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Abstract: In this work, the in vitro anti-Leishmania activity of photodynamic liposomes made 

of soybean phosphatidylcholine, sodium cholate, total polar archaeolipids (TPAs) extracted 

from the hyperhalophile archaea Halorubrum tebenquichense and the photosensitizer zinc 

phthalocyanine (ZnPcAL) was compared to that of ultradeformable photodynamic liposomes 

lacking TPAs (ZnPcUDLs). We found that while ZnPcUDLs and ZnPcALs (130 nm mean 

diameter and −35 mV zeta potential) were innocuous against promastigotes, a low concentration 

(0.01 µM ZnPc and 7.6 µM phospholipids) of ZnPcALs irradiated at a very low-energy density 

(0.2 J/cm2) eliminated L. braziliensis amastigotes from J774 macrophages, without reducing the 

viability of the host cells. In such conditions, ZnPcALs were harmless for J774 macrophages, 

HaCaT keratinocytes, and bone marrow-derived dendritic cells. Therefore, topical photodynamic 

treatment would not likely affect skin-associated lymphoid tissue. ZnPcALs were extensively 

captured by macrophages, but ZnPcUDLs were not, leading to 2.5-fold increased intracellular  

delivery of ZnPc than with ZnPcUDLs. Despite mediating low levels of reactive oxygen 

species, the higher delivery of ZnPc and the multiple (caveolin- and clathrin-dependent plus 

phagocytic) intracellular pathway followed by ZnPc would have been the reason for the higher 

antiamastigote activity of ZnPcALs. The leishmanicidal activity of photodynamic liposomal 

ZnPc was improved by TPA-containing liposomes.

Keywords: macrophages, Leishmania amastigotes, Zn intracellular delivery, irradiation

Introduction
Latin America represents the most important endemic area of mucosal 

leishmaniasis,1 which manifests from days to years after cutaneous leishmaniasis (CL), 

and is known as classic mucocutaneous leishmaniasis (MCL) or espundia.2,3 MCL is a 

consequence of infection by New World Leishmania species, such as L. braziliensis, 

L. panamensis, L. amazonensis, and L. guyanensis.1,4 The mucosal lesions occurring 

during MCL are highly destructive, severely disfiguring, and potentially deadly. 

MCL represents a considerable health care problem in Latin America.5 Nowadays, 

leishmaniasis is largely moving towards domestic habitats,6,7 resulting in a marked 

MCL-incidence rise in Europe.8,9

Although there are no standardized protocols for the treatment of MCL,10 the World 

Health Organization recommends the use of intravenous pentavalent antimony and its 

derived molecules: sodium stibogluconate and meglumine antimoniate.11 Their killing 

mechanism is not known, and they are effective only on the intracellular forms – 

the amastigotes.12 For New World Leishmania species, their efficacy ranges from  

30% to 90%, and sodium stibogluconate appears to be less effective than meglumine 

antimoniate. Their usage is limited by resistance (significant in South America) 
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and cardiac, hepatic, hematic, pancreatic, and renal 

toxicity.13 Intravenous pentamidine11 possesses an efficacy 

of 90%–94% against L. braziliensis, but it is limited by 

resistance12 and severe toxicity.14,15 Other drugs of lower 

efficacy are miltefosine and paromomycin.16,17 Recently, 

an intravenous liposomal formulation of amphotericin B 

(AmBisome®; Astellas Pharma, Tokyo, Japan) was shown to 

be effective and better tolerated than sodium stibogluconate  

for treatment of CL due to L. braziliensis.18 Although  

AmBisome is claimed to be more cost effective than sodium 

stibogluconate treatment, the massive use of AmBisome is 

prohibitive for low-income people in South America. As a 

result of immunosuppression of human immunodeficiency 

virus-positive patients, kidney and heart recipients, and 

chronic users of corticosteroids, a serious risk of reactiva-

tion of CL in MCL form is present.19–23 On account of such 

complications, treatments should be started promptly after 

its diagnosis, so as to prevent mucosal metastasis.

In this scenario, photodynamic therapy (PDT) is an attrac-

tive therapeutic alternative that offers the opportunity of 

replacing parenteral administrations of leishmanicidal agents 

by the topical route. In PDT, photosensitizers (PS) are excited 

by light to produce cytotoxic reactive oxygen species (ROS) 

in the presence of oxygen.24 PDT has been widely used to 

eliminate diseased cells or pathogens, and has been employed 

with variable outcomes in experimental and clinical settings 

against CL.25 PDT could avoid the problem of drug resistance, 

since the generated ROS could target multiple sites on the 

parasite. Currently, four main classes of PS – porphyrin 

derivatives, chlorins, porphycenes, and phthalocyanines – 

have been approved by the US Food and Drug Administra-

tion for the clinical treatment of cancer.26,27 Among these, 

zinc phthalocyanine (ZnPc) exhibit a high photodynamic 

effect, as it possesses a diamagnetic Zn(II) central metal ion 

whose d-shell is fully occupied, by which the yield of triplet 

excited state and the long life essential for the generation of 

ROS becomes high.28 Moreover, ZnPc has a large absorption 

cross section of light at the tissue-penetrating spectral range 

of 650–900 nm.28,29

In the particular case of CL, the clinically relevant 

stage of the parasites are the intracellular amastigotes 

within phagolysosomes in dermal macrophages. Since the 

singlet oxygen has a radius of destruction of ~10–55 nm,30  

the phagolysosomal location of parasites could shield 

them from ROS generated in a distant site of the host cell. 

The subcellular targeting of PS depends on their chemical 

structure and significantly affects photodynamic proper-

ties. For example, mitochondrial localization has been 

observed for hydrophobic PS, such as ZnPc, chloroaluminum 

 phthalocyanine (ClAlPc), and protoporphyrin IX (PpIX),31,32  

in contrast to hydrophilic cationic phthalocyanines  localized 

preferentially within the lysosomes in some cancer cells.33,34  

Therefore, a strategy leading to target PS to the phagolyso-

somal machinery of the infected host cells could improve 

photodynamic activity against CL/MCL.

With the idea of a further topical treatment, we had 

already shown that in vitro activity of a hydrophobic ZnPc 

([tetrakis{2,4-dimetil-3-pentyloxi}-phthalocyaninate]zinc[II]) 

against L. braziliensis significantly improved when loaded in 

ultradeformable liposomes (UDLs; highly deformable lipo-

somes made of phospholipids [PLs] plus such edge activators 

as sodium cholate, Tween 80, or Span 80).35 In particular, these 

liposomes increased from 20% to 100% the antipromastigote 

activity and from 30% to 60% the antiamastigote activity (AA) 

of ZnPc, independently of irradiation. The increased AA of 

these UDLs was presumably due to their phagocytic uptake 

by the infected host cells. We later modified the UDL bilayer 

to get liposomes for topical application that were more exten-

sively taken up by phagocytic cells than UDLs themselves; 

these improved liposomes were dubbed ultradeformable 

archaeosomes (UDAs). The archaeosomes (ARCs) are vesicles 

made of total polar archaeolipids (TPAs) extracted from the 

hyperhalophile archaea Halorubrum tebenquichense. TPAs 

are a mixture of sn-2,3-glycerol ethers with polyisoprenoid 

chains, where phosphatidylglycerophosphate methyl ester and 

sulfated diglycosyl diphytanylglycerol diether (S-DGD-5) are 

the most abundant lipids. To prepare UDAs, half of the soybean 

phosphatidylcholine (SPC) of UDLs is replaced by TPAs at the 

ratio SPC:TPAs:sodium cholate (3:3:1 w:w). The UDAs were 

successfully used as antigen carriers for topical vaccination, 

because of their deep skin penetration and higher phagocytic 

uptake than UDLs, improving the antigen delivery to skin 

antigen-presenting cells.36 We hypothesized that TPAs contain-

ing liposomes could be used to increase the targeted delivery of 

ZnPc to macrophages to a higher extent than UDLs. Therefore, 

in this work, a commercial hydrophobic ZnPc was loaded into 

TPAs containing liposomes, and its in vitro leishmanicidal 

activity was compared to that of ZnPc loaded in UDLs on 

macrophages infected with L. braziliensis amastigotes.

Materials and methods
Materials
SPC (Phospholipon® 90 G, purity 90%) was a gift 

from Lipoid (Ludwigshafen, Germany). Sodium cholate 

(NaChol), 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-

N-(Lissamine™ [Thermo Fisher Scientific, Waltham, MA, USA] 

rhodamine B sulfonyl) (Rh-PE), ZnPc, mannan from Saccha-

romyces cerevisiae, 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyl 
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tetrazolium bromide (MTT), and Schneider’s Insect Medium 

were from Sigma-Aldrich (St Louis, MO, USA). 5-(and-6)-

chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate, acetyl 

ester (carboxy-H
2
DCFDA; Molecular Probes, Eugene, Oregon, 

USA), Roswell Park Memorial Institute (RPMI) 1640 and 

Modified Eagle’s Medium (MEM) were from Gibco®, Life 

Technologies (New York, USA). Fetal calf serum (FCS), 

antibiotic/antimycotic solution (penicillin 10,000 IU/mL, 

streptomycin sulfate 10 mg/mL, amphotericin B 25 µg/mL), 

glutamine, and trypsin/ethylenediaminetetraacetic acid were 

from PAA Laboratories GmbH (Pasching, Austria). Murine 

recombinant granulocyte-macrophage colony-stimulating factor 

was obtained from Pepro Tech (Rocky Hill, NJ, USA). Com-

plete RPMI (comp-RPMI) was prepared with RPMI 1640, 10% 

FCS, 5.5×10−5 M 2-mercaptoethanol from Sigma-Aldrich, and 

an antibiotic/antimycotic solution. Dendritic cell RPMI (DC-

RPMI) was prepared with comp-RPMI plus 20 ng/mL of murine 

recombinant granulocyte-macrophage colony-stimulating fac-

tor. All other chemicals and reagents were of analytical grade.

archaebacteria growth, extraction,  
and characterization of total polar lipids
Halorubrum tebenquichense Archaea, isolated from soil 

samples of Salina Chica, Península de Valdés, Chubut, 

Argentina was grown in 8 L batch cultures in basal medium 

supplemented with yeast extract and glucose.37 Cultures were 

monitored by absorbance at 660 nm and harvested in the late 

stationary phase for storage as frozen cell pastes.

Total lipids were extracted from frozen and thawed 

 biomass using the Bligh and Dyer method modified for 

extreme halophiles, and the TPA fraction was collected by 

precipitation from cold acetone.38 Between 90 mg and 120 mg 

TPAs were isolated from each culture batch. The reproduc-

ibility of each TPA-extract composition was routinely 

screened by phosphate content39 and electrospray-ionization 

mass spectrometry, as described in Higa et al.36

liposome preparation
Conventional liposomes (made of SPC), ARCs (made 

of TPAs), UDLs (made of SPC:NaChol, 6:1 w:w), and 

UDAs (made of TPAs:SPC:NaChol, 3:3:1 w:w:w) were 

prepared by the thin-film hydration method. To that end, 

appropriate amounts of lipids were dissolved in chloroform 

(SPC) or chloroform:methanol (1:1 vol:vol) (TPAs and 

NaChol) and mixed in round bottom flasks. Solvents were 

rotary-evaporated at 40°C, and the resultant lipid films 

flushed with N
2
 and hydrated with aqueous-phase (10 mM 

Tris-HCl buffer plus 0.9% w/vol NaCl, pH 7.4) buffer up 

to a final concentration of 43 mg of phospholipids/mL.  

The liposomal suspensions were sonicated (45 minutes with 

a bath-type sonicator, 80 W, 40 KHz) and extruded 15 times 

through three stacked 0.2 µm, 0.1 µm, and 0.1 µm pore 

polycarbonate filters using a 100 mL Thermobarrel extruder 

(Northern Lipids, Burnaby, Canada).

To prepare liposomes containing ZnPc, ZnPc was 

 dissolved in dimethylformamide at 0.5 mg/mL, and 170 µL 

was added to the organic solution of lipids to reach 2 mg 

ZnPc/g phospholipids (2.5 mmol ZnPc/mol phospholipids), 

and liposomes were prepared as stated earlier. To prepare  

Rh-PE-labeled liposomes, Rh-PE was dissolved in chloro-

form and 12.5 nmol was added to the organic solution of 

lipids (nearly 2,800:1 w:w phospholipids:Rh-PE); liposomes 

were prepared as stated earlier.

liposome characterization
PLs were quantified by a colorimetric phosphate microassay,39  

whereas ZnPc was quantified by absorbance at 667 nm upon 

complete disruption of one volume of liposomal suspension 

in 9 volumes of ethanol. Size and zeta potential were deter-

mined by dynamic light scattering and phase-analysis light 

scattering, respectively, using a Zetasizer Nano (Malvern 

Instruments, Malvern, UK).

The deformability value (D) of the liposomes was 

 calculated according to Van den Bergh40 as D = J (rv/rp)2, 

where J is the rate of penetration through a permeability 

barrier, rv is the size of vesicles after extrusion and rp is the 

pore size of the barrier. To measure J, vesicles were extruded 

through two stacked 50 nm (rp) membranes at 0.8 MPa using  

the Thermobarrel extruder (Northern Lipids, Burnaby, 

 Canada). Extruded volume was collected every minute 

for 15 minutes, PLs were quantified in each fraction, and J was 

calculated as the area under the curve of the plot of PLs recov-

ered as a function of time. The average vesicle diameter after 

extrusion (rv) was measured by dynamic light scattering.

cells and parasites
J774 and hacat cells
Immortalized murine BALsB/c monocyte/macrophage 

J774 and human keratinocytes (HaCaT cells), supplied by 

Dr Salvatierra of the Fundación Instituto Leloir (Buenos 

Aires, Argentina), were routinely cultured in RPMI 1640 or 

MEM supplemented with 10% FCS, 100 IU/mL penicillin,  

100 µg/mL streptomycin, and 2 mM glutamine at 37°C in 5% 

CO
2
 and 95% humidity.

Bone marrow-derived dendritic cells
Bone marrow-derived DCs were obtained as described 

previously.41 Briefly, cells obtained from femurs and tibias 
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of mice were resuspended at 1×106 cells/mL in DC-RPMI. 

The culture medium was refreshed at 48-hour intervals 

for 6 days by repeating the same procedure. The plates 

were gently swirled to remove nonadherent granulocytes 

without dislodging clusters of developing DCs that were 

loosely attached to firmly adherent macrophages. Then, 80% 

of the media was aspirated and removed. Fresh DC-RPMI 

was added very slowly to avoid disrupting the clusters. At 

day 8, the cell aggregates were harvested by trypsinization 

for 5 minutes, followed by centrifugation as mentioned 

earlier and overnight subculture at 3×105 cells/mL in comp-

RPMI. The subcultures were fed at 48-hour intervals from 

days 10 to 14 with comp-RPMI. At days 10–14 of culture, 

cells were tested for specific markers. When more than 60% 

of the loosely adherent cells expressed the CD11c marker, 

they were considered ready to use.

Leishmania parasites
L. braziliensis promastigotes (strain HOM/BR75/M2903), 

supplied by Dr Mónica Esteva from the Instituto Nacional 

de Parasitologia Dr Mario Fatala Chabén (Buenos Aires, 

Argentina), were cultured at 26°C in Schneider’s Insect 

Medium supplemented with 10% FCS, 100 IU/mL penicil-

lin, 100 µg/mL streptomycin, and 2 mM glutamine. Growth 

curves of the parasite were performed, and promastigotes at 

the stationary phase were used for macrophage infection.

Uptake of liposomes by macrophages
The uptake of Rh-PE-labeled liposomes by macrophages 

was analyzed by flow cytometry. J774 cells seeded at a 

density of 3.5×105 cells per well onto six-well microplates 

were grown for 24 hours at 37°C. The medium was replaced 

with fresh MEM with 5% FCS containing Rh-PE-labeled 

liposomes, ARCs, UDLs, and UDAs at 0.5 mM PLs,  

and cells were incubated for 1, 3, and 5 hours at 37°C. After 

each incubation time, the medium was removed, cells were 

washed with phosphate-buffered saline (PBS; pH 7.4), and 

harvested by trypsinization. Cells were fixed in 1% formal-

dehyde at 4°C. Cells were washed, suspended in PBS, and 

a total of 1×105 cells were analyzed by flow cytometry (BD 

FACSCalibur™; BD Biosciences, San Jose, CA, USA). 

Data were analyzed using WinMDI 2.9 software (Microsoft, 

Redmond, WA, USA).

cytotoxicity on keratinocytes, 
macrophages, and dendritic cells
HaCaT and J774 cells and DC were seeded at a density 

of 5× and 9×104 cells per well, respectively, onto 96-well 

flat-bottom plates and grown for 24 hours at 37°C. Then, 

the medium was replaced by 100 µL of fresh medium with  

5% FCS containing 0.01 µM and 0.1 µM of free or liposomal 

ZnPc (corresponding to 7.6–5.2 µM PLs and 76–52 µM PLs). 

After 24-hour incubation at 37°C, suspensions were removed; 

cells were washed with PBS, and fresh MEM with 5% FCS 

was added. Cells were irradiated for 15 minutes with a halogen 

lamp (7748S 250 W; Philips, Amsterdam, the  Netherlands) 

that provided an average irradiance of 0.22 mW/cm2  

(measured with a SpectroSense2 light meter with an SKR  

110/SS2 sensor at 660 nm; Skye Instruments, Powys, UK)  

at a distance of 26 cm from the plates positioned per-

pendicularly to the center of the lamp. Illumination time 

of 15  minutes provided energy fluency of 0.2 J/cm2. 

Control cells were maintained without irradiation. After 

 irradiation, cells were incubated for 24 hours at 37°C, and 

then the medium was removed and replaced by 0.5 mg/mL 

of MTT. After 4 hours’ incubation, the MTT solution was 

removed, the insoluble formazan crystals were dissolved in 

dimethyl sulfoxide, and absorbance was measured at 570 nm 

in a microplate reader. The viability of cells was expressed as 

a percentage of the viability of cells grown in medium.

antipromastigote activity
L. braziliensis promastigotes (1×106) were incubated 

with 0.01 µM and 0.1 µM of free or liposomal ZnPc at 26°C 

in Schneider’s Insect Medium. After 24 hours’ incubation 

at 26°C, suspensions were removed; parasites were washed 

with PBS, fresh Schneider’s Insect medium with 5% FCS was 

added, and parasites were irradiated with 0.2 J/cm2. Control 

parasites were maintained without irradiation. After irradia-

tion, parasites were incubated for 24 hours at 26°C, and then 

parasite viability was measured by MTT assay.

antiamastigote activity
J774 cells were seeded at a density of 2×104 cells per well 

in eight-well culture-chamber slides (Nunc™ Lab-Tek™; 

Thermo Fisher Scientific), and grown for 24 hours at 37°C. 

Thereafter, J774 cells were infected for 4 hours with L. bra-

ziliensis promastigotes at a 1:6 macrophages:promastigotes 

ratio, and then extracellular parasites were removed by 

gently washing. The medium was replaced by 100 µL of 

fresh MEM with 5% FCS containing 0.01 µM and 0.1 µM 

of free or liposomal ZnPc. Cells were incubated for an addi-

tional 4 hours, and then irradiated with 0.2 J/cm2. Control 

cells were maintained without irradiation. After 24 hours, 

cells were washed with PBS, fixed with methanol, and stained 

with Giemsa. The number of amastigotes/100 cells was 

determined by counting at least 300 cells in triplicate cultures 

in each experimental condition by using light microscopy.  
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Untreated infected macrophages were used as controls. 

Antiamastigote activity was expressed as: %AA =(1−[{number 

of amastigotes/100 treated cells}/{number of amastigotes/100 

untreated cells} × 100]).

ZnPc delivery to macrophages
The uptake of free or liposomal ZnPc by J774 cells was 

analyzed by flow cytometry. Cells were seeded at a density 

of 1.5×105 cells per well onto 24-well plates and grown 

for 24 hours at 37°C. Then, the medium was replaced 

by 250 µL of fresh MEM with 5% FCS containing 0.01 µM 

of free or liposomal ZnPc (5.2–7.6 µM PL). After 24 hours’ 

incubation at 37°C, suspensions were removed, cells were 

washed with and suspended in PBS, and a total of 2×104 cells 

were analyzed by flow cytometry.

competition assay
J774 cells seeded at a density of 1.5×105 cells per well 

onto 24-well microplates were grown for 24 hours at 37°C. 

The medium was replaced with fresh MEM with 5% FCS 

containing 4 mg/mL mannan for 30 minutes. Then, 0.1 µM 

of liposomal ZnPc (corresponding to 76–52 µM PLs) was 

added and incubated for another 1 hour at 37°C. Cells were 

washed with PBS (pH 7.4) and harvested by trypsinization. 

Cells were suspended in PBS, and a total of 2×104 cells were 

analyzed by flow cytometry.

Measurement of reactive oxygen species
Carboxy-H

2
DCFDA dye was used to study intracellular ROS 

generation in J774 cells. Carboxy-H
2
DCFDA is a chemically 

reduced, acetylated form of fluorescein used as an indicator 

for ROS in cells. This nonfluorescent molecule is readily con-

verted to a green fluorescent form when the acetate groups are  

removed by intracellular esterases and oxidation (by the 

activity of ROS) occurs within the cell. Cells were seeded at a  

density of 1.5×105 cells per well onto 24-well plates  

and grown for 24 hours at 37°C. Then, the medium was replaced 

by 250 µL of fresh MEM with 5% FCS containing 0.01 µM 

and 0.1 µM of free or liposomal ZnPc. After 4 hours’  

incubation at 37°C, suspensions were removed, cells were 

washed with PBS, and the medium was replaced by fresh 

MEM with 5% FCS. Cells were irradiated with 0.2 J/cm2. 

Control cells were maintained without irradiation. After 

irradiation, cells were incubated for 30 minutes at 37°C, and 

then the medium was removed and replaced by 10 µM of 

carboxy-H
2
DCFDA in PBS. After 30 minutes’ incubation, the 

solution was removed, cells were washed in and suspended in 

PBS, and a total of 2×104 cells were analyzed by flow cytom-

etry. As a positive control, intracellular ROS production was 

induced by the addition of 2.5 µM H
2
O

2
 for 30 minutes before 

the addition of carboxy-H
2
DCFDA.

statistical analysis
Group means of results with two variables were evaluated 

by two-way analysis of variance (ANOVA) followed by 

Bonferroni correction, and results with one variable were 

evaluated by one-way ANOVA followed by Tukey’s test 

to compare individual groups using Prism 4.0 software  

(GraphPad Software, La Jolla, CA, USA). Significance levels 

are described in figure legends.

Results
characterization of liposomes
The main structural features of void and ZnPc-containing lipo-

somes are shown in Table 1. We found that the incorporation 

of ZnPc into the UDL bilayer did not significantly modify its 

deformability. However, the insertion of ZnPc into the UDA 

bilayer considerably reduced its deformability to the order of 

that of conventional liposomes. It is expected that a relative 

absence of postextrusion size reduction will be found, as long 

as the bilayers are highly deformable, as occurred with UDLs 

and UDAs, whose mean size was reduced by 0 and 15%, 

respectively. On the other hand, a significant size reduction 

upon extrusion is expected for poorly  deformable bilayers 

Table 1 structural characteristics of void and ZnPc containing liposomes. Values given are mean values of three different batches ± 
standard deviation of the mean

Sample Mean size (nm) 
(polydispersity index)

Zeta potential 
(mV)

Mean size,  
post-deformability 
test (nm)

Deformability  
(D)

mmol ZnPc/mol 
phospholipids

ls 109±5 (0.103) −10±3 62±6 765±267 –
UDls 110±2 (0.242) −12±2 109±2 3,882±291 –
UDas 130±1 (0.241) −35±4 110±2 4,064±365 –
ZnPcUDls 112±10 (0.10) −11±4 89±1 3,391±393 1.9±0.4
ZnPcals 131±19 (0.13) −35±1 96±1 425±130 1.4±0.7

Abbreviations: ls, conventional liposomes; UDls, ultradeformable liposomes; UDas, ultradeformable archaeosomes; ZnPcUDls, ZnPc containing ultradeformable 
liposomes; ZnPcals, ZnPc and archaeolipids containing liposomes.
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such as liposomes and ZnPcALs, whose mean size was 

reduced by 43% and 27%, respectively. Another factor 

contributing to D is the flux (J) measured as the amount of 

filtered phospholipids/time. We found that 85% of the total 

ZnPcUDL phospholipids were filtered in the first 15 minutes, 

versus only 10% for ZnPcALs. Therefore, we will refer to 

these liposomes as ZnPcALs (instead of ZnPcUDAs), where 

ALs means archaeolipids containing liposomes.

Uptake of liposomes by macrophages
The phagocytic uptake of ARCs (nondeformable vesicles 

made of TPAs), UDAs (TPA-containing deformable 

vesicles), UDLs, and liposomes was compared. We found 

that ARCs and UDAs were extensively taken up, while the 

uptake of UDLs and liposomes was negligible (Figure 1). 

No significant difference was found between the uptake of 

UDAs or ARCs, their extensive phagocytosis likely related 

to the TPA content and not to their bilayer deformability. 

Therefore, despite not being deformable, ZnPcALs remained 

as suitable candidates as leishmanicidal liposomes to be taken 

up by infected macrophages.

cytotoxicity on keratinocytes, 
macrophages, and dendritic cells
Neither ZnPc in darkness or after irradiation nor ZnPc 

liposomes in darkness were cytotoxic on all cell types. 

After irradiation, 0.01 µM ZnPcUDLs and ZnPcALs were 

also innocuous on all cell types; however, at 0.1 µM, both 

decreased by 60% the viability of HaCaT cells (Figure 2A), 

and ZnPcALs decreased by 40% the viability of J774 cells 
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Figure 1 Uptake of rh-Pe-labeled liposomes by J774 cells as a function of time.
Notes: J774 cells were incubated with rh-Pe-ls, rh-Pe-UDls, rh-Pe-arcs, and rh-
Pe-UDas at 0.5 mM phospholipids in medium containing 5% Fcs. at different time 
points, cells were washed with phosphate-buffered saline, collected, fixed, and analyzed 
by flow cytometry (BD FACSCalibur™; BD Biosciences, San Jose, CA, USA).
Abbreviations: rh-Pe, dimyristoyl phosphoethanolamine-N-(lissamine rhodamine 
B sulfonyl); ls, conventional liposomes; UDls, ultradeformable liposomes; arcs, 
archaeosomes; UDas, ultradeformable archaeosomes; Fcs, fetal calf serum.
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Figure 2 cytotoxicity of free and liposomal ZnPc on mammal cells in the darkness 
and after irradiation.
Notes: hacaT cells (A), J774 cells (B), and dendritic cells (C) were incubated with 
0.01 µM and 0.1 µM of ZnPc, ZnPcUDls, and ZnPcals for 24 hours in medium 
containing 5% Fcs. half the cells were kept in the darkness, and half were irradiated. 
after irradiation, cells were incubated for 24 hours in growth medium. cell survival 
was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 
assay. Values represent means ± standard deviation (n=3). **P0.01; *P0.05.
Abbreviations: ZnPc, zinc phthalocyanine; ZnPcUDls, ZnPc containing ultrad-
eformable liposomes; ZnPcals, ZnPc and archaeolipids containing liposomes; Fcs, 
fetal calf serum.
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(Figure 2B). ZnPcUDLs and ZnPcALs were not cytotoxic 

on DCs (Figure 2C) in darkness or after irradiation, indi-

cating therefore a lower sensitivity to liposomal PDT than 

macrophages and keratinocytes.

antipromastigote activity
Neither ZnPc nor ZnPc liposomes reduced the viability of 

L. braziliensis promastigotes in darkness or after irradiation 

(Figure 3).

antiamastigote activity
Interestingly, we found a basal concentration- and irradiation- 

independent AA of around 25% for UDLs, UDAs, and 

ZnPc. Similarly, the 50%–60% AA of ZnPcUDLs was 

 concentration- and irradiation-independent as well (Figure 4A). 

The 85%–90% AA of ZnPcALs at 0.1 µM ZnPc was also 

irradiation-independent. However, the 15% AA of ZnPcALs 

at 0.01 µM ZnPc in darkness significantly increased to 

near 90% after irradiation. Optical microscopy of infected mac-

rophages treated with 0.01 µM ZnPc (Figure 4B) and 0.01 µM 

ZnPcALs (Figure 4C) after irradiation showed the preservation 

of intact morphology of macrophages, together with a reduction 

in the number of amastigotes per macrophage.

ZnPc delivery to macrophages
The amount of ZnPc delivered by ZnPcALs to J774 cells 

was quantified by flow cytometry of the fluorescent ZnPc, 
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Figure 3 cytotoxicity of free and liposomal ZnPc on Leishmania braziliensis 
promastigotes in the darkness and after irradiation.
Notes: L. braziliensis promastigotes were incubated with 0.01 µM and 0.1 µM  
of ZnPc, ZnPcUDls, and ZnPcals for 24 hours in schneider’s Insect Medium  
(sigma aldrich, st louis, MO, Usa) at 26°c. half the parasites were kept in darkness, 
and half were irradiated. after irradiation, parasites were incubated for 24 hours 
in growth medium. cell survival was determined by the 3-(4,5-dimethylthiazol- 
2-yl)-2,5-diphenyltetrazolium bromide assay. Values represent means ± standard 
deviation (n=3).
Abbreviations: ZnPc, zinc phthalocyanine; ZnPcUDls, ZnPc containing ultrad-
eformable liposomes; ZnPcals, ZnPc and archaeolipids containing liposomes.
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Figure 4 antiamastigote activity of free or liposomal ZnPc in the darkness and 
after irradiation.
Notes: (A) J774 cells previously infected with Leishmania braziliensis promastigotes 
were incubated with 0.01 µM (I) and 0.1 µM (II) of ZnPc, ZnPcUDls, and ZnPcals, 
and with void liposomes (UDls and als at the phospholipid concentrations 7.6–5.2 
[I] µM and 76–52 [II] µM) for 4 hours in medium containing 5% fetal calf serum. 
half the cells were kept in darkness, and half were irradiated. after irradiation, 
cells were incubated for 24 hours in growth medium. Then cells were fixed with 
methanol and stained with giemsa (Merck, New Jersey, Usa). The number of 
amastigotes/100 cells was determined by counting at least 300 cells in three different 
experiments, and antiamastigote activity was calculated. (B,C) Optical microscopy 
of infected J774 cells incubated with 0.01 µM ZnPc (B) and 0.01 µM ZnPcals (C), 
both taken 24 hours after irradiation. arrows points to intracellular amastigotes. 
*P0.05; ***P0.001.
Abbreviations: ZnPc, zinc phthalocyanine; ZnPcUDls, ZnPc containing ultrad-
eformable liposomes; ZnPcals, ZnPc and archaeolipids containing liposomes; UDls, 
ultradeformable liposomes; als, archaeolipids containing liposomes.

and was 2.5-fold higher than that delivered by ZnPcUDLs or 

ZnPc (Figure 5A). Remarkably, the uptake of ZnPcALs and 

not of ZnPcUDLs was strongly reduced in the presence of the 

mannose polysaccharide yeast mannan (Figure 5B).

Production of rOs
Only macrophages treated with 0.1 µM ZnPcALs generated 

measurable levels of ROS in an irradiation-independent 

fashion (Figure 6).

Discussion
In this work, based on the hypothesis that TPAs containing 

liposomes could improve ZnPc delivery to infected mac-

rophages, the in vitro leishmanicidal activity of ZnPcALs 

was compared to that of ZnPcUDLs and free ZnPc on 

 macrophages infected with L. braziliensis.
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Figure 5 Uptake of liposomal ZnPc by J774 cells.
Notes: (A) J774 cells were incubated with 0.01 µM of ZnPc, ZnPcUDls, and ZnPcals for 24 hours in medium containing 5% fetal calf serum (Fcs). Then, cells were washed 
with phosphate-buffered saline (PBS), suspended in PBS, and analyzed by flow cytometry (BD FACSCalibur™; BD Biosciences, San Jose, CA, USA). (B) J774 cells were 
preincubated with 4 mg/ml mannan for 30 minutes in medium containing 5% Fcs, then 0.1 µM of ZnPcUDls and ZnPcals were added and incubated for another hour 
at 37°C. Then, cells were washed with PBS, suspended in PBS, and analyzed by flow cytometry. Values represent mean ± standard deviation (n=3). ***P0.001.
Abbreviations: ZnPc, zinc phthalocyanine; ZnPcUDls, ZnPc containing ultradeformable liposomes; ZnPcals, ZnPc and archaeolipids containing liposomes; Ns, not 
significant.
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Figure 6 reactive oxygen species (rOs) production of J774 cells after treatment 
with free or liposomal ZnPc in darkness and after irradiation.
Notes: J774 cells were incubated with 0.01 µM and 0.1 µM of ZnPc, ZnPcUDls, and 
ZnPcals for 4 hours in medium containing 5% fetal calf serum. half the cells were 
kept in darkness, and half were irradiated. after irradiation, cells were incubated 
for 30 minutes at 37°c, and then medium was removed and replaced by 10 µM 
of (5-and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate, acetyl ester in 
phosphate-buffered saline (PBs). Then, cells were washed with PBs, suspended in 
PBS, and analyzed by flow cytometry (BD FACSCalibur™; BD Biosciences, San Jose, 
ca, Usa). Values represent means ± standard deviation (n=3). **P0.01.
Abbreviations: ZnPc, zinc phthalocyanine; ZnPcUDls, ZnPc containing ultrad-
eformable liposomes; ZnPcals, ZnPc and archaeolipids containing liposomes.

First we found that insertion of ZnPc into the UDA bilayer 

considerably reduced its deformability. Bilayer deformability 

depends on the mixing/demixing of edge activators (EAs; 

hydrophilic detergents, such as sodium cholate, deoxy-

cholate, or Tween 80) as a response to mechanical defor-

mation stress.42,43 However, the lateral mobility of foreign 

molecules dissolved within polyisoprenoid lipids rich in 

sugar, such as TPA bilayers, is low. In a previous work, we 

observed that the addition of EAs to pure TPA bilayers does 

not lead to highly deformable liposomes, due to the impaired 

lateral mobility (mixing/demixing) of EAs in TPAs. In order 

to make TPA bilayers highly deformable, a minimal propor-

tion of SPC is required at 3:1:3 w:w SPC:NaChol:TPAs. 

Below that SPC threshold, the presence of EAs is insuf-

ficient to make the TPA bilayer highly deformable. SPC  

is therefore unavoidable, since the mixing of EAs occurs after 

the TPA is diluted in a given amount of SPC.44 It is likely, 

therefore, that the insertion of hydrophobic ZnPc within the 

TPA–SPC mixture interfered with EA demixing, decreasing 

its deformability.

On the other hand, we found that the intracellular 

ZnPc delivered to macrophages by 0.01 µM ZnPcALs was  

2.5-fold higher than that delivered by ZnPcUDLs or ZnPc. 

We also observed that after irradiation at 0.2 J/cm2 fluency, 

the AA of 0.01 µM ZnPcALs was 60% higher than with 

ZnPc and 35% higher than with ZnPcUDLs. Although free 

ZnPc or ZnPcUDLs delivered the same amount of intracel-

lular ZnPc, the higher AA of ZnPcUDLs could be due to the 

different intracellular localization of ZnPc. While free ZnPc 

enters by diffusion,45 ZnPcUDLs are taken up by clathrin-

mediated endocytosis, the ZnPc delivered to intracellular 

targets being different to those by diffusion.46 Instead, the 

higher AA of 0.01 µM ZnPcALs than ZnPcUDLs would 

be a consequence of the higher ZnPc endocytic uptake of 

the mannosylated liposomes following particular intracel-

lular traffic. It was recently reported that 100 nm-diameter 

TPAs containing liposomes were taken up by J774 cells 
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by multiple pathways that included phagocytosis and   

clathrin- and caveolin- mediated endocytosis (Defain et al, 

unpublished data, 2014). The  mannose receptor (MR) 

expressed in J774 is involved in high endocytic uptake 

of mannosylated ligands.47 The uptake of ZnPcALs was 

strongly reduced via coadministration with mannan, indi-

cating that internalization of ZnPcALs was mediated by 

the mannose receptor. The high uptake of TPAs contain-

ing liposomes, ARCs, UDAs, and ZnPcALs suggested an 

interaction between the sulfated mannosylated archaeo-

lipid S-DGD-5 1-O-[α-D-mannose-(2″-SO
3
H)-(1′→2′)-

α-D-glucose]-2,3-di-O-phytanyl-sn-glycerol) and the MR, 

primarily expressed by macrophages, DCs, and some epithe-

lial cells.48 Remarkably, a high uptake plus the noninduction 

of proinflammatory cytokines are hallmarks of the interaction 

via MR,49–51 and we have recently observed that despite being 

highly taken up, UDAs did not induce the proinflammatory  

cytokines tumor necrosis factor-α and interleukin 6 by 

J774 cells (Perez et al, unpublished data, 2014).

The PDT with 0.01 µM liposomal ZnPc resulted in 

toxicity to intracellular parasites, but was innocuous for 

host macrophages and keratinocytes. Remarkably, primary 

DCs – a cell type expected to be target of TPAs containing 

liposomes, due to their constitutive expression of MR48 – 

showed surprising resistance to the liposomal PDT. This 

would suggest that further topical PDT would not affect the 

immune functions of skin-associated lymphoid tissue.

Interestingly, we found that irradiation with liposomal 

ZnPc significantly inhibited the survival of amastigotes inside 

host macrophage, cells but had no antipromastigote effect. 

Similar results were found for paromomycin-containing 

liposomes and transfersomes, where activities against intra-

cellular L. major amastigotes were higher than activities 

against promastigotes.52,53

Quantitative comparisons of our results with other contri-

butions are difficult to establish, due to the scarcity of studies 

on the activity of ZnPc-mediated PDT against New World 

leishmaniasis. Our in vitro results showed that 0.01 µM 

ZnPcAL-mediated PDT at 0.2 J/cm2 was deleterious against 

intracellular amastigotes and kept viable macrophages, 

keratinocytes, and dendritic host cells. Interestingly, this 

was achieved at a 100-fold lower dose of PS (1.25 µM) 

and 75-fold lower fluency (15 J/cm2) than we have reported 

before with ZnPcUDLs ([tetrakis{2,4-dimetil-3-pentyloxi}-

phthalocyaninate] zinc [II]).35 On the other hand, our results 

were achieved at 104–105-fold lower doses of PS (1 mM 

δ-aminolevulinic acid [ALA] and 1 mM PpIX) and 50–100-

fold lower fluency (50–10 J/cm2) than with ALA or PpIX, 

that had previously failed to eliminate intracellular L. major 

amastigotes.54,55 With such an approach, macrophages were 

more sensitive than the parasites to ALA, suggesting that 

death of the host cells likely occurred without complete 

eradication of the parasites. Our results also were achieved at 

a 180-fold lower dose and 5.5- to eleven-fold lower fluency 

than with liposomal carbaporphyrin dimethyl ketal, which 

showed a half-maximal effective concentration of 1.8 µM 

against intracellular L. amazonensis amastigotes.56 Finally, 

our results were achieved at a seven- to 15-fold higher dose 

than with liposomal AlPcCl, which showed half-maximal 

inhibitory concentrations of 1.49 and 0.69 nM against 

intracellular L. panamensis and L. chagasi amastigotes, 

respectively.57 Nonetheless, these were similar to the 

half-maximal cytotoxicity concentration on macrophages 

(1.35 nM). This means that the uninfected macrophages 

were eliminated by similar (or quite a lot lower) concen-

tration of ClAlPc than intracellular amastigotes. These 

kinds of results were also reported for free ALA58 and  

AlPcCl.59 In all cases, our results were achieved at 34-fold 

lower fluency without reducing macrophage viability.

Unfortunately, in studies that used PDT as a leishmani-

cidal agent, the measurement of intracellular ROS was 

avoided.54–59 However, at 0.01 µM ZnPcALs, the induction 

of AA in response to irradiation suggested the mediation of 

ROS that produced below the minimal detection level of the 

method60 and was lethal for intracellular amastigotes. Here, 

carboxy-H
2
DCFDA (used to detect hydrogen peroxide; per-

oxyl radicals, including alkyl peroxyl and hydroperoxyl; and 

peroxynitrite anions in cell-free systems) showed quantita-

tive and irradiation-independent ROS production by 0.1 µM 

ZnPcALs. After irradiating 0.01 µM ZnPcALs, however, no 

ROS were detected. The results could be interpreted as aris-

ing from a chemotoxic, concentration-dependent instead of a 

photodynamic activity. A partial explanation for this would lie 

in the fact that ROS can be produced in the dark by chemical 

reactions and not exclusively by photodynamic activity.

In general, the endocytic uptake of liposomes results in 

therapeutic effects with minimal amounts of active  principle, 

because of selective delivery to intracellular targets. In our 

case, PDT with 0.01 µM ZnPcALs combined a high amount of 

intracellular ZnPc with a probable local generation of ROS at 

multiple intracellular targets by phagocytosis and clathrin- and 

caveolin-mediated endocytosis that was lethal for amastigotes. 

Our finding of a high AA of 0.01 µM ZnPC-UDLs indepen-

dent of irradiation suggested the intervention of chemotoxic-

ity and not ROS-mediated mechanisms. Similarly, Taylor 

et al56 reported that the activity of liposomal carbaporphyrin 

dimethyl ketal on intracellular amastigotes of L. amazonensis 

was irradiation-independent, and when tested in vivo using 
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a hamster model of CL with L. amazonensis, carbaporphyrin 

ketals were active even in the dark. The authors suggested 

that the compound, once metabolized in the animal tissue, 

produces an active ingredient that does not seem to be pho-

tosensitive. Nonetheless, the increased AA after irradiation 

of 0.01 µM ZnPcALs strongly suggested the intervention 

of photoinduction, although our experimental setting was 

unable to show a ROS increment as a response to irradiation.  

A potential explanation would be that the intracellular delivery 

of 0.01 µM ZnPcALs would favor a direct and lethal attack 

of 1O
2 
(undetectable by carboxy-H

2
DCFDA) to the parasite 

lipids, nucleic acids, and proteins, resulting in minimal ROS 

production. The results at 0.1 µM ZnPcALs could be explained 

by the superimposition of phototoxicity and chemical toxicity 

that could also be mediated by ROS in the dark.

Finally, at 0.1 µM liposomal ZnPc in the dark, the intra-

cellular parasites were affected, while the host cells suffered 

no damage. After irradiation, however, ZnPcUDLs damaged 

keratinocytes, while ZnPcALs damaged keratinocytes and 

macrophages as well. These in vitro assays would suggest 

that in vivo, the dosage scheme will have to be adjusted in 

order to achieve leishmanicidal activity, but also to avoid 

potential epidermal cytotoxicity.
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