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Abstract: In this study, we present a procedure to optimize a set of finite impulse response filter (FIR)
coefficients for digital pulse-amplitude measurement. Such an optimized filter is designed using an
adapted digital penalized least mean square (DPLMS) method. The effectiveness of the procedure is
demonstrated using a dataset from a case study on high-resolution X-ray spectroscopy based on single-
photon detection and energy measurements. The energy resolutions of the Kα and Kβ lines of the
Manganese energy spectrum have been improved by approximately 20%, compared to the reference
values obtained by fitting individual photon pulses with the corresponding mathematical model.

Keywords: digital signal processing (DSP); digital pulse processor (DPP); X-ray spectroscopy; silicon
drift detectors; pulse-height analysis; FIR design

1. Introduction

Single-photon counting and photon energy measurements play a central role in high-
resolution X-ray spectroscopy. Many applications and research areas, such as the non-
destructive analysis of cultural heritage objects, material sciences, and medical imaging,
require accurate detection and energy measurement systems [1,2]. Such systems usually
include a detector, amplifying stage, and filtering stage. Electrical signals coming from
a detector are conditioned using a charge-sensitive amplifier (CSA). In modern systems,
the analog CSA output is often immediately converted into a digital signal. Subsequently,
a digital pulse processor (DPP) reshapes and filters the signal to detect and measure the
amplitude of each photon pulse.

Several difficulties arise when performing single-photon detection and energy mea-
surements owing to the presence of noise, unstable signal backgrounds, and spurious
pulses. A significant source of noise is the detector itself, as it is at the beginning of the
amplification chain. Although an important noise reduction can be obtained by cooling the
detector [3,4], it is still crucial to perform optimal filtering to improve the signal-to-noise
ratio (SNR) for high-resolution spectroscopy [5]. Focusing on the latter strategy, an optimal
DPP must also be able to efficiently deal with high pulse rates.

The central element of a DPP is a digital shaping filter, usually a finite impulse response
(FIR) filter. In this paper, we present an FIR optimization procedure based on the digital
penalized least mean square (DPLMS) method [6]. The procedure requires an accurate
mathematical model of the input pulse and appropriate characterization of the noise. By
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analyzing an experimental dataset, it is possible to separate the pulse signal and the noise
of the system. We also define a set of constraints to optimize the filter coefficients by
improving the SNR as well as providing a flat-top at the output pulse where its peak value
corresponds to the true amplitude of the input pulse.

We apply the DPLMS-based optimization procedure to a case study on high-resolution
digital X-ray spectroscopy and provide a comparison with other related methods. We
consider a simple trapezoidal filter as the starting point. Successively, we modify this filter
to reject the error introduced by a constant background slope. Finally, we design an optimal
filter that takes into account (i) the characteristic shape of the pulse and (ii) the specific
noise. Each of these filters is implemented using a software-simulated DPP to obtain the
corresponding energy spectra from an experimental dataset.

The next sections of this paper are organized as follows: Section 2 introduces the
literature review that lays the foundation for the proposed methodology. Section 3 briefly
describes a typical X-ray spectroscopy detection system and the experimental data on
which our case study is based. Section 4 presents two FIR filter design methods for pulse-
amplitude measurement. Section 5 describes the data analysis to obtain the information
needed by the DPLMS-based optimization procedure, including the ideal pulse modeling
and noise characterization. A brief comparison of the described methods is presented in
Section 6. Section 7 describes an additional statistical analysis of the experimental data
which uncovers some weaknesses of the system, providing an important indication to
improve the spectroscopy system. Finally, Section 8 presents the conclusions of this study.

2. Related Works

Several digital pulse-processing techniques have been introduced for spectral mea-
surements over the years. In 1993, Jordanov and Knoll [7] presented a real-time DPP using
a moving average technique built on high-speed programmable logic devices (PLD) and
fast-TTL integrated circuits. This implementation included a conventional quasi-Gaussian
analog shaper after the CSA. In 1994, they extended their work by introducing fast recursive
digital algorithms implemented on a personal computer (PC) for the synthesis of symmetric
triangular and trapezoidal pulse shapes, thereby replacing the traditional analog pulse
shapers [8]. Later that year, Jordanov V. et al. [9] implemented digital shaper algorithms on
dedicated hardware by avoiding the use of a PC for offline pulse processing.

Guzik Z. and Krakowski T. [10] presented a full set of recursive algorithms based on
the Z-transform for trapezoidal pulse shaping with pole-zero cancellation for exponentially
decaying input pulses. The complete system was implemented on an FPGA and included
energy reconstruction, baseline restoration, trigger generation, and event acceptance. The
use of this approach is limited because of the complexity of deriving recursive formulas for
different input pulse shapes generated by various pulse detection systems.

Sajedi S. et al. [5] proposed an FPGA-based non-linear recursive filter design for
high-rate pulse feature extraction in nuclear medicine imaging and spectroscopy. Real data
were obtained directly from the pre-amplifier of the detection system. It was then fitted
offline using the least-squares curve-fitting method on a PC to obtain the deterministic
pulse model. The pulse-shape model was then used to generate look-up tables (LUT) and
implement non-linear recursive filters. The main disadvantage of this system is the large
usage of memory elements. The aforementioned methods disregard the noise present in
the system.

In contrast to the progression of recursive IIR methods, non-recursive FIR-based digital
signal-processing methods have been independently developed for pulse-height analysis.
In 1996, Gatti E. et al. [11] introduced a method for calculating the FIR filter coefficients for
nuclear spectroscopy with time-domain constraints and the uncorrelated noise present in
the signal. The filter was obtained by solving a set of linear equations derived by expressing
the filter shape and equivalent noise charge as a modified Fourier sine series. Later, Gatti
E. et al. [12] modified the method and incorporated experimental noise by estimating the
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noise power spectral density of data obtained from an analog shaper in the absence of
pulses.

In 2002, Riboldi et al. proposed a numerical approach based on the least mean squares
method [13] to calculate the optimum FIR filter coefficients. In 2004, Gatti E. et al. presented
the fully formalized method [6], named the DPLMS. A drawback of this method is that it
directly estimates noise using the sampled data stream by assuming that no correlated noise
is present. In 2007, Riboldi S. et al. [14] extended the DPLMS method by addressing the
correlated noise. Additionally, there are several publications that detailed FIR-based digital
pulse-shaping systems by utilizing the DPLMS method implemented on FPGAs [15–17]
and SoC-FPGAs [18].

Considering the mentioned contributions, it can be noted that the DPLMS optimization
method improves the SNR of the output pulse. However, the application of this method
requires the knowledge of the real characteristics of the noise and an accurate mathematical
model for the noiseless pulse. We present an effective procedure to evaluate the model,
characterize the noise present in the system, and include this information along with other
constraints in the DPLMS method.

3. X-ray Spectroscopy Detection System

Particle detectors are central devices in X-ray spectroscopy. They are available in
different technologies, such as gaseous ionization detectors, silicon drift detectors (SDD),
photodiode detectors, and photomultipliers. Among these, interest in SDDs for single-
photon detection has been constantly growing since its introduction by Gatti and Rehak
in 1983 [19,20]. Owing to their intrinsic low noise and ability to operate with high photon
rates, they are widely used in X-ray spectroscopy.

X-ray photon detectors generate a small amount of electric charge for each absorbed
photon. This charge is proportional to the energy of the photon and produces a very small
and short current pulse, which typically requires amplification and filtering before the
analysis. The first amplification stage is commonly performed using a CSA that integrates
a small charge, producing a relatively large voltage step [21,22]. This voltage step is
further amplified and filtered using a pulse-shaping amplifier (PSA), which produces a
semi-Gaussian pulse ready for digitization.

A typical single-photon detection system in X-ray spectroscopy consists of a detector,
CSA, PSA, analog-to-digital converter (ADC), and DPP for pulse-amplitude measurement,
as shown in Figure 1.

PSA DPPADCCSASDD

Figure 1. Block diagram of a typical single-photon detection system showing the incident photon on
the silicon drift detector (SDD), charge-sensitive amplifier (CSA), optional pulse-shaping amplifier
(PSA), analog-to-digital converter (ADC), and digital pulse processor (DPP).

In these photon detection systems, the major electronic noise contributors are the CSA
and the leakage current of the detector. The first CSA was proposed in 1956 by Gatti [23].
Subsequently, continuous modifications have been made to improve the SNR [24,25].

An idealized noiseless CSA output pulse can be described by an exponential upward
step-like pulse, expressed as follows:

V(t) =

{
0, t 6 t0;

A(1− e
−(t−t0)

τ ), t > t0;
(1)

where t0 is the pulse arrival time and τ is the exponential rise time of the CSA, which is
limited and determined by its slew rate and the non-zero charge integration time.
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The CSA integrates not only the charge produced by the absorbed photons but also
the leakage current of the detector. Owing to this small constant leakage current, the CSA
produces a ramp with a constant slope. The complete output signal of the CSA can be
modeled as a superposition of the ramp, ideal pulse, and noise, as follows:

V(t) =

{
B0 + B1t + n(t), t 6 t0;

A(1− e
−(t−t0)

τ ) + B0 + B1t + n(t), t > t0;
(2)

where B0 denotes an arbitrary offset, B1 denotes the angular coefficient corresponding to
the constant slope of the baseline ramp, and n(t) is the noise component. For digitized
signals, the CSA output can be rewritten by replacing the continuous-time variable t with
the discrete index i, which expresses time in units of sampling periods, as follows:

xi =

{
B0 + B1i + ni, i 6 t0;

A(1− e
−(i−t0)

τ ) + B0 + B1i + ni, i > t0;
(3)

The parameters A and B0 are then expressed in ADC value, t0 and τ are expressed in
units of sampling periods, and B1 in ADC value per sampling period.

Experimental Data

In this paper, we consider an experimental dataset from a typical X-ray fluorescence
experiment. The data were obtained by digitizing the signal from a low-noise CSA coupled
with a SDD-based single-photon detection system [24,26–28] without a PSA. The dataset
contains 2929 segments sampled at 40 Mhz with a 12-bit ADC. Each segment is 512 samples
long and contains a single-photon pulse, as shown in Figure 2. This dataset was taken under
normal operating conditions; thus, it includes real noise. A trigger system and a circular
buffer allowed capturing the traces with the pulses starting around the 200th sample.
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Figure 2. Typical experimental single-photon pulse at the output of the charge-sensitive ampli-
fier (CSA).

One characteristic of this dataset is that all photons present a different offset value. This
was caused by the background slope and the random arrival times of the photons [29,30].

4. Digital Pulse Shaping

In traditional pulse-processing systems, the output of the CSA goes through a shap-
ing stage, which improves the SNR and converts step-like pulses to pulses suitable for
subsequent digital acquisition and signal processing.

A typical CR− (RC)n analog pulse-shaper amplifier consists of one differentiator fol-
lowed by n integrators to produce a semi-Gaussian output pulse. This type of analog shaper
can be replaced by modern digital shaping systems, which offer several advantages [31,32].
In these systems, the CSA output is directly digitized using a fast ADC and is immediately
processed by a customized DPP. The pulse shaping can be digitally implemented in a more
controlled way than with an analog circuit. An ideal DPP produces the most accurate and
precise amplitude measurement of the CSA output.
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A simplified block diagram of a DPP [33] for high-resolution X-ray spectroscopy is
shown in Figure 3. It consists of two separate data channels: one for the precise detection
of the photon arrival and the other one for shaping the input pulse based on an FIR filter.
The pulse detection module detects the arrival time and decides when to retrieve the pulse
amplitude. The module also controls a FIFO to store the amplitude from the digital shaping
filter output at the correct sampling time. The FIFO allows asynchronous storage of the
amplitudes of pulses, which typically occurs at random times, and a synchronous regular
reading by the system hosting the DPP.

ADC output

Digital Shaping  
FIR filter

Pulse Detection 
Module

FIFO DPP Output

DPP

Figure 3. Simplified block diagram of the digital pulse-processing unit.

The digital shaping filter should fulfill the following requisites:

1. Be independent of any offset.
2. Be independent of any constant background slope.
3. Optimize the SNR, according to real noise characteristics.
4. Generate a flat-top to mitigate the uncertainty of the pulse arrival-time detection.

An additional requirement regards the time resolution of the filter, which strongly
depends on its length. If two photons are separated by less than the filter integration time,
the filter may not be able to properly process each one. For high photon-rate regimes, it is
essential to make the shortest possible filter without significantly sacrificing the filtering
capabilities. Taking this aspect into account, the length of the filters considered in this paper
has been fixed to 80 taps at 40 Msps.

4.1. Trapezoidal FIR Filter

As a starting point, a trapezoidal output filter approximation is implemented to
measure the pulse amplitude [34]. Figure 4 shows the filter coefficients and the output
pulse corresponding to an experimental input pulse, such as that in Figure 2.

The underlying idea of this filter is that the amplitude of the pulse can be calculated
by waiting for the CSA output to settle within an acceptable error and then subtract from it
the baseline before the arrival of the pulse. To attenuate the white noise, a simple average
before and after the pulse allows for a more precise estimation of the pulse amplitude.
The number of positive, null, and negative filter coefficients, respectively, correspond to
the parameters tR, tFT , and tF. The tR positive coefficients of the filter compute a moving
average and determine the rise time of the output pulse. Their value is constant and equal
to 1/tR. The tFT central null coefficients define the time waited for the output pulse to settle
within an acceptable error and the duration of a nearly flat-top of the output pulse. Finally,
the tF negative coefficients compute another moving average and determine the fall time of
the output pulse. Their value is constant and equal to 1/tF. These three parameters are
bounded by the condition tR + tFT + tF = 80, because the considered length of the filter
has been fixed at 80. Regarding the FIR filter output, it can be seen that there is some top
flatness that could reduce the error in the amplitude measurement. However, it can also
be observed that the output of the filter presents an offset that introduces an error in the
amplitude measurement. This error increases with the background slope, but it can be
corrected by modifying the FIR filter, as explained in the next subsection.
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Figure 4. Trapezoidal FIR coefficients (top) and the output pulse (bottom) corresponding to an
experimental input pulse like that of Figure 2.

4.2. Geometrically Derived FIR Filter

To correct the abovementioned error due to the background slope, we perform a study
on the geometry of the pulse. A typical photon pulse with its geometrical features is shown
in Figure 5. The height of the two points in the middle of the segments indicated with tR
and tF correspond to the average height computed over those segments. The trapezoidal
filter computes the difference between these average values as an estimation of the pulse
amplitude A, but we can see that this difference is A + D instead of the expected true
value A.
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0 100 200 300 400 500

Time (Sampling Periods)

Figure 5. Typical photon pulse with its geometrical features highlighted. The two points in the
middle of tR and tF segments correspond to their average values.

The amplitude error D due to the background slope is related to tan α, as follows:

tan α =
D

1
2 tR + tFT + 1

2 tF
(4)

The value of tan α can be estimated using the least-squares method considering the tR
samples before the arrival of the pulse. A closed-form expression for estimating tan α can
be written as follows (see Appendix B for details):

tan α ≈
tR−1

∑
i=0
−6

(
1 + tR − 2i

t3
R − tR

)
xi (5)
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From Equations (4) and (5), the error D is estimated as

D =
tR−1

∑
i=0
−6

(
1 + tR − 2i

t3
R − tR

)(
1
2 tR + tFT + 1

2 tF

)
xi (6)

and the correct amplitude A is then calculated as follows:

A =
1
tF

tR+tFT+tF−1

∑
i=tR+tFT

xi −
1
tR

tR−1

∑
i=0

xi −
tR−1

∑
i=0
−6

(
1 + tR − 2i

t3
R − tR

)(
1
2 tR + tFT + 1

2 tF

)
xi (7)

By simplifying and rearranging the previous expression, we can show that the am-
plitude can be computed as a linear combination of the sequential data xi with constant
coefficients:

A =
tR+tFT+tF−1

∑
i=tR+tFT

1
tF

xi +
tR−1

∑
i=0

[
− 1

tR
+ 6

(
1 + tR − 2i

t3
R − tR

)(
1
2 tR + tFT + 1

2 tF

)]
xi (8)

It can be seen that the pulse amplitude A can be continuously evaluated by an FIR
filter whose coefficients are described as follows:

ci =


1
tF

, 0 6 i < tF;

0, tF 6 i < tF + tFT ;

− 1
tR

+ 6
(

1+tR−2i
t3
R−tR

)(
1
2 tR + tFT + 1

2 tF

)
, tF + tFT 6 i < tF + tFT + tR;

(9)

The central null coefficients determine the nearly flat-top region of the output pulse.
Figure 6 shows these geometrically derived (GD) FIR coefficients with the parameters tR = 35,
tFT = 10, and tF = 35, and the output pulse obtained with this filter is applied to an
experimental pulse. As expected, this GD FIR filter suppresses the offset and background
slope of the input pulse.

0 10 20 30 40 50 60 70 80

Coefficient Index

−0.2

−0.1

0.0

0.1

0.2

0 100 200 300 400

Time (Sampling Periods)

−100

−50

0

50

A
m

p
li
tu

d
e

(a
.u

.)

Figure 6. GD FIR coefficients (top) and the output pulse corresponding to an experimental input
pulse (bottom).

5. Data Analysis and FIR Filter Optimization

As described in Section 4, it is desirable that the shaping filter output pulse has
the highest possible SNR and a flat-top to mitigate the uncertainty of the photon arrival
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time. These two main conditions directly contribute to achieving an optimal energy
resolution [35]. To satisfy these conditions, based on the analysis of the experimental data,
we define an accurate mathematical model for the input pulse (Section 5.1) and characterize
the noise (Section 5.2).

The input pulse model is essential because (i) it allows the noise characterization by
correctly separating the stochastic component (noise) from the deterministic signal and (ii)
it contributes to a correct calculation of the FIR filter coefficients to determine a flat-top at
the output.

The adapted DPLMS method, based on the pulse model and the characterized noise,
is presented in Section 5.3.

5.1. Pulse Modeling

The model parameters A, B0, B1, t0, and τ of the deterministic noiseless input pulse
described in Equation (3) are estimated numerically by fitting the model to the experimental
data. A typical experimental pulse with a fitted model and the corresponding residuals
are shown in Figure 7. The residuals would correspond to the stochastic component and
should be considered as the noise {ni}.

0 100 200 300 400 500

Time (Sampling Periods)

2250

2300

2350

2400

A
m

p
li

tu
d

e
(A

D
C

V
al

u
e)

Experimental pulse

Exponential fitted curve

0 100 200 300 400 500

Time (Sampling Periods)

−10

−5

0

5

A
m

p
li
tu

d
e

(A
D

C
V

al
u

e)

Figure 7. Exponential model fitting (top) with its corresponding residuals (bottom).

The residuals plot in Figure 7 shows a relatively large spike around the starting point
of the pulse, which indicates inaccurate modeling. Therefore, we propose a bi-exponential
pulse model with the same number of parameters, described by Equation (10).

xi =

B0 + iB1 + ni, i 6 t0;

A
(

1− 2e
−(i−t0)

τ + e
−2(i−t0)

τ

)
+ B0 + iB1 + ni, i > t0;

(10)

This model is a heuristic model that can be analytically derived from some assumptions
about the transfer function of the CSA (see Appendix A for details). The result of the fitting
with the bi-exponential model is shown in Figure 8. The improvement can be observed in
the residuals, which do not present evident artifacts.
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Figure 8. Bi-exponential model fitting (top) and corresponding residuals (bottom).

Table 1 shows a comparison of both models using the mean quadratic residuals,
peak-to-peak residuals, and Akaike information criterion [36] evaluated over all fitted
pulses. The calculated values of these indicators confirm that the bi-exponential model is
significantly more accurate than the exponential model.

Table 1. Pulse models comparison.

Exponential Model Bi-Exponential Model

Mean quadratic residuals 6201 5914
Mean peak-to-peak residuals 13.7 6.6
Mean Akaike information criterion 1720 1397

Figure 9 shows the distributions of all fitted model parameters when using the bi-
exponential model. The average values of the fitting parameters along with their standard
deviations are presented in Table 2. The parameter B0 is a vertical offset that randomly
changes from pulse to pulse and is distributed rather uniformly. The arrival time t0 and the
slope coefficient B1 are also stochastic variables that change from pulse to pulse, but they
closely follow Gaussian distributions. In contrast, the mean value of τ is the estimate of the
only parameter that characterizes the ideal pulse shape, and it is assumed to be equal for
all photons.

Because the amplitude of a photon pulse is proportional to the photon energy, the
histogram of the fitted amplitudes in Figure 9a represents the energy spectrum of the
detected photons that, in this study, corresponds to transition lines of Manganese (Mn).
The two main peaks correspond to the lines Kα and Kβ, respectively, at 5890 eV and
6490 eV [37], and the third small peak (around 140) corresponds to 90-degree Compton-
scattered photons.
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Figure 9. Histograms of the fitted parameters corresponding to the bi-exponential model.

Table 2. Mean values and standard deviations of the fitted model parameters.

Parameter Mean Value Standard
Deviation

Slope (B1) 0.13 0.01

Arrival time (t0) 194.27 1.42

Exponential time (τ) 6.02 0.24

Offset (B0) 2547.90 272.29

5.2. FIR Input Noise Characterization and Output Noise Estimation

Based on the fitting of the pulses and the residuals calculation, we can proceed to
define the noise at the output of the filter. Let y be the convolution of an input signal x with
a k-tap FIR filter,

yj =
k−1

∑
i=0

ci xj−i (11)

Assuming that x is the noise at the input, a statistical description of the noise at the
output y is needed. Hence, the variance of y, denoted by σ2

y , can be written as

σ2
y =

〈
(y− 〈y〉)2

〉
=

n−1

∑
i=0

n−1

∑
j=0

ci cj 〈xi − 〈xi〉〉
〈

xj −
〈

xj
〉〉︸ ︷︷ ︸

Covariance Matrix Vi,j

(12)

In this case, the noise in the experimental data is considered stationary. Moreover, the
autocovariance matrix becomes the normalized autocorrelation function (ACF) when the
data {xi} are standardized such that the mean 〈xi〉 is 0 and the standard deviation σx is 1;
in this case, Equation (12) can be rewritten in terms of the ACF as
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σ2
y =

k−1

∑
i=0

k−1

∑
j=0

ci cj ACF(|i− j|) (13)

where the normalized ACF is estimated from the experimental data {xi} as follows:

ACF(j) =
∑

N−j
i=1 xi xi+j

∑
N−j
i=1 x2

i

(14)

Here, N is the maximum number of consecutive samples available in the residuals.
From the experimental dataset, the normalized ACF of each segment was calculated using
Equation (14) where N = 512 and {xi} are the model-fitting residuals. Then, all ACFs
estimated on each segment were averaged to be later used in Equation (13). Figure 10
shows the first 80 values of the normalized average ACF.

0 10 20 30 40 50 60 70 80

Lag

0.00

0.25

0.50

0.75

1.00

Figure 10. Normalized average autocorrelation function estimated from the residuals of the fitted
photon segments.

The normalized average autocorrelation function in Figure 10 shows an abrupt change,
from 1 with lag = 0 to about 0.7 with lag = 1, and from there it follows a smooth decay to
slightly negative values from lag = 40 onward. The first abrupt change would correspond
to a white noise component, whereas the smooth decay would correspond to relatively
low-frequency components of the noise spectrum.

5.3. Adapted DPLMS Filter Optimization

The original DPLMS method considers a number of constraints and a set of corre-
sponding weights. These constraints define the objectives of the optimization, and their
corresponding weights determine their relative relevance. In this way, it is possible to reach
a trade-off among goals that cannot all be fully satisfied. We adapt these constraints, taking
into account the characteristics of the experimental system. Based on the optimum digital
shaping filter requisites, described in Section 4, four constraints are defined. One constraint
removes the constant offset in the signal. Another one removes the background ramp due to
the leakage current. The SNR is maximized using a constraint that minimizes the variance
at the output of the filter in the presence of noise, as described in Equation (13). Finally, the
flat-top is determined by a constraint that minimizes the error between the amplitude of an
ideal input pulse and the convolution of the filter with that input pulse model.

The weights of each constraint can be arbitrarily set between zero and infinite. By
adjusting the relative values of the different weights, it is possible to obtain diverse trade-
offs among competing requirements.

To be immune to the offset introduced by the term B0 of the pulse model in Equation (10),
it is enough that the k-tap FIR filter coefficients {ci} comply with the following constraint:

k−1

∑
i=0

ci = 0 (15)
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The ramp slope given by the angular coefficient B1 will also introduce a bias in the
pulse-amplitude measurement. To cancel this effect, we impose the following constraint:

k−1

∑
i=0

ci i = 0 (16)

Another source of error when measuring the amplitude of the pulse is the pulse
arrival-time detection method. Because the value of the pulse amplitude is captured at
the output of the FIR filter after a fixed time from the pulse detection, any error in the
determination of the pulse arrival time will be automatically transferred to the sampling
time of the filter output. By holding the amplitude value for a determined time, a flat-top
is created in the output pulse, effectively compensating for the error in the estimation of
the photon arrival time. This condition is expressed by the following constraints on every
output yj of the flat-top region,

yj =
k−1

∑
i=0

ci xj−i = A, j ∈ [tR, tR + tFT − 1] (17)

where x is a pulse modeled with Equation (10) without noise, and A is its amplitude.
To improve the amplitude measurement, the noise in the filter output needs to be

minimized. This can be achieved by decreasing the filter output variance described by
Equation (13). By considering this requirement, and the constraints expressed in Equa-
tions (15)–(17), we define the following quadratic cost function:

Ψ(c0, c1, . . . , ck−1) = α1

(
k−1

∑
i=0

ci

)2

+ α2

(
k−1

∑
i=0

ci i

)2

+ α3

tR+tFT−1

∑
j=tR

(
k−1

∑
i=0

ci xk+j−i − A

)2

+

α4

k−1

∑
i=0

k−1

∑
j=0

ci cj ACF|i−j|

(18)

The significance of each constraint is determined by the relative values of the weights
{αj} associated with each corresponding quadratic term. By minimizing the function Ψ
for a given set of weights {αj}, it is possible to obtain an optimal set of coefficients {ci}opt,
that is,

{c0, c1, . . . , ck−1}opt = argmin
{c0,c1,...,ck−1}

Ψ(c0, c1, . . . , ck−1) (19)

If a weight αi is set to zero, then the associated constraint is completely ignored,
whereas in the limit where the weight approaches infinite, the constraint tends to be fully
satisfied by the optimization, as in the case of the Lagrange’s multipliers method. There are
no formulated rules to obtain the best weights {αj}, and these are manually adjusted after
multiple trials.

An optimized set of coefficients was generated by minimizing the quadratic cost
function Ψ (Equation (18)). The minimization was performed using numerical software
optimization routines, where the function Ψ was set by carefully selecting the values of the
weights {αi}. Figure 11 shows the generated 80-tap FIR filter and the filtered output pulse
corresponding to an experimental input pulse.
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Figure 11. DPLMS FIR coefficients (top) and the corresponding output after being applied to an
experimental pulse (bottom).

6. Comparison of the Described Methods

We have described and applied four methods to obtain the energy spectrum from
the same experimental dataset of single-photon pulses. One method consists of fitting
each single-pulse trace with a model where the amplitude is one of the fitting parameters.
The other three methods are based on FIR filtering for pulse-amplitude measurements. In
all cases, the histogram of the amplitudes estimates the energy spectrum of the detected
photons. Each histogram has been approximated using a weighted sum of three Gaussian
distributions. The two largest peaks correspond to X-ray fluorescent photons, and the
smallest one to Compton-scattered photons (see histogram of amplitudes in Figure 9).
Given that the two main peaks correspond to the Kα and Kβ transition lines of Mn, whose
energies are, respectively, 5890 eV and 6490 eV, it is possible to calibrate the system [37],
establishing a linear correspondence between the amplitude expressed in ADC channels
and the energy expressed in eV.

Table 3 shows the full width at half maximum (FWHM) obtained with each method
with its corresponding uncertainty. The FWHM for the 90-degree Compton-scattered
photons is not considered due to insufficient statistical representation in the dataset. The
background slope introduces an offset error in the measured amplitude. This error is
corrected in the GD FIR and fitting methods, allowing a simple one-point calibration
and making the filter immune to possible slope variations after calibration. On the other
hand, the trapezoidal FIR method requires a two-point calibration process to correct the
background slope error. The DPLMS FIR results have been achieved by emphasizing the
energy resolution, placing the slope-error correction in a lower priority.

Table 3. Comparison of energy resolutions with different methods to estimate the energy spectrum.

Method FWHM Kα [eV] FWHM Kβ [eV] Slope-Error Correction

GD FIR 286± 4 316± 16 yes
Fitting † 267± 4 288± 17 yes
Trapezoidal FIR 207± 3 247± 17 no
DPLMS FIR 202± 2 233± 12 no

† These results correspond to the histogram of the amplitudes obtained by fitting all available photon traces.

The best results in terms of energy resolution have been obtained with an FIR filter
optimized with the adapted DPLMS method. This method is the only one that considers
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the specific noise in the dataset and simultaneously allows control of the top flatness of
the output pulse. In order to obtain the best results, we have relaxed the weight of the
slope-error correction.

The fitting of individual photon pulses is a numerically heavy procedure to obtain
the pulse amplitude. Although this method is not suitable for online data processing, it is
expected to provide the most precise spectrum. The best results, however, were obtained
with the DPLMS FIR method which outperformed the fitting procedure by about 20% in
terms of energy resolution.

7. System Statistical Analysis

Besides the noise, there might be other possible imperfections in the system that could
contribute to the degradation of the final energy resolution. In this section, we focus our
attention on two important defects: (i) the arrival-time detection error and (ii) the non-
linearity of analog amplification. These imperfections can be revealed through a statistical
analysis of the experimental data. The first step of the analysis consists of fitting the pulse
model to each photon trace. The fitting is performed by adjusting the model parameters to
minimize the mean square error of the residuals. Thus, each trace will generally have a
different set of parameters. For a given model parameter, the ordered set of obtained values
constitutes a vector. In the second step, possible correlations among fitted parameters are
investigated using the correlation distance CD(x, y) between two vectors x and y, defined
as follows:

CD(x, y) = 1− ∑n
i=1(xi − x̄)(yi − ȳ)√

∑n
i=1(xi − x̄)2 ∑n

i=1(yi − ȳ)2
(20)

where xi and yi are any two adjusted parameters of the fitting model used to approximate
the i-th trace of an acquired photon, x̄ and ȳ are the mean values of these parameters
computed over all n analyzed photon traces. The value of CD(x, y) is interpreted as follows:

CD = 1 =⇒ x, y are uncorrelated vectors
0 6 CD < 1 =⇒ x, y are positively correlated
CD > 1 =⇒ x, y are negatively correlated

Table 4 shows the correlation distance of all possible pairs among the five fitting
parameters {A, t0, τ, B0, B1} of the bi-exponential model described in Equation (10). The
table shows that the system has (i) a positive correlation between amplitudes A and arrival
times t0, (ii) a negative correlation between exponential times τ and arrival times t0, and
(iii) a negative correlation between offsets B0 and slope coefficients B1.

Table 4. Correlation distance CD between fitted parameters.

Arrival Time Amplitude Exponential
Time

Offset Slope

Arrival time 0 0.53 1.41 0.96 0.96

Amplitude 0.53 0 1.05 0.98 1.09

Exp. times 1.41 1.05 0 1.02 1.16

Offset 0.96 0.98 1.02 0 1.54

Slope 0.96 1.09 1.16 1.54 0

The significant correlations of the arrival times with the amplitudes and with the
exponential times are due to the photon pulse detection method used to capture the exper-
imental trace. These correlations are also shown in the scatter plots in Figures 12 and 13.
This finding reveals a weakness in the pulse detection method because an ideal detection is
supposed to give the same arrival time independently of the amplitude and shape of the
input pulse.
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Figure 12. Scatter plot of the amplitude vs. the arrival time.
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Figure 13. Scatter plot of the arrival time vs. the exponential time.

Even though we considered that the background slope is constant, a negative trend
can be observed between offsets and slopes in Figure 14. This effect is also reflected in the
value of the correlation distance between the offset and slope vectors. This value indicates
that the gain of the CSA is not constant and reveals a non-linear behavior which in turn
determines an error in the arrival-time detection.
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Figure 14. Scatter plot between offset and slope.
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By further elaborating the relationship between the amplitude of the photons and their
arrival time using a clustering procedure, three clear clusters were found and are shown in
Figure 15.
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Figure 15. Scatter plot of amplitudes and arrival times with colored clusters and
corresponding centroids.

The two largest clusters (left and center) correspond to the Kα and the Kβ transition
lines of the Mn, while the third and smallest cluster (right) can be identified as Compton-
scattered photons. From the linear least-squares fit of the centroids of the clusters (large
red points), it is found that the arrival time t0 depends approximately on the amplitude A
according to t0 = 189.967 + 0.0395A.

8. Conclusions

In this study, we have presented a procedure to obtain a set of optimized FIR filter
coefficients for the pulse-amplitude measurement targeted for high-energy-resolution X-ray
spectroscopy. This includes (i) the extraction of the necessary information through the
statistical analysis of the available experimental data, (ii) accurate mathematical pulse
modeling and noise characterization, (iii) the formulation of constraints according to
different requirements, and (iv) the numerical optimization of the digital filter.

We have used experimental step-like pulses from the output of a low-noise CSA in
an SDD-based single-photon detection system to illustrate the proposed procedure. The
constraints for rejecting the offset, background ramp, and improving the SNR while creating
a flat-top at the output pulse have been described in this study.

The FIR filter coefficients generated with the DPLMS-based optimization procedure
have shown an improvement of about 20% in the energy resolution of both the Kα and Kβ

lines of the Mn energy spectrum with respect to the spectrum derived from the distribu-
tion of amplitudes obtained with least-squares fitting of individual photon pulses. The
improvement is also noticeable when comparing the energy resolution obtained with the
other presented FIR-based methods. The optimal energy resolution achieved through the
adapted DPLMS method is mainly due to the fact that this method considers the specific
noise in the acquired raw data and allows the control of the output pulse top flatness.

Two unexpected anomalies of the pulse detection system and associated front-end
electronics have been observed after analyzing the experimental data by means of scattered
plots and correlation distances between pulse model parameters. A non-linearity of the
CSA has been indirectly uncovered by observing a negative correlation between the offset
and the baseline slope. A significant dependence on the detected arrival time of the pulse
amplitude has also been observed, exposing an imperfection in the pulse detection method.

These statistical results provide important indications for possible improvements of
the spectroscopy system.
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Appendix A. Analytical Derivation of the Proposed Bi-Exponential Ideal Pulse Model

The proposed heuristic bi-exponential pulse model,

S(t) = A
(

1− 2e
−(t−t0)

τ + e
−2(t−t0)

τ

)
, t > t0 (A1)

is essentially a one-parameter model depending on the exponential time τ which completely
determines the pulse shape. The amplitude A is a scale factor and t0 is a time offset
corresponding to the starting point of the pulse. This model can be analytically derived by
considering the following transfer function:

H(s) = A
(

1
s (1 + sτ1) (1 + sτ2) (1 + sτ3)

)
(A2)

The inverse Laplace transformation of H(s) is,

H̃(t) = L−1{H(s)} = A

1− τ2
1 e
−(t−t0)

τ1

(τ1 − τ2)(τ1 − τ3)

τ2
2 e
−(t−t0)

τ2

(τ1 − τ2)(τ2 − τ3)

τ2
3 e
−(t−t0)

τ3

(τ1 − τ3)(τ3 − τ2)

 (A3)

The heuristic model can be obtained by taking the limits when τ1 → 0+ and τ3 → 2τ2,
and assuming t > t0 and τ2 = τ, as follows:

S(t) = lim
τ1→0+
τ3→2τ2

H̃(t) = A
(

1− 2e
−(t−t0)

τ + e
−2(t−t0)

τ

)
, t > t0 (A4)

Appendix B. Continuous Estimation of the Angular Coefficient of a Background Ramp

Let us consider the error between a point yi of a set of experimental data {(xi, yi)} and
the corresponding value of its linear approximation with coefficients a and b,

εi = yi − (axi + b) (A5)

Assuming a regularly spaced discrete abscissa and xi = i, we can write

εi = yi − (ai + b), i = 1, 2, 3, . . . (A6)

Now, the total error E can be defined as the sum of all squared errors,
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E = E(a, b) = ∑
i
(yi − (ai + b))2 (A7)

where the sum is extended to n consecutive samples. E is a function of the two variables a
and b. Having a positive quadratic form, in its minimum the partial derivatives of E with
respect to a and b must both be zero, then{

∂E
∂a = 0
∂E
∂b = 0

⇒
{
−2 ∑i(yi − ai− b)i = 0
−∑i(yi − ai− b) = 0

(A8)

After expanding all terms in previous expressions, we obtain{
∑i iyi − a ∑i i2 − b ∑i i = 0

∑i yi − a ∑i i− nb = 0
(A9)

By solving the above system of equations and considering that

n

∑
i=1

i = (1 + n)
n
2

(A10)

and

n

∑
i=1

i2 =
1
6

n (1 + n) (1 + 2n) (A11)

the angular coefficient a can be defined as a linear combination of the n data values yi
as follows:

a =
n

∑
i=1
−6

(1 + n− 2i)
(n3 − n)

yi (A12)

The above expression shows that the estimation of the angular coefficient a is a linear
combination of the last n data samples and a set of constant coefficients. The angular
coefficient can then be continuously evaluated by means of an FIR filter.
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