUID stabilization and a low null error were obtained using an 

analog integral controller. Recently, more complex control strategies have been applied. For example, some NMIs have included 

digital filters in the current sources [2] or have used feed-forward techniques [3] to decrease the effect of the time constants 

difference between the arms of a four-terminal CCC. In addition, a national metrology institute has presented a dynamic model 

of the CCC and a control strategy [4]. In a more recent publication, a high frequency control loop has been applied to decrease 

the effect of noise in the SQUID [5]. Besides these works, little has been published on the dynamic model of the CCC and its 

control.  

Our work presents analysis, synthesis and simulations that contribute to understand the CCC dynamic behavior and obtain a 

better stabilization. Here, an H controller is applied to a particular case, a two-terminal cryogenic current comparator [6]. The 

goal of the H control technique is to synthesize a controller that stabilizes and keeps the output of the system below a given 

threshold for a class of exogenous disturbances and a set of models that represent the physical system. This is achieved 

minimizing the infinity norm of the transfer function from the disturbance to the output [7], [8]. Robust control theory was 
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developed in the early 1980s and has been applied to many complex systems since then. 

II. TWO-TERMINAL CCC MODEL 

The two-terminal CCC has been fully described in [6] and [9]. Each resistor (R1,2) to be compared is connected in series with a 

winding (N1,2) forming the two arms of the bridge, see Fig. 1. A direct voltage source (v(t)) is connected in parallel. The 

magnetic fluxes produced by the resistor’s currents (i1,2(t)) have opposite directions and the flux difference is measured with a dc 

SQUID. The bridge is balanced using the SQUID output voltage to drive a feedback current (iF(t)) in a third winding (NF).  

 

As a first approximation, the cryogenic current comparator can be modeled like an adder element [4]. The CCC takes the 

advantage of the magnetic shielding properties of superconductors. Using Ampere’s law, the relationship between the winding 

currents and the screening current (iscreen) in the superconductor shield is obtained [10]. 

 

        FF2211screen NtiNtiNtiti                                                           (1) 

At high frequencies, the effective currents in the coils are different from the currents at the resistors due to the stray 

capacitances [11]. The coils have their own parasitic capacitance and a coupled parasitic capacitance with its neighbors; each 

coil-capacitance combination has an associated resonant frequency. To study this problem we propose the following simplified 

electrical model, see Fig. 2. We take only three windings, the primary, the secondary and the feedback winding. The first two 

windings are resistive whereas the last one is superconducting. A more complex model can be used, but this would increase the 

complexity of the controller.  

Some assumptions were considered: 

a- The primary winding has the maximum value of turns and the largest stray capacitance (C1) in the CCC. 

b- The control bandwidth is limited by the self-resonant frequency of the winding with maximum number of turns. 

c- Based on the previous points the effect of the stray capacitances of the windings, except for the primary, can be 

neglected.  

d- The superconducting shield reduces the effective inductance of the windings due to the image effect [12]. 

e- The SQUID detector is considered with the flux lock loop on. The inputs to the model are small in order to maintain 

this feedback locked, e.g. no SQUID’s output voltage saturation. 

 
Fig. 1.  Diagram of the two-terminal CCC. Note that if i2(t)=0 the system will be quite similar to an ultra-low current amplified based on a CCC. 
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f- The simplified electrical model is considered to be linear and with concentrated parameters. With this hypothesis the 

superposition principle can be applied. 

 

In this simplified model, the primary coil is replaced by a capacitor (C1), a resistor (RW1) and an inductor (L1), whereas the 

secondary winding is replaced with a resistor (RW2) and an inductor (L2), due to assumption c-. Since the feedback winding is 

superconducting, it is represented with an ideal inductor (LF). The current iL1(t) in the ideal inductor L1 will depend on the 

primary resistor current, secondary and feedback currents. Applying the superposition principle, iL1(t) can be calculated as the 

sum of the current in L1 produced by i1(t), i2(t) and iF(t), one at a time. 

The current flowing through the secondary and feedback windings will induce a current in the primary coil. This behavior can 

be modeled with a transfer function and it can be calculated applying Faraday’s law and solving the electrical circuit. First, we 

calculate the transfer function from the feedback current, Fig. 2(b). The mutual inductance between the primary and feedback 

windings is represented by M1F. The voltages vC1(t) and vL1(t) are the ones across C1 and L1, respectively.  
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     tvRtitv 1L1W1L1C                                                             (4) 

To solve the set of linear equations we use the Laplace transform, where ‘s’ is a complex variable represented by s=j·ω 

(Fourier transform), with ω the frequency. We include a subscript in the primary inductance current to indicate that it is 

produced by the feedback current. To distinguish between model representations, Laplace transform variables are written in 

uppercase and the time variables in lowercase.  
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TL1F(s) is the transfer function from the feedback current to the current in the primary winding. We can calculate the transfer 

function from the secondary winding (TL12(s)) in the same way, where the mutual inductances and the respective subscript has to 

be replaced. Also, the current flowing in L1 as a function of I1(s), as in Fig. 2(c), can be calculated. Again, a subscript in the 

 
Fig. 2.  (a) Simplified electrical model of the two-terminal CCC. To study this circuit we applied the superposition principle, the sources are turning on 
one at a time, (b) and (c). 
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primary inductance current was included to indicate that it is produced by the current through the primary resistor. The resultant 

transfer function is called TL11(s).  

 

     sIsTsI 111L11L                                                                              (7) 
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Comparing the equations (6) and (8), for large R1 the denominators become identical. Now, we write the Laplace transform of 

equation (1) and replace the primary current by the effective winding current.  

 

        FF2211Lscreen NsINsINsIsI                                                                      (9)   

Next, the effective current in the primary winding is replaced by equations (5) and (7). For simplicity, the complex variable is 

omitted in the following equations. 
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Variable ΦF(s) represents the total feedback flux and ΦI(s) the flux generated by the primary and secondary currents, both in 

ampere-turn (AT) units. The screening current is sensed with a dc SQUID. The relationship (GCCC(s)) between iscreen and the 

input flux in the SQUID (ΦSQ(s)) can be calculated like the inverse of the current linkage.  

 

        sssGs FICCCSQ ΦΦΦ                                                                                (12) 

Finally, the SQUID – from the flux input to the output voltage (VSQ(s)) – is simulated like a low pass filter TSQ(s), by 

assumption e-.  

          sssGsTsV FICCCSQSQ ΦΦ                                                                        (13) 
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III. SET OF MODELS 

A block diagram of the whole system is shown in Fig. 3. Input ‘D(s)’ is a voltage perturbation that is connected to the 

SQUID´s output. It represents the Johnson noise, mechanic vibrations, external noise or SQUID noise. Variable ‘ΦI(s)’ is the 

reference input and it depends on the resistor’s values, the applied voltage and the dynamics of each arm of the two-terminal 

CCC. These dynamics are outside the feedback loop and cannot be controlled. For this reason, we are not interested in a precise 

determination of TL11(s) and TL12(s) transfer functions. Only for simulation purposes, they can be calculated at ambient 

temperature. A different situation holds for transfer function TL1F(s) because it is inside the feedback loop. This function is 

affected by the resistor under test and by the image effect of the superconducting shield. In addition, by assumption c-, the stray 

capacitance of all other coils, except for the primary, were neglected. This could be unrealistic, i.e. feedback induces a current in 

each winding which will decrease the total feedback flux. Robust control approaches this problem by representing the physical 

system behavior with a set of models, instead of a nominal one, and designing a controller that will provide stability and 

performance to this whole set [7], [8]. Performance is defined here as the rejection in output Y(s) of a set of exogenous 

disturbances D(s), i.e. bounded norm of Y(s) for all disturbances D(s) in the set   1)(
22

2
 




dttdtd . Here, the norm of Y(s) is 

also measured as the energy integral and d(t) is the signal that corresponds to the Laplace transform D(s). It is a more 

conservative solution but it guarantees (robust) stability of the entire model set and hence of the actual system, contained in it. 

To define the model set, first rewrite equation (13) where input ‘ΦI(s)’ has been eliminated. 
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)(                                                     (14) 

The set of models used to synthesize the controller can be described as a set (Ψ) of transfer functions G(s) centered in the 

nominal model G0(s), which is the negative of the SQUID’s transfer function times the CCC gain, figure 4. Note that NF is equal 

to 1. 

     1sW1sGsGsG 0   ,)(:)(                                                    (15) 

To this end, all possible transfer functions N1·TL1F(s) in equation (14) for the envelope of possible parameters, are covered by 

 
Fig. 3.  Complete block diagram of the two-terminal CCC, it is equivalent to equation 13. The controller box K(s) represents the original integral (Ki(s)) or the 
H∞ controller (KH(s)). In the feedback loop, a switch is included to indicate where the loop is opened. 
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a weight WΔ(s) that represents the frequency distribution of model uncertainty times the bounded uncertainty , with 1 . 

This structure is called multiplicative dynamic uncertainty in the robust control jargon and quantifies the set of models that 

covers the physical system. In robust control, model uncertainty is the (frequency dependent) radius around the nominal model 

and represents a deterministic quantification of the lack of knowledge of the nominal model with respect to the physical system. 

This should not be confused with uncertainty in the metrological sense. 

The uncertainty weight is obtained by simulating the transfer function N1·TL1F(s) in extreme situations, as illustrated in Fig. 5. 

The two-terminal CCC under study has been specially designed to measure high value resistor (HRCCC) and it has five ratio 

windings: one of 3100 turns, another of 310, two of 31 and one of 4 turns. The first four windings have been made with resistive 

wire of phosphor-bronze. For simulation purpose, we considered the primary winding with 3100 turns, the secondary with 310 

turns and the superconducting feedback winding of 1 turn. The first two windings have nominal resistances of RW1=2800 Ω and 

RW2=280 Ω, respectively. The current linkage was measured during the system setup, 3.9 µAT/Φ0. The SQUID’s cutoff 

frequency was obtained from its specification – 50 kHz [13] – and the DC gain was measured. This value is usually called flux 

sensitivity and in our case it is 0.72 V/Φ0. The inductance of the primary winding was selected equal to the theoretical value 

1.14 H and the capacitance value C1 was chosen in such a way that the resultant resonant frequency agrees with that obtained in 

the measurement of the spectrum. Proportional values were used in others windings. The mutual inductance between the 

feedback or secondary coil and the primary were calculated with the worst case coupling factor, 1. 

First, the value of the primary resistor can attenuate the resonant peak and increase the low frequency gain of the function 

N1·TL1F(s). This is shown in Fig. 5, the dotted line is the function N1·TL1F(s) with R1 equal to 1 GΩ and the dash-dot line with R1 

equal to 1 MΩ. In addition, the effect of other winding resonances can be simulated; the fluxes produced by the induced currents 

in each winding will have the same direction. The dashed gray line shows this situation with four ratio windings, the resistance 

connected to each winding was the estimated isolation resistance, 10 TΩ. Also, the behavior of N1·TL1F(s) with others 

parameters, e.g. inductance, was studied but no significant changes were obtained. Finally, the solid blue line represents the 

proposed uncertainty weight. To improve closed loop performance, the proposed weight does not completely cover all curves of 

the transfer function N1·TL1F(s) above 0 dB. This is possible because 0 dB represents 100 % relative model uncertainty and at 

that value, from a control point of view, it is irrelevant if the design uncertainty represented by WΔ(s) is larger or not, while it 

remains above 0 dB. In some sense, weight WΔ(s) is used as a tuning parameter: a better performance will be obtained at 

frequencies where its absolute value is lower. 



 
 

7

 

Fig. 6 shows the calculated transfer function from the primary and feedback current to the SQUID’s voltage. This simulation 

and the following were performed with the same primary inductance and resonant frequency that before, R1 equal to 1 GΩ and 

R2 equal to 100 MΩ. Clearly, both transfer functions are dominated by the lower resonant frequency corresponding to the larger 

inductance. This result is coherent with the literature [4] and with experimental observations. The transfer function from the 

feedback current amplified above 100 dB signals below 10 MHz and the DC gain is proportional to the winding number. Hence, 

this huge gain is the key feature of the CCC, although it also amplifies undesirable signals that can decrease the SQUID 

performance. For this reason, the main objective in the CCC design is the attenuation of any type of noise. Fig. 7 shows the 

response of the open loop system to a current step of amplitude 1 μA in the feedback winding. 

 
Fig. 5.  The dash-dot and dotted lines are the simulations of function N1·TL1F(s) for different values of the primary resistor. The dashed gray line shows a 

situation with four windings. The proposed weight is in solid blue line. 

 
Fig. 4.  Simplified block diagram of the set of models used to synthesize the controller. CCC-based amplifier and four-terminal CCC can be represented with 
this diagram with small modification.  
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IV. CLOSED LOOP BEHAVIOR WITH INTEGRAL CONTROL  

In the HRCCC the original controller is a low pass filter followed by an integrator and a Howland current source. We 

calculate the controller’s transfer function from the circuit scheme. The low pass filter has a cut-off frequency of 122 Hz, the 

Howland source has a fixed gain of 1·10-4 Ω-1 and the calculated transfer function (KI(s)) has to be multiplied by the number of 

turns of the feedback coil, in this case only one turn.  

   67766ss

670
sKI .

.


                                                                             (16) 

The following figures show the step, impulse and frequency responses of the transfer function from the primary current input 

to the ‘Y(s)’ output. Clearly, the integral control attenuates low frequencies and this produces that the SQUID output voltage 

tends to zero for the step response, as seen in Fig. 8. On the other hand, the CCC is working as a bandpass filter with a huge gain 

of 200 dB near the resonant frequency (see Fig. 9). This produces that high frequency components at the input are amplified. For 

example, a spike in the voltage source can produce a flux jump or saturation of the SQUID controller and this can be studied 

with the impulse response, as illustrated in Fig. 8. 

 
Fig. 7.  Step response of the open loop system. The primary RLC circuit produces high frequency oscillations that can decrease the SQUID performance. 

 
Fig. 6.  Calculated transfer function of the open loop system from the primary current (TVS1(s)) and from the feedback current (G(s)) to VSQ(s). The SQUID’s 
voltage spectrum, without feedback, is showed in the inset.  
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V. CLOSED LOOP BEHAVIOR WITH H∞ CONTROL  

Based on the previous sections we find a main problem in the HRCCC, the wide bandwidth of the CCC and the slow integral 

feedback produce a huge amplification of the resonant frequency. In the literature we can find only one work where this problem 

was considered [5]. There, a high frequency loop in the SQUID was established to decrease the effect of high frequency noise 

and the SQUID sensor was specially designed for that purpose.  

Here we propose an H∞ controller that closes the loop in the traditional feedback winding. This optimal method has been used 

successfully for more than 20 years and a numerically robust toolbox is available to design controllers. In this case it adequately 

fits the statement of the problem and improves over previous techniques by considering sets of models and disturbances. A 

trade-off design was achieved in order to find an optimal controller that maintains the closed loop system (robustly) stable 

despite uncertainty in some parameters for a class of inputs, while increasing disturbance rejection. This controller was designed 

based on a mixed sensitivities structure using the -iteration algorithm [7], [8]. The following equation shows the transfer 

 
Fig. 8.  Response to an impulse and step current of 0.1 pA in the primary resistor with integral control. The system amplifies more than 5·1013 times a spike in 
the voltage source. 

 
Fig. 9.  Frequency response of the transfer function from the primary current input to the SQUID’s output with integral control (dash-dot line) and with H∞ 
control (solid line). The system with integral control amplified more than 100 dB signals between 0.1 Hz and 100 kHz. In addition, the resonant frequency is 
amplified by 200 dB. The new controller has better attenuation of undesirable signals from DC to 1.3 kHz.  
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function of the H∞ controller, KH(s), which at low frequencies has an integral action.  
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Fig. 9 shows the frequency response of the closed loop system. Compared with the integral control, the new controller 

decreases the effect of high frequency noise more than 20 times and the resonant peak by a factor of 3. It also has better step and 

impulse responses, as seen in figures 10 and 11. These simulations show that the H∞ control reduces the effect of undesirable 

signals in the CCC inputs. For example, for power line frequencies (50 or 60 Hz) the new controller attenuates 21 dB more than 

the traditional integral control. 

The transfer function from perturbation D(s) to output Y(s) is compared in the integral and H∞ controller cases in Fig. 12. 

Here again, the new controller attenuates the perturbation 20 times more and therefore the effect of the noise generated or 

coupled to the CCC or SQUID will be much lower. 

 

 
Fig. 10.  Response to a step current of 0.1 pA in the primary resistor with integral control (left) and H∞ control (right). These simulations were made with 
the same parameters than before but the inductance of the primary coil was (from top to bottom) 2 H, 1.14 H and 0.1 H. With the new controller the settling 
time drastically decreases but the amplitude increases by 10 %. 
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VI. CONCLUSIONS AND FUTURE RESEARCH 

The simulations show that the robust control can be successfully applied to a two-terminal cryogenic current comparator. 

Measurement systems with better noise rejection can be designed and this can impact in lower standard deviations and 

systematic errors. Simulations show that the noise in the voltage source or in the SQUID is attenuated 26 dB more than with the 

original (integral) controller. The two-terminal CCC is quite similar to a CCC-based current amplifier [14]. In this way the 

results presented in this paper can be applied, with small modifications, to Single Electron Tunneling (SET) measurements and 

quantum metrological triangle. In addition, this work can be extended to a four-terminal CCC. 

The resulting H∞ controller has to be implemented with digital technology and a higher frequency bandwidth will result in the 

 
Fig. 11.  Response to an impulse current of 0.1 pA in the primary resistor with integral control (left) and H∞ control (right). These simulations were made 
with the same parameters than figure 6 but the inductance of the primary coil was (from top to bottom) 2 H, 1.14 H and 0.1 H. With the new controller the 
settling time drastically decreases and the amplitude remain constant. 

 
 
Fig. 12.  Transfer function in log scale from the perturbation D(s) to the output Y(s) with the H∞ controller (solid line) and the integral controller (dash-dot
line).  
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feedback loop. To calculate the resistor’s ratio, the feedback current has to be measured at DC. High frequency components 

could affect this measurement therefore extra filtering could be necessary. To avoid this, two feedbacks loops could be used, one 

for low and the other for high frequencies (see also [5]).  

In this work we assumed a complete lack of knowledge in the model above 1.5 kHz. If a model identification process of the 

physical system is performed, the uncertainty weight could be decreased and as a consequence, the closed loop performance 

could be increased even more.  
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