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Identification and Control of a Cryogenic Current
Comparator using Robust Control Theory

Marcos E. Bierzychudek, Ricardo S. Sánchez-Peña, and Alejandra Tonina

Abstract—This paper presents the model identification of a
cryogenic current comparator (CCC). A dynamic model set is
obtained and compared with experimental data in order to
provide a realistic dynamical behavior of the system. To improve
the performance of the CCC, an H∞ optimal controller is
designed based on this model set. In this framework, a robust
stability guarantee is provided and simulations of the closed-loop
system illustrate the performance and robustness improvements.

Index Terms—Current comparator, H∞ control, metrology,
resistance measurement, SQUID.

I. INTRODUCTION

THE outstanding sensitivity and accuracy of a cryogenic
current comparator are based mainly on its supercon-

ducting inner shield and on the superconducting quantum
interference device (SQUID). The shield provides negligible
ratio errors, and the sensor can detect fractions of the mag-
netic flux quantum [1]. However, the SQUID has nonlinear
dynamics and a limited slew rate. Hence, high frequency
signals and noise can affect its performance or even impede
the measurements. So a common guiding principle is to design
the electronics, cables, screens, etc, with a focus on the best
SQUID performance.

This work follows the same approach by applying robust
control theory to the problem. The aim is to find a controller
that improves the SQUID performance and allows faster
current reversals. To this end, the feedback bandwidth must be
equal to the working frequency range [2] in order to attenuate
high frequency signals at the sensor input, including distortion
created on current reversal. Traditional integral control is
limited by the CCC self-resonant frequency [3], as Fig. 1
shows for a two-terminal CCC [4], thus a different control
framework has to be applied.

In a previous work [5], the authors developed a theoretical
model of a CCC and a H∞ controller design. In this article
the model is adjusted using an identification procedure and
validated by experimental data. The first step of this process is
to obtain the parameters of the model, for example inductance
and resistance, from data and/or specifications. Next, the initial
model is adjusted with respect to several frequency responses
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Fig. 1. Absolute value of the frequency response measurements of the SQUID
voltage from a test current IT (s) in a single-turn winding, with integral
feedback off (red circle) and on (black triangle). The response of the feedback
current from the same input in closed-loop is shown in the secondary axis
(blue diamond).

of the system measured with a lock-in amplifier in order to im-
prove its fitting. A wider hypothesis is to represent the system
by a set of models, instead of a single model, which considers
a frequency dependent uncertainty bound. Here, the model set
is compared and validated with measurements recorded by a
digital oscilloscope. Then a controller is designed based on
this dynamic set of models.

The CCC under study was designed to measure two-
terminal high value resistors, scaling from the quantum Hall
resistor or a 10 kΩ standard up to 1 GΩ [4], [6]. It has a
single voltage source which allows a simple design and a
unique ground reference, with no need of a voltage detector. In
addition phosphor-bronze windings are used in order to damp
the CCC resonance.

II. BACKGROUND: THEORETICAL MODEL

In [5], a theoretical model of a two-terminal CCC was
obtained from its electrical equivalent circuit. The dynamics
of each part of the system were represented as the Laplace
transform of an ordinary differential equation, i.e. a transfer
function which depends on the Laplace variable ‘s’. As
Fig. 2 shown, TL11(s), TL12(s), TL1F (s) represent the transfer
functions from currents I1(s), I2(s) and IF (s) to the current
in the primary winding IL1(s), so TL1i(s) = IL1(s)/Ii(s)
with i = 1, 2, F . This winding has the larger number of turns
and the lower resonant frequency, according to the assumption
stated in [5]. These dynamics were obtained applying the



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 3

Fig. 2. Schematic diagram of the two-terminal CCC. The notation for the
transfer functions from the origin to the end of the blue-dotted arrows is
indicated. Table I presents the description of each symbol. In the feedback
loop, a switch is included to indicate where the loop is opened.

superposition principle, and considering parasitic capacitance
and resistance.
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The resistance R1 is the standard resistor connected to the
primary winding. L1, C1 and RW1

are the inductance, stray
capacitance and distributed resistance of the primary winding,
respectively. M12 and M1F are the mutual-inductances bet-
ween the primary winding, and the secondary and feedback
windings, respectively. The SQUID sensor in flux locked loop
(FLL) mode is represented with a single pole transfer function,
TSQ(s) = kSQ/ (1 + s/p), which has a DC gain kSQ equal to
the SQUID flux sensitivity. The SQUID output voltage, eq. (4),
can be obtained applying Ampere’s law to the CCC. Here N1,
N2 and NF are the number of turns of the primary, secondary
and feedback windings respectively, and GCCC is the inverse
of the linkage current. Table I defines all the symbols used in
this document.

VSQ(s) = TSQ(s) GCCC · [I1(s) TL11(s) N1

−I2(s) (N2 − TL12(s) N1) (4)
−IF (s) (NF − TL1F (s) N1)] .

The controller K(s) measures the SQUID voltage and
drives the feedback current, see Fig. 2. Therefore, currents
I1(s) and I2(s) are outside the control loop. As a consequence,
the terms TL11(s)N1 and [N2 − TL12(s)N1] do not have
an effect on the closed-loop stability. Hence, this approach

TABLE I
SYMBOLS

Symbol Description (unit)

C1 Primary winding capacitance (F)
L1 Primary winding inductance (H)
RW1

Primary winding resistance (Ω)
M1i Mutual inductance between the

primary winding and the winding i (H)
Ri Resistor connected to the i winding (Ω)
Ni Number of turns of winding i
p SQUID cut-off radial frequency (rad/s)

kSQ SQUID flux sensitivity (V/Φ0)
GCCC CCC amplification (Φ0/AT)
s Laplace variable
ω Complex frequency variable
Ii(s) Equivalent current source i (A)
IL1 (s) Current in the primary winding (A)
TL1i(s) Transfer function from Ii(s)→ IL1

(s) (A/A)
TSQ(s) SQUID transfer function (V/Φ0)
G0(s) Nominal model from IF (s)→ VSQ(s) (Ω)
G(s) Model included in set Ψ (Ω)
K(s) Controller transfer function

(
Ω−1

)
W∆(s) Dynamic uncertainty weight
V (s) Voltage source (V)
VSQ(s) Laplace transform of SQUID output (V)

∆ Dynamic uncertainty
Ψ Set of models
T Set of closed-loop models

vSQ(t) SQUID output (V)
v̂SQ(tq) Estimated SQUID output at time tq (V)
v̄SQ Mean value of SQUID output (V)
t Continuum time variable (s)
Ts Sampling period (s)
tq Sampling time (s)
q Discrete time variable
FI Fit index

focuses on the transfer function from IF (s) to VSQ(s). Using
the nominal values of the parameters the model is defined as
follows:

G0(s) =
VSQ(s)

IF (s)
= −TSQ(s) GCCC [NF − TL1F (s)N1] .

(5)
It is assumed that the number of turns of the primary and

feedback windings are fixed and have no uncertainty.
The linkage current of the current comparator, 1/GCCC ,

was measured and found to be consistent with data obtained
three years earlier to within the measurement uncertainty
(0.2%). Similar results were found for the flux sensitivity, kSQ,
but with 0.6% of uncertainty. In addition, the specification
value of the SQUID cut-off frequency1 was used [7].

The parameters in TL1F (s) were measured or calculated
individually. RW1

was measured at 4.2 K using a high accu-
racy dc multimeter. Inductance L1 was measured with a LCR
meter, the resonant frequency was calculated as the average

1At the SQUID design and assembly stage, this can be done by measuring
the noise spectrum of the stand alone device, but this was not the case here.
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Fig. 3. Measurement results of L1 and M1F , in the upper and lower figures,
respectively. The values at cryogenic (star) and ambient (circle) temperatures
are shown. The simulations for the self-inductance at 4.2 K (blue solid line)
and the mutual-inductance at 300 K (blue dashed line) are also presented.

of many resonant peak observations and from these results C1

was obtained. The mutual inductance M1F was determined by
injecting a sinusoidal current in the feedback winding of one
turn using a waveform generator and by measuring the voltage
in the primary winding. The fast Fourier transform calculation
of a digital oscilloscope was used to measure the amplitude
of the desired frequency component. This measurement was
performed at room temperature, and the self-inductance was
measured also at 4.2 K, see Fig. 3. The resonant frequency of
the coil with the greater number of turns (15.5 kHz) affects
the measurements, for that reason the values at lowest fre-
quencies were used in the initial model. The inductance of the
feedback winding, not shown in the figure, presented a value of
2.6 µH at low frequencies. In addition, the effective self- and
mutual- inductances were simulated. From equations (1) and
(3) the effective value of these parameters were computed as
L1TL11(s) and L1TL1F (s) −M1F , respectively. In the case
of the mutual-inductance, the simulation was performed by
setting the parameters to values obtained at room temperature.

Similarly, other important parameters can be simulated, e.g.
the leakage current in the primary winding when I1(s) is
injected can be calculated as [1− TL11(s)] I1(s). Previous
works have obtained similar results with models based on the
electrical equivalent of the CCC [8], [9] or performing estima-
tions assuming bridge balance and superconducting winding
[10], [11]. The advantage of the Laplace representation is that
it can be evaluated at different conditions, e.g non-sinusoidal
inputs. Furthermore, commercial programs are available to
compute and improve the model [12].

To simplify the model identification, R1 was set equal to
10 TΩ, therefore it was disconnected. Note that equations
(1) to (3) depend on R1, and it attenuates the resonance of
the primary winding. In Fig. 4, a simulation of the transfer
function in eq. (5) varying the resistance value of R1 shows
that the values larger than or equal to 10 MΩ generate
negligible effects. On the other hand, a resistor of 1 MΩ or
100 kΩ connected to the primary winding strongly affects

Fig. 4. Simulation of G0(s), eq. (5), with six values of R1. The transfer
function for large value of resistance presents low deviations.

the transfer function. However, they are usually connected
to windings with a low number of turns, producing a much
lower attenuation. In this condition, the primary winding is
in open circuit but the resonant frequency is damped due to
the mutual inductance and stray capacitance arrangement of
the CCC. This dynamics can not be explained with eq. (5). A
complete model, that can include the effect of all the windings,
resistors and other associated dynamics, will lead to high order
equations and a more complicated controller. Therefore, a low
order model is desirable but in the next section the model is
expanded in order to include this behavior.

III. MODEL SET IDENTIFICATION

To improve the fitting of the theoretical model a grey-
box identification was performed using an iterative prediction-
error minimization method [12]. It minimizes a cost function,
defined as the weighted quadratic norm of the prediction
error vector vSQ(t) − v̂SQ(t), at t = tq . Here vSQ(tq) is
the experimental data and v̂SQ(tq) is the estimated output
at tq = q Ts, q ∈ Z and Ts is the sample period. The
experimental frequency responses were measured with a lock-
in amplifier [13]. The test current in the single turn feedback
winding was generated using a voltage-to-current amplifier
connected to the voltage source of the lock-in amplifier. A
computer program was used to control the instrument in order
to sweep the input frequencies. It also modifies the input
amplitude at each step to avoid jumps or saturation of the
SQUID. For a given configuration, the SQUID output and
the input current were measured, the latter as a voltage drop
in a high quality metal film resistor connected in series. The
magnitude of the transfer function was calculated as the ratio
of the two measured values.

Fig. 5 shows the initial and the identified models, and
the experimental data. All the curves agree on the resonant
frequency and the DC gain. Note that the experimental data is
always above the identified model and in some curves a small
change can be found, which coincides with the modification
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Fig. 5. Absolute value of the frequency response of the initial model (black
dashed), identified model (black solid) and experimental data measured with a
lock-in amplifier. Different colored lines distinguish the different measurement
days.

TABLE II
INITIAL AND IDENTIFIED VALUES OF MODEL’S PARAMETERS.

Parameter Initial value Identified value

KSQ 0.779 V/Φ0 Fixed
GCCC (3.91 µAT/Φ0)−1 Fixed
N1 3100 Fixed
NF 1 Fixed
RW1 2850 Ω Fixed
p 314 krad/s 314 krad/s
C1 242 pF 242 pF
L1 0.434 H 0.434 H
M1F 1.07 mH 0.22 mH
R1 10 TΩ 10 TΩ

of the excitation amplitude (see the inset in the same figure).
This may be produced by noise at the SQUID output or an
excursion of the SQUID working point. The input amplitude
was selected to maximize the signal-to-noise ratio, to maintain
the FLL on, and to keep a low excursion of the working point.

In the optimization algorithm some parameters were fixed
because their off-line measurements showed a good repeata-
bility and confidence. These values are summarized in Table
II, together with the initial and identified values of other
parameters. Only the mutual inductance was clearly affected
by the identification algorithm adjustment.

Differences between real and simulated frequency responses
are generated by measurement errors, and unmodeled dynam-
ics ([5], [14], [15]). Therefore, a more realistic description
needs to include several models instead of a single one, in
order to represent a physical system. Hence, in the robust
control framework the system is described as a model set with
its center in the nominal model previously obtained. The set
of models that fully describes the CCC dynamic behavior is

Fig. 6. Absolute value of the differences between nominal model and expe-
rimental data. The results are covered by the proposed dynamic uncertainty
weight multiplied by the nominal model, G0(s) ·W∆(s) (black dashed line).
W∆(s) is shown in the inset figure.

defined as,

Ψ = {G(s) = G0(s) · [1 +W∆(s) ·∆] ,

∆ ∈ C, |∆| ≤ 1} . (6)

In this equation, G(s) is a model included in the set, G0(s)
is the identified nominal model, W∆(s) is the dynamic
uncertainty weight and ∆ is an unknown complex number
included in an unitary bounded set. At a given frequency
s = ω, all models included in the set belong to the circle
of radius |G0(ω) ·W∆(ω)| centered at G0(ω). In this
framework, |W∆(ω)| represents the upper uncertainty bound
of the model, as a function of frequency. If |W∆(ω)| is larger
than one at a frequency ω, the nominal model differs more than
100% from the real system, so a “complete lack of knowledge”
of the system prevents control above that frequency ([14],
[15]). This is a practical result which indicates beforehand the
maximum bandwidth that can be reached for this particular
closed-loop controlled system.

To calculate the dynamic uncertainty weight, the nominal
model was subtracted from the experimental data at each
measured frequency and W∆(s) was adjusted to cover all these
points. This is shown in Fig. 6 where the black dashed line
is the proposed dynamic uncertainty weight multiplied by the
nominal model, G0(s) ·W∆(s). The weight W∆(s) is shown
in the inset. It has a zero almost at the origin and a pole at
s = −104 which produces a cutoff frequency of approximately
1.6 kHz. Notice that above 300 Hz, |W∆(ω)| is greater than
unity (0 dB) and therefore limits the closed-loop bandwidth.

The experimental data was obtained by means of the lock-
in amplifier and changing a setting and/or a parameter of the
system, 33 frequency responses were evaluated. The purpose
of these experiments was to represent different situations that
may occur in practice and that should be “covered” by the
model set Ψ. Time and liquid helium levels were the first
variables to be analyzed. The measurements were performed
during two weeks, while the He level varied between 43% and
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Fig. 7. Absolute value of the frequency response measurements (red) and
simulation (blue) with a resistor connected. In the legend, the resistor and its
position are indicated. The winding connected to R1 has ten times more turns
than the winding in series to R2.

10% with one refill. The results do not show any dependence
on these variables.

Other measurements were performed with 100 kΩ and
1 MΩ value resistors connected in parallel to one of the CCC
ratio windings, to simulate real and extreme measurement
configurations. As Fig. 7 shows, the resistor connected in para-
llel changes the resonant peak and frequency. However, the
frequency shift is not explained by the theoretical model. Since
the CCC probe is not designed to have a resistor connected in
parallel to the winding, the circuit must be closed through the
system ground. This can increase the parallel capacitance and
decrease the resonant frequency. In fact, elements with these
resistance values are usually connected to windings with a low
number of turns. In these configuration we found deviations
of the measured frequency response from the nominal model
within the repeatability of all the measured curves. Next, we
extended the family of models to include uncommon and/or
extreme settings in the set. To summarize, in the nominal
model, primary resistor effects were neglected but they were
included in the uncertainty weight. An alternative approach
could be to make a model for each configuration, however this
was not possible on the system due to the extra-capacitance
problem, as it was explained at the beginning of this paragraph.

Finally, some measurements were performed with different
input windings as i) two 1- turn windings and ii) one 2-
turns winding. No significant variations were found within the
measurement repeatability. The feedback winding is not usu-
ally changed in real measurements, however this experiment
is useful to analyze the model. When the 2- turns feedback
winding was used, the input current was multiplied by 2 in
the calculations.

IV. EXPERIMENTAL VALIDATION

The family of models was compared with experimental data
in order to evaluate the data fitting and coverage of the model

Fig. 8. Time response of the identified nominal model (blue) and the experi-
mental (red) to a square wave input. Black lines represent two extreme models
of the set: G(∆=1) and G(∆=−1). The systems with ∆ = ±1 amplify
more the high frequency components in the recorder inputs, generating noisier
outputs. Note that at 300 Hz the uncertainty weight is equal to the nominal
system, see inset in Fig. 6, and the selection of ∆ modified the gain of G.

set. Square, triangle, sinusoidal and impulse waveform current
signals were supplied to the feedback winding. A digital
oscilloscope was used to measure and save the input signals
and the SQUID output voltages synchronously . The responses
of the nominal model were simulated and compared against
the recorded outputs. An index that indicates the percentage
of the output that the model reproduces [12] was calculated
as

FI = 100 ·
(

1− |vSQ(t)− v̂SQ(tq)|
|vSQ(t)− v̄SQ|

)
, with t = tq, (7)

where v̄SQ is the mean value of vSQ(t). A perfect fit is
represented with 100%, while 0% indicates that the model
is equal to the mean value.

To this end, 34 measurements were performed with an
average FI = 71%, 2/3 of these indexes were above this
value. Two comparisons can be seen in Fig. 8 including the
responses of two particular models in the set, G(∆=±1) =
G0(s) · [1±W∆(s)] ∈ Ψ. From the first run (a) the nominal
model output (blue) was quite similar to the real one (red)
obtaining a fitting index better than 80%. This was not the
case with the second simulation (b). Note that the two extreme
models (black lines) “cover” the actual output. These experi-
ments confirms that a model (or models) exists within the set
that fits the measured data. As a consequence, a controller that
stabilizes the model set will stabilize also the actual physical
system.

V. CLOSED-LOOP SIMULATED RESULTS

Based on the previous model set, an H∞ optimal controller
was designed in order to provide closed-loop stability and
performance to all models in the set (and hence the physical
system). Here, performance is quantified as the attenuation of
noise and disturbances at the SQUID input, and it is measured
by the H∞ norm of the closed-loop transfer function. A
mixed sensitivity procedure was applied which balances the
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Fig. 9. Step (a) and impulse (b) simulated responses of the closed-loop system
for the identified model (black dashed) and the worst case model (blue solid).
The excitation amplitudes were 0.1 pA in the primary winding in both cases.

stability robustness and performance by means of uncertainty
and performance weights ([14], [15], [16]). The controller
behaves as an integrator from DC to 1.6 kHz, and at the
resonant frequency its gain is sharply reduced and remained
constant.

For a controller K(s) connected to set Ψ, the set of all
possible closed-loop transfer functions is as follows,

T =

{
G0(s) [1 +W∆(s)∆]

1 +G0(s) [1 +W∆(s)∆]K(s)
, |∆| < 1

}
. (8)

The stability of the whole model set is guaranteed when
the denominator of the previous equation does not vanish for
all G(s) ∈ Ψ and s is in the complex positive semi-plane,
i.e. 1 + G0(s) [1 +W∆(s)∆]K(s) 6= 0, ∀ |∆| < 1, s ∈ C+.
It can be proved that a necessary and sufficient condition for
controller K(s) to stabilize all models in Ψ, defined as robust
stability, is the following:∣∣∣∣ G0(s) ·K(s)

1 +G0(s) ·K(s)
W∆(s)

∣∣∣∣ < 1 ∀ s = ω. (9)

In the present work this condition has been met. Fig. 9
illustrates this property, where the step and impulse responses
of the nominal and worst case models ([14], [15], [16]) are
represented, both being stable.

The performance of the H∞ and the integrative controller
can be compared with the closed-loop transfer functions. The
H∞ controller reduces the gain by 10 dB at the SQUID
input up to 5 kHz. Since the design algorithm balances robust
stability and performance condition, the model uncertainty
strongly affects the performance. So, the uncertainty has to be
considerably reduced. If the model uncertainty is minimized,
the controller bandwidth can be increased until it attenuates
the resonant peak without compromising the stability but this
is difficult to achieve using traditional controllers.

VI. CONCLUSION

The CCC dynamic behavior was modeled by means of an
identification procedure using experimental data, an agreement
of at least 70% was obtained. Thus, the electrical equivalent
of the comparator seems to be a good approximation. Its
parameters can be measured independently and/or computed

from an identification process. A set of models was proposed
to describe this system, and simulations showed that all the
recorded data was included. This strengthens the assumptions
made in [5] to construct the model, specially those that neglect
the stray capacitance of the windings (except for the one with
the largest number of turns). An H∞ controller was designed
and robust stability for the model set was theoretically guar-
anteed and illustrated by closed-loop simulations.

Here, the SQUID working point excursions and output noise
floor limited the repeatability of the frequency response mea-
surements. This fact increased the uncertainty and |W∆(ω)|,
affecting the closed-loop performance. These two problems
have opposite solutions, i.e. to reduce the noise effects a higher
input signal is necessary, which can increment the working
point excursion. A CCC with a lower resonant frequency and a
larger SQUID bandwidth may accept a larger excitation input,
increasing the signal-to-noise ratio. In this way, a smaller
model uncertainty could be obtained and a faster controller
could be designed.
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[2] D. Drung, M. Götz, E. Pesel, J-H Storm, C. Aßmann, M. Peters, and
Th. Schurig. Improving the stability of cryogenic current comparator
setups. Supercond. Sci. Technol., 22, 2009.

[3] K. Jones and M. D. Early. A quantum Hall cryogenic current comparator
resistance bridge. In Proc. CPEM Dig., Sydney, NSW, Australia, pages
92–93. IEEE, 2000.

[4] F. L. Hernandez-Marquez, M. E. Bierzychudek, G. R. Jones Jr., and R. E.
Elmquist. Precision high-value resistance scaling with a two-terminal
cryogenic current comparator. Rev. Sci. Instrum., 85, 044701, 2014.

[5] M. E. Bierzychudek, R. S. Sánchez-Peña, and A. Tonina. Robust control
of a two-terminal cryogenic current comparator. IEEE Trans. Instrum.
Meas., 62(6):1736–1742, Jun. 2013.

[6] R. E. Elmquist, E. Hourdakis, D. G. Jarrett, and N. M. Zimmerman.
Direct resistance comparisons from the QHR to 100 MΩ using a
cryogenic current comparator. IEEE Trans. Instrum. Meas., 54(2):525–
528, April 2005.

[7] Quantum Design. DC + RF SQUID Systems Brochure. Available at:
http://www.qdusa.com/sitedocs/productBrochures/squid3.pdf.
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