Título: | Wear and MnS layer adhesion in uncoated cutting tools when dry and wet turning free-cutting steels |
Fuente: | Metals, 9(5) |
Autor/es: | Martinez Krahmer, D.; Hameed, S.; Sánchez Egea, A. J.; Pérez, D.; Canales, J.; López de Lacalle, L. N. |
Materias: | Desgaste; Adhesión; Herramientas de corte; Aceros |
Editor/Edición: | MDPI; 2019 |
Licencia: | https://creativecommons.org/licenses/by/4.0/ |
Afiliaciones: | Martinez Krahmer, D. Instituto Nacional Tecnología Industrial (INTI); Argentina Hameed, S. Universitat Politècnica de Catalunya; España Sánchez Egea, A. J. Universitat Politècnica de Catalunya; España Pérez, D. Instituto Nacional de Tecnología Industrial (INTI); Argentina Canales, J. Universidad del País Vasco. Escuela de Ingeniería de Bilbao; España López de Lacalle, L. N. Universidad del País Vasco. Escuela de Ingeniería de Bilbao; España |
|
|
Resumen: | Free-cutting steels are developed to produce large quantities of parts with low mechanical behavior, mainly for automotive sector. These alloys contain phosphorous, lead, sulfur, and manganese that help to improve the machinability and surface roughness. However, due to the toxicity of lead, steel mills in recent years have been focusing on non-toxic steels to produce minimum environmental pollution and better machinability. The present work investigates the tool wear during dry and wet turning of free-cutting steels (SAE 1212, SAE 12L14, and SAE 1215) by using uncoated hard metal inserts at three cutting speeds. Additionally, a EDS analysis was performed to determine the presence of Mn and S elements at the rake face of the cutting tool that can induce a higher adhesion of manganese sulfide (MnS). The results show that the SAE 12L14 steel has the best performance in terms of tool life at different cutting speeds. This difference is maximum at the lowest cutting speed, which gradually decreases with the increase of the cutting speed. The wear behavior is evaluated in the three steel alloys at each cutting speed and, consequently, the tool wear exhibits a slightly better performance in the dry machining condition for higher cutting speeds (180 and 240 m/min), independent of the steel alloy. Finally, EDS analysis confirms the presence of Mn and S elements at the rake face of the inserts machined in dry condition. Hence, MnS is expected to interpose between the machined surface and cutting tool surface to behave similar to tribofilm by reducing the wear on the cutting edge. |
Descargar |
Ver+/-
metals Article Wear and MnS Layer Adhesion in Uncoated Cutting Tools When Dry and Wet Turning Free-Cutting Steels D. Martinez Krahmer 1,2,*, S. Hameed 3, A. J. Sánchez Egea 4,* , D. Pérez 1,2, J. Canales 5 and L. N. López de Lacalle 5 1 Center for Research and Development in Mechanics, National Institute of Industrial Technology (INTI), Avenida General Paz 5445, 1650 Miguelete, Provincia de Buenos Aires, Argentina; danielap@inti.gob.ar 2 Faculty of Engineering, Universidad Nacional de Lomas de Zamora, Juan XXIII y Camino de Cintura, 1832 Buenos Aires, Argentina 3 Department of Mechanical Engineering (EPSEVG), Universitat Politècnica de Catalunya, Av. de Víctor Balaguer, 1, Vilanova i la Geltrú, 08800 Barcelona, Spain; hameeds@tcd.ie 4 Department of Mechanical Engineering (EEBE), Universitat Politècnica de Catalunya, Av. Eduard Maristany, 16, 08019 Barcelona, Spain 5 Department of Mechanical Engineering, Aeronautics Advanced Manufacturing Center (CFAA), Faculty of Engineering of Bilbao, Alameda de Urquijo s/n, 48013 Bilbao, Spain; javier.canales@ehu.eus (J.C.); norberto.lzlacalle@ehu.eus (L.N.L.d.L.) * Correspondence: mkrahmer@inti.gob.ar (D.M.K.); antonio.egea@upc.edu (A.J.S.E.); Tel.: +54-011-4754-4072 (D.M.K.); +34-934-054-024 (A.J.S.E.) Received: 12 April 2019; Accepted: 8 May 2019; Published: 12 May 2019 Abstract: Free-cutting steels are developed to produce large quantities of parts with low mechanical behavior, mainly for automotive sector. These alloys contain phosphorous, lead, sulfur, and manganese that help to improve the machinability and surface roughness. However, due to the toxicity of lead, steel mills in recent years have been focusing on non-toxic steels to produce minimum environmental pollution and better machinability. The present work investigates the tool wear during dry and wet turning of free-cutting steels (SAE 1212, SAE 12L14, and SAE 1215) by using uncoated hard metal inserts at three cutting speeds. Additionally, a EDS analysis was performed to determine the presence of Mn and S elements at the rake face of the cutting tool that can induce a higher adhesion of manganese sulfide (MnS). The results show that the SAE 12L14 steel has the best performance in terms of tool life at different cutting speeds. This difference is maximum at the lowest cutting speed, which gradually decreases with the increase of the cutting speed. The wear behavior is evaluated in the three steel alloys at each cutting speed and, consequently, the tool wear exhibits a slightly better performance in the dry machining condition for higher cutting speeds (180 and 240 m/min), independent of the steel alloy. Finally, EDS analysis confirms the presence of Mn and S elements at the rake face of the inserts machined in dry condition. Hence, MnS is expected to interpose between the machined surface and cutting tool surface to behave similar to tribofilm by reducing the wear on the cutting edge. Keywords: free-cutting steel; wear; dry turning; wet turning; uncoated carbide; adhesion layer 1. Introduction The steel mills are developing some grades of steel called free-cutting steels (FCS) to reduce the use of cutting fluids during the cutting processes. It is well known that the use of cutting fluids in machining was initiated by Taylor in 1894 [1], who used water in the turning of steel to increase the cutting speed by 33%. However, the high oxidation nature of water and its lack of lubrication capacity could damage the cutting tool and increase the tool’s wear [2]. In recent years, other important Metals 2019, 9, 556; doi:10.3390/met9050556 www.mdpi.com/journal/metals Metals 2019, 9, 556 2 of 10 aspects were also considered, such as health care of operators, environment, and the cost of liquids, which is between 7.5% and 17% of the cost of a machining part [3]. The present trend is to use alternative techniques, such as dry machining [4], electrocutting [5], cryogenic [6], cold compressed air [7], or minimum quantity of lubricant (MQL) [8], with the aim to reduce environmental impacts. The machining processes are analyzed by considering the influential factors, such as the type of cutting processes, materials to be machined, and the material of the tool [9]. The selection of these factors would provide basic information for selecting the suitable cutting fluid [10]. Despite the fact, there are circumstances in which the best solution is obtained by using lubricant in particular conditions. For example, the materials with low thermal conductivity, such as titanium and nickel alloys require a system called “high-pressure coolant” (HPC) [11]. Their proper application in the cutting area helps to reduce the temperature on the cutting edge of tool [12], thus, increasing the tool life [13]. The results indicated that several parameters, such as cutting speed, chip breakage and thrust forces play a key role in improving the quality of machined surface [14]. Isik et al. [15] investigated the effect of cutting fluids during turning of steel SAE 1050 by using ISO P25 carbide tool and obtained a substantial reduction in tool wear under the wet machining. Priarone et al. [16] studied that the machinability of Ti-48Al-2Cr-2Nb alloy in terms of tool life is advantageous for emulsion mist, as compared to MQL and dry cutting. On the other hand, Gill et al. [17] analyzed the behavior of cryogenically treated tungsten carbide inserts utilized in dry and wet orthogonal turning. They found that these inserts performed significantly better under wet conditions for continuous as well as interrupted machining modes, especially at higher cutting speed. Jomaa et al. [18] compared the machinability and surface integrity of three mold steels during dry and wet machining. They observed that hardened mold steels can perform better in terms of tool wear and surface finish in dry machining, depending on the cutting speed. Ibrahim et al. [19] introduced the performance of ultrasonic-assisted turning of aluminum 6061-T6, which showed significant improvements in surface roughness and tool wear during wet machining. Moreover, Patrick et al. [20] performed turning under dry conditions and also used three coolants, such as oil, water, and palm oil at spindle speed of 355 rpm. They concluded that water as a cutting fluid reduced the heat generation, increased hardness of workpiece material, and produced the finest grain structure. Feed rates also have significant effects on surface roughness when groundnut oil based cutting fluid was used in turning of AISI 1330 alloy steel with a high-speed steel tool [21]. Kuram et al. [22] reported that the use of vegetable cutting oils reduced the thrust force and improved surface roughness at different spindle speeds and feed rates during drilling of AISI 304 stainless steel. Furthermore, the results indicated that an increase in spindle speed decreased the thrust force and surface roughness, while an increase in feed rate increased the thrust force, and hence the surface roughness. In free-cutting steels, Luiz and Machado [23] explained in details according to the technological trends to improve their machinability and promote the replacement of lead to avoid toxicity. Thus, steel mills have developed new grades of free-cutting steels by adding sulphur, bismuth, calcium, selenium, and also zirconium to control the size and shape of manganese sulphides. They also referred MnS as microstructural compound, which helped in chip breakage and reduced the tool wear. Almeida et al. [24] studied the effect of machinability for AISI 12L14 with three residual elements (Cr, Ni, Cu) and found that these elements significantly influence its machinability but the lowest residual levels are not always good. On the other hand, Lane and his co-workers [25] tested the wear of polycrystalline diamond inserts (PCD) on alloys of aluminum AA6061 and steel AISI 1215. Additionally, examined that both the forces and wear rate were significantly higher during machining of steel AISI 1215. Furthermore, Leeba Varghese et al. [26] studied the influence of machining parameters on material removal rate and surface roughness during the dry turning of 11SMn30 free-cutting steel. Finally, Xu and coworkers investigated the cutting force and wear mechanism during high-speed turning of AISI 12L14 with Chemical Vapor Deposition (CVD) coated carbide tool GC4205 [27]. Later, they also studied wear mechanism by using Finite Element Method and experimental methods on high-speed turning of AISI 1215 steel with uncoated and multilayer carbide tools [28]. Following this last research topic, the present work is to Metals 2019, 9, 556 3 of 10 investigate the importance of the cutting capabilities of free-cutting steels (FCS) during dry and wet machining. For this, three grades of carbon steel (SAE 12L14, SAE 1215, and SAE 1212) have been studied by using uncoated hard metal inserts and three commonly used cutting speeds: 150, 180, and 240 m/min. The wear evolution of the cutting tool is investigated experimentally to analyze the differences in wear rates for different FCS, machining conditions, and cutting speeds. In this end, the novelty of this work is to analyze the auto-lubrication characteristics in dry machining, which showed better cutting capabilities due to the adhesion of MnS, compared with the same machining configurations by using lubricant. These technological findings are interesting for industries with the aim to reduce the use of lubricants, which are associated with economic and environmental hazards. 2. Methodology Three different grades of FSC, SAE 12L14, SAE 1215, and SAE 1212, have been studied in this work. The materials used in the turning experiments were drawn bars of 38.1 mm in diameter and 350 mm in length. Table 1 shows the chemical composition (% by weight) and Brinell HB hardness that were measured with optical emission spectroscopy (model: M8 spectrolab, Spectro, Kleve Germany) and Instron Wolpert durometer (model: S8-233971, Instron, Norwood, MA, USA) in our facilities. These three steels present similar chemical composition, except SAE 12L14 that contains lead. Table 1. Chemical composition (wt%) and material hardness (HB) of the three free-cutting steels (FCS). Material SAE 12L14 SAE 1215 SAE 1212 C 0.074 0.065 0.070 Mn 1.065 1.000 1.050 S 0.313 0.318 0.303 P 0.055 0.052 0.055 Pb Fe HB 0.246 Balance 161 - Balance 155 - Balance 161 The metallographic analysis of the steel SAE 12L14 showed that it has a hot-rolled microstructure, constituted by a matrix of equiaxed grains of ferrite. A lower proportion of perlite was uniformly distributed in bands and heterogeneously in the matrix, which corresponded to a grain size equivalent to N◦ 6 1 2 (ASTM E112 [29]), as shown in Figure 1a. Figure 1b shows the inclusions that correspond to type A (sulphides) with the grain series of N◦ 2 1 2 and N◦ 2, while the type D (oxides) are represented by finer grain series of N◦ 1 2 . The microstructure of the surface and core presented a similar grain size, where plastically deformed grains were observed due to the cold working operation (drawing). A numerical control lathe Promecor SMT 19 (Promecor, Córdoba, Argentina) was used to perform experimental tests. Cutting tools with uncoated inserts (type CNMG120408 and quality ISO P40, Kennametal, Latrobe, PA, USA) and specific tool-holder (type MCLNR-2525M12, Kennametal, Latrobe, PA, USA) were used during the experiments. The CNMG insert on tool-holder presents a rake angle of −4◦, which is a common configuration for low and medium-carbon steels. The geometrical parameters and chemical composition of the uncoated insert are shown in Table 2. The insert had a clearance angle of α = 5◦, rake angle of γ = −4◦, and inclination angle of λ = −5◦. MMeettaalsls220M0119e9t,a,9l9,s,52x506F1O9,R9,PxEFEORRRPEEVEIERWREVIEW 4 of 10 4 of 10 4 of 10 FFiigguurree1F.1ig.MuMarteaetr1eia.rli’aMsl’mastiemcrrioiacslrt’osrusmtcrtuuiccrrteouosrtfereuqocuftuiaerxqeeudoiafgxreeadqinusgiaarxaneidndspgearrnlaidtine sdpieasrtnlriditbeupdteeirdsltiirtneibbudatinesdtrsibi(nau)tbaendandidinnscbl(uaa)snidoasnsd(a) and oinf csululpsihoinindcseluossf(igsournelsypohdfiodstuessl)p(ahgnriddeyeosxd(iodgtreses)y(abdnldoatcosk)xdaidnoedts)o((bxbliad)ceoksf d(thboletasSc)kA(bdE)o1ot2sfL)t1(hb4e).SoAf Eth1e2SLA14E. 12L14. TThhee ccuuTttthtiinenggcupptatarirnaagmmpeetateerrarssmaaerreteelrlisisstateerdde ilininstTTeadabblielne3T3.a. FbFilirersst3tll.yy,F, titrhhsetelpyp,rretelhliimempiinnraearlriyymtitenessattsrsywwteeersretesppweererfrfooerrmpmeeerddfotrtoomed to eessttiimmaatetesetciocmonansttsaetnacntomtnmsattaaentreitarlimarleamtreeormivaoallvrraealmteroawtveiatlhwraiathtceoanwsctiaothnntsatdaecnpotnthdsteoapfntcthudtoeofpfct1hu.2t5oofmfcm1u.t2. 5Rofemg1ma.2rd.5iRnmegmgtah.redRcienuggtatirtndhgieng the scpuetetidnsgc, utshtpteeinreegdfses,rpetehneecdersse,fwtehreeernerectfeaeskrewennecfrereostmwaketehrneeftlraeokamdenintfhgreommleaantdhuiefnalgcetamudraiennrgus fomafcactnuaurrbefairdscetouifrncesarersrbtosifdicneaiarnbrsiaednretgsieninosefar1tr5sa0nintgoae range 2o4f01m50/omtfoin125.40T0htome 2/bm4a0risnm.oT/fmh38ein.1b. amTrhsmeodbf ai3ar8ms.1oetfme3rm8a.1nddmialmmenegdtetihramoanfed3te5rl0eanmngmdthlweonefgr3et5hfi0oxmfed3m5b0wetmwermeeefnwixteehrdee bsfpiextienwddelbeeneatnwthdeeen the tshpeintadillsesptaoinncddkl.ethTaehnetdawitlhseteaortca(kVi.lsBTtoh) ceekvw.oTeluahtreio(wVneBaa)tret(vhVoeBlcu)uteitovtinonlgautteitodhngeeactuotfthttiehnegcuientdtsigenergtosefwdtghaees odinfestteherretmsinwinseaersdtsdbewyteaurssmdiniengteeadrmined DboyrumseinbrgyoaputsDiicnoagrlmma eDeraoosrupmrtiiecnragol bmpeteincacashlummriaenragks.buDerniencsghpmbiteeanrtckhh.amDt, aethsrkpe.istDetaetnhsdpaaitt,redththIeSasOtt,at3nh6de8a5srtd[a3nI0Sd]Oaers3dta6Ib8Sl5Ois[h330e6d]8e5as[tc3ar0bi]tleiesrshitoeandblished oaf cinritteerarriuocprnittioeofrniiontnetesotrfrouifnpVtteiBorrn=utp0e.ts3itomnofmteV.sBtHo=efr0eV.,3Bthm=em0w..3eHamremsrteo., pHthceerriewte, ertihaorenswtwoeapasrcsrseitttoeaprtiocthrnietwevraaioslunseewtofaasVt tsBheet=av0ta.5tlhumeemvoaf lue of fVorBt=he0sV.5eBFm=Cm0S.5fdoumretmhtoefsotehreFthCfaeSsstedwuFCeeaStrodrtauhteeetffoaosutthnwedefadasurtrrwiantegeaftrohrueanteedxpfdoeuurirnmidnegdnutthsr.einegxptheeriemxepnetrsim. ents. TTaabbllee22T. .aGGbeeloeomm2e.etGtrrieiccoaamllaeantnrddiccachhleeammndiiccacalhlcecomommicppaoloscsioittimioonpnooosffittthihoeenccuouftttttihnineggcttouoototlilnuugssetedodoffolorurtsthehedeefeoxxprpetehrriemimeexenpntestsr. i.ments. CodeCoCdoede GeomGeGtereiocomamleeDttrrieiccsaacllriDDpeetsiscocrnripiptitoionnsSizeSssiz(sSrmeiszrm(ems)lm(rml) mC)lCChCheemmCiicCchaalelTTmCCiiooicmmaplpToCoisCCsoiitomoitoiopnno(Cws(iwottW%itWo%)n)(wtW%) CCNNIMSMOGCGNP11242IM00S044OG0088P1IS24O004P0480 4.76 4.470.67.860.8 102.182 116126.6.600 16.6330..8855 3.811522..1100 126.106.008.080 60.80 TTaabbllee33T..CaCbuultetttii3nn.ggCppuaatrtraianmmgeeptteaerrrsasamanneddtetrthhseeasnsttodoppthccerritsiteteorripaiacoorfiftethhreieawwoefeaatrhrteeteswst.te.ar test. CuVtctCi(nVumCtgct/uVi(mSnmtctgpii/(nemnSme)gpid/nemSe)pdinee) dFaeFa(eem(demdmRmFRa/aev/at(vet)em)edmR/avDtD)eeeppppt(htm(hmoDmfome)Cfppu)Ctt(humtomf )CTuypTt eyopfeLoTufbyLrpiuceabonrfticLaunbtri(cLFa/lmno(twiLFn/l)mowin(L)F/lm(omVwimnBV))B (mVmB) (mm) 150;115801;051;082;041;082040; 240 0.01.12255 0.125 1.12.525 1.25 NonNeone None - 5%5o%f eomfu5el%msifiuoelfrseifmieur lsifie1r0 10 - 0.5 10 0.5 0.5 A((ocuPu(PA(cdFPofFPsVouVsaEhmueEdhmesm7Iid7sIdital7pmtl7irpFammiFr6piio6ipiongia0noPu(Adc(isna0soansFPs)eo/diVsa)/at.S7guidtaEth7S.mhetmehlioE9A7elsiel9AIEdoileloeyftl7Mpl:yamloniMFr:,Mnl6lwipwMoQtg,ilQfnsithas0tonshtse5tEethUe5)/heoUhEidtha0oe7S.ata0eh,oefeA,lie5ef9AAErcr5mloefAelt,ymueANM,t:ctthnlNxPwMht,xoeelPtQmuhespomTthtsspertThite5heUrhEtetApeniltoeAasesip0luleriet,hlrgfiAu..ncrt5ieihp2biemmpouF2eAb,gmktFtN5okrsth5xleisPtro,i0ie,olonmt,t,s0epiencTohioonEcgratEEnFaneagEFAseiaplotliyltEltiirglu.snlytEtiienlhnswlyienepGF2oybdmdwGwdodokt,wdd5,isfiroh,lntfhht,,,0eeitaihothFehoocathFatEronohrgEoFrhaEehlverlEeevvteiealyvEetieInsewaysaInceeen,asewcG,nudsoa,nwdnwnduEsnaiE.,rrtfht,oe.,,hrri,hoehrefiTaFnFatTorpfnaFioraTpehariheTErdivhcetdieavregcethdigesehIhaedenciaheecua,ueucnwreoaNsionaEorNaerorniro.,lveru,nevNefialeeuNtTrpeaneaFstaetsestiT2ttnsuhecetdi2ehrngeuihigwehting,dercwthser,narheusfhTerahiirTaforNarhtetonairalelthheoslytvhcareohsuaNtrcyeaeeswelenedelwenewtatdsua2ngeNhwdleNdsnpinplearswtar,nteassfhdsrtebaeidtrTse)arhbetto)ahtoertsostlhyshchrawoohsfmawhre)fi)rmeeialeelwrnewaeldsilalmwiaierwteNtrdopsimtnnlelshtaronhlraoaosartaeadasoereabento)((asrdcnaystohfsAdAcraoydfwhht)dEmfheiElueworslelutilswosiaDiinenieD)fwtroimtcnct)if.itrnnhliii.tIoSlooaSiatnlahoIFNiFeanih(nnnNrznaasgzmfuAdmcugyaaeTtanadeahErTer,dalulo,wIodaotssatiinyDIs-nhIcndIhtc)ldf-Mnczninyi.otaedMaSieutltuaIdoeFnfizfihrnonnNrenlzidlmmumegemennanecameadnTdcrdá,ilitiodo(e(aoiátetytnoIsnUeUenIheerdat-nntrczngaiteoMeFFgdesetTuacTdeiesf,orucro,oeaenriddWluWeamemanaelcmtrcmnlen(ceredenuuiet-(A(ie-oiátctoroimSAecnoUenSsesemntmnrtrtaa,t,rtareFgdehrregTeeihospmAepAcigoo,eenreuWenentnapapnecmtrtnlhiltlrreehnitunhenih(metm-cectrmmiAceotiSstietemniomonhriter,itaiccniirrneenctcheacecccephAigohh,rara,ahn)hrernolponneme.te)m,oo,lrneeeh.tnsismihGssvcmGmmliqcocetottccqeioehooiireurdroodvinuiicnlaeppceacccceeppaeeaeo,zahharrzeeslllllee)smoo,,:flne,:e.ssvmGioccqeroodiulacppeeoazleesfl,: Metals 2019, 9, 556 Metals 2019, 9, x FOR PEER REVIEW 5 of 10 5 of 10 FFiigguurree22..SScchheemmaatticicoofftthheemmaacchhinineeaannddttoooollssttooppeerrffoorrmmtthheeccuuttttiinnggttoooollwweeaarreexxppeerriimmeennttss.. 3. Results and Discussion 3. Results and Discussion The wear and the corresponding Taylor curves were determined for each of the three cutting speeTdhs.e wTheaerraensudlttsheexchoirbrietsepdonthdeinwgeTaaryelvorolcuutriovnesowf edrreydaentedrmwientemd afocrhienaicnhg otfestthseftohrreeeacchutsttienegl. sTpheeedsesc.oTnhdedreegsureletspeoxlhyniboimtedialthadejwusetamreenvtocluurtvioens woferderuysaendd(Rw2emt imniamchuimnin=g0t.9e5st8s) ftooroebatacihnsttheeelu.sTehfuel steocoolnlidfedfeogrrVeeBp=ol0y.5nommmiailnaedajuchstmcaesne.t Fcuorrveeaschwmereetaulsegdra(dRe2, m20inbiamrsuomf 1=.50.m95l8e)ntgothobwtaeirne tmheacuhsienfeudl . tSouobl sliefqeufeonrtVlyB, a=t0o.t5almomf 0i.8n Teaacnhdc3a0se7.mFoorfemacahtemriaeltawl agsramdaec, h2i0nbedards uorfin1.g5 tmheleenxpgethrimweernet.machined. SubseFqruoemnttlhye, aantoatlaylsoisf o0.f8FTigaunrdes330a7,m4aoafnmda5tear,iiatliws calseamratchhaitnfeodr dhuigrhinegr tchuetteinxgpesrpimeeedntt.he value of VB =Fr0o.5mmthme iasnraelaycshisedofiFnigleusrsetsim3–e5,aa,nitdissucblesaerqtuheanttfloy,rahfigashtewr ceuatrtienvgoslupteieodn tohne tvhaeluceutotifnVgBto=o0l.i5s mobmseirsvreeda.cIhneadllinsteleeslsgtriamdee,s,atnhde scuubttsineqguteonotlltyo,oakfmasotrwe etiamr eevtoolrueaticohnaown etahreecvuotltuintigontooofl VisBo=bs0e.r5vmedm. Idnuarlilnsgtederlygmraadcehsi,nthinegc.uTthtiinsgmtoeoanl stotohkatmdorryemtiamcehitnoinregaccohnadwitieoanr perveosleuntitoedn oafloVwBe=r 0w.5eamr mevdoluurtiinogn dsrloypme tahcahnintihnagt.oTbhtaisinmedeafnosr wtheattmdarychminainchgi,nwinhgichcomndaiytiboendpureesteonttheedfoarlmowateiornwoefaar seovloidluttriiobnofisllmopaet tthhaeninthteartfaocbetsai[n3e1d]. fHorowweetvemr,aicnhdinepinegn,dwenhticohf mthaeystbeeeldaulleotyotthheewfoeramr adtiiffoenreonfcaesboeltiwd etreinbothfielmdrayt athned iwnteetrcfaocnedsi[t3io1n].sHinocwreeavseers, ifnodr ehpigenhderencut totfinthgesspteeeedl asl(l2o4y0thoer 1w8e0amr d/miffienr)e.nIcnepbaerttwiceuelnart,hderydrmy aacnhdinwinegt ceoxnhdibitiitosnasbientctreeratsoeosl floifre hatighhigerhecructtuinttginsgpsepeedesd(s2t4h0anorth1e8w0 emt /mmaicnh).inIinngpacrotnicduiltaior,n.dRryegmaradcihnignitnhge eTxahyilboirtscuarvbeestt(eFrigtouorlesli3feb,a4tbhaignhde5rbc)u, itttiinsgshsopweendtshatht athnetwheeawrettremndacohfinthinegincsoenrtdditeipoenn. dRseognartdhiensgpteheed Taanydlotoroclulrifveeesv(oFliugtuiorensf3o–r5bbo)t,hitmisaschhoinwinngthcoant dthiteiownse.arSAtrEen1d2Lo1f4theexhinibsietretddtehpeebnedsst woneatrhpeesrpfoeermd aanncde tcoooml lpifaereedvowluitthionthfeorotbhoetrhtmwaocshtieneilnggrcaodneds,itipoanrst.icSuAlaErl1y2aLt14loewxhciubtittiendgthspeebeedstawndeadrrpyecrfoonrdmitainocnes. cAocmcopradriendglwy,itJhomthaea eotthale.r[1tw8]oalsstoeesltugdriaeddetsh, epwaretaicruelvarollyutaiot nlodwurcinugttidnrgy sapnededweatnmdadchryincinogndinititohnrese. Astceceolrgdriandgelys,. JTomheayafeotuanl.d[1l8o]waelsrowsetuadr ireadtetsheanwdeabreettveorlsuutirofancdeuprrinopgedrrtyieasnind wdreyt mmaacchhiinniinngg,inmtahirneley satteterlibgurtaeddesto. Tthheeymfaotuenridalloawdheerswioenaranradteths eanchdebmeitctaerl csoumrfapcoesiptiroonpeorftitehseisntederlys. mFiancahlilny,ining,omrdaeinr ltyo aetsttraibbulitsehdthtoe pthoessmiblaetecraiuasleasdbhyewsiohnichanthdetihnesecrhtsemreaiccahlecdotmhepcorsiitteiroina ooffVthBe=s0te.5elms.mFiinnallelyss, tiinmoerdduerrintog ewsteatbcloisnhdtihtieonp,otshseibEleDScaaunsaelsysbiys wwahsicpherthfoerminesedrotsnrtehaechraekdetfhaececroitfetrhiae ionfsVerBts=fo0r.5SAmEm12inL1le4scsatribmoen dsutereinl dguwrientgcownedtitainodn,dthrye cEoDnSdiatnioanlys.siFsiwguarsep6earfsohromwesdthone athveerraagkee wfaecieghoftsthine pinesrecretnstfaogreSoAfEsu1l2pLh1u4r c(aSr)baonndsmteaelndgaunriensge w(Ment )anodn rdarkyecfoancdeiitniodnrsy. Faingdurwe e6tacsohnodwitsiotnhse aatvderiffageerewnteciguhtttisnignsppeerecdens tiangSeAoEf s1u2l1p2haunrd(SS)AaEnd12mL1a4n(gSaAnEes1e2(1M2 nw)aosnserlaekcteedfaaces iitns dberyhaavniodrwweatscvoenrdyistiiomnislaarttodiSffAeEre1n2t1c5u)t.tTinhge smpaeregdisn ienrrSoArsEr1e2p1r2esaenndt tShAeEm1e2aLs1u4re(mSAenEt1d2e1v2iawtiaosnsoefletcetnedmaesasitusrbemeheanvtiso.rFwigausrvee6rby esximhiiblaitrsttoheSAelEec1t2ro1n5)ic. Tmhiecrmosacrogpine eimrroagrsesreopfrtewseonctuthtteinmgetoasoulsrewmitehntthdeetvoioatlitoinp odfetgernadmaetiaosnuraenmdetnhtes.aFdihgeusrieon6bofexMhnibSitaslothneg etlheecttrooonliecdmgeic.roscope images of two cutting tools with the tool tip degradation and the adhesion of MnS along the tool edge. Metals 2019, 9, 556 MMeettaalsls22001199,,99,,xxFFOORRPPEEEERRRREEVVIIEEWW 6 of 10 66ooff1100 ((aa)) ((bb)) FigFFuiigrgeuur3re.e3W3..WeWaereaacrruccruuvrrevvseesfsoffroordrdrdyrryyaanandnddwwweetettcccooonnndddiitittiioioonnnsssaaatttttthhheeettthhhrrreeeeeecccuuutttttitininngggsspsppeeeeededsds(s(aa()a)a)annadndTdTaaTyyalloyorlroccruucrrvuveresvse((bsb)()b) forffoSorArSESAA1EE21L1212L4L11c44acrcabarorbbnoonsntsesteteele.ell.. ((aa)) ((bb)) FigFFuiigrgeuur4re.e4W4..WeWaereaacrruccruuvrrevvseesfsoffroordrdrdyrryyaanandnddwwweetettcccooonnndddiitittiioioonnnssaatttttthhheeettthhhrrreeeeeecccuuutttttitininngggsspsppeeeeededsds(s(aa()a)a)annadndTdTaaTyyalloyorlroccruucrrvuveresvse((bsb)()b) forffoSorArSESAA1EE211125211c55acrcabarorbbnoonsntsesteteele.ell.. ((aa)) ((bb)) FigFFuiigrgeuur5re.e5W5..WeWaereaacrruccruuvrrevvseesfsoffroordrdrdyrryyaanandnddwwweetettcccooonnndddiitittiioionnssaatttttthhheeettthhhrrreeeeeecccuuutttttitininngggsspsppeeeeededsds(s(aa()a)a)annadndTdTaaTyyalloyorlroccruucrrvuveresvse((bsb)()b) forffoSorArSESAA1EE2112211c22acrcabarorbbnoonsntsesteteele.ell.. ((aa)) Figure 6. Cont. Metals 2019, 9, x FOR PEER REVIEW Metals 2019, 9, 556 Metals 2019, 9, x FOR PEER REVIEW 7 of 10 7 of 10 7 of 10 (b) (b) Figure 6. (a) Average percentage of weight of S and Mn at the rake face for dry and wet machining cFoignFudirgietuior6en. s6(a.a)(taAd)viAfefveraererganegtpeceuprtectreicnnegtnatsgapgeeeoeodf fsw.we(beigi)ghMhttioocfrfoSSsacanondpdeMMimnn aaagttettshheeofrraatkhkeeefrfaaackceefofaorcrdedrwyryiatnahndtdhwewetteomtomlawcahceihnariinnagindg tchoencdaodnithdioietnsioisonanst oadtfiffdMiefnrfeeSnr.etnctuctutitntigngspspeeededs.s.(b(b))MMiiccrroossccooppee iimmaaggeessoofftthheerraakkeefafacecewwitihththtehetotoolowl weaeraarnadnd thethaedhadeshieosnioonfoMf MnSn.S. The results obtained from EDS showed that S and Mn elements were found in a higher perceTnhtTaeghreeesiurneltstsuholetbstraaoikbneteadifnafecrdeomofrfEotmDheSEscDhuoSttwinsehgdowttoheoadlt.StThahanetdhSMiganhnedpleeMmrcneennettslaewgmeeernoetfsfoMwunnedraenindfoauShncidgohuienlrdpabeehrcidgenhueteargtoe minatptheeerricraealnkateadfghaeecesiniooftnhtaehtertachkueettrifanakcgeetofoaofclte.hTienhcetuhhtetiignfohgrpmtoeoroclf.enMTthaaegnehgiaognfheMspenerSacuneldnfitSdageceo(MuolfdnMSb)ne, adasunddeitsSocucmosausetleddribbaeyl adXduuheeetstoioaln. w[itchadrsmr2etutieiuo7gsbtstpm[thciir]dthhmr2cosu.ikriiyner7tgaefobtppT,aiir]ttghbvol.iiiernrhmteniefeeaortncTeicrigioddkvlseaeyhmaioieeltnsnettoiodltheanay.fhsaftoiedalahentIteltstnencahrt.hsehtoretlheIewMetefssttnhrseahooidtidecnwacnsteooteauehtoudSnlsdetprsetborehcaa,tulariolsriprurenncertnciateoribbdsghrtrgnfnseineheeoribdsgtcwnissdsetrheecuoitemtcwnsdaoaerqotuttsatnntroahpultitkktostcunntraehe[etipefk2zcgdurntnapifce8oMgdtyteaoMeii]lnncyc,ey.ofnMiaeeen,c,inftTndtteaainiiSfhdtgthinrntgoiShsteyirnaeterelsteyesuntrmshlnccesuerecbeoecouuerfefebosuarfneofantfdareniconttdSrtcictiedicertaniSoeintahsamn,itnhsungtg,ninagt,ioatlchodttoctfittntohnhteozfbozdMbonoenecMoooMcooesonsonltnwclteehamhe(mnheq[qwMn[e2Si2tutpupagfpfhh8e8oonereaaba–r]e]errnnSnrr..eeptmmeeppott)ehrTsTlld,dseooeyeyiaehheagrrdgl,dvt,tecsecnooaSrcaeerereitouodetondwefintwstnfnelntfiesctofesaosnetaiinarctdigotarutgtnemuhuecechnea,ceteoa,stseltois(ittysnliaMonthnnicaeohdncrfhhergddetfnheigSiihtitapSgStiMitobephto,aMi)–hhoya,ennw–ntcaeeanonntdu.SrwXohstod.TSwtriMoulitedTnbhiciMablebneihcihniesrasohoengcicntrspifihanwofsumtaavpretanwlfosecamolarevsrpto.rtctgecdeaoeesl[rtcrtrdc.ag2dooedestscat7Irviusbiunoregs]tmssaeyle.ihusrniidrtgdaoimsiheXlienTl,ninfdeaaoetiugihtixwchrl,oinfeappaencieeoxhwctrnyurltiotapalniewtthachtilansatlnhyolaetaieeil.ntnhcsianldnhyogaert winhdwyrhythyceothnwedewiatireoaonrfcotofomtoolpoialnrisenedsrettrsotsiwsiseletlsecssosinnidnditdriroyync.cooTnnhddiisittifiooancntttchhoaaunnldtthheeexwpwleeattinccoownndhdiytiittoihonen. .wInIneaadarddodiftiitotoinoo,nlti,hnteshreeerrtcesoicusollduelsds bine dbaernyaecgnoaentgidavitetiivoienntientrhtaearcnatictothinoenbwebteewttwceoeennendthittheioecncu.utIttitnninaggdffdlluuitiiiddonaan,ntddhetthhreee caaodduhhleedssiiobonenaoofnftehthgeeaMtMivnenSSionnotnetrhtaehcettoiotoonlo. blI.neIttnwhitesheins wthaewyc,autyht,teitnhagemaflomuuiondutanontfdocfotchmoempaopduohnuednsidtohtnhatoatfaadthdheheerMreesnsoSonnontthhteehreraatkkoeeofflaa. ccIeenddtheepipseenwnddasyso,ontnhmemaaacmhchioniuninningt go(df(rdcyoryomropwroweutn)etad)ntadhnadt tahdehthceueretctsuinottgninstghpeseperedaek.de. face depends on machining (dry or wet) and the cutting speed. FFiiggFuuigrreeur7e7 7shshsohowowswssthttehheeinisinnesrseterrtttotoptpooopggroragaprphahypyhwywiittwhhiatahdhaedsihoennsiaaonnndd addniifdffeerredeninffttewrweenaertarpwrpoergaorrgersepssirosoingo.rneT.shsTiishoins. Tmheimassemuarseeuamrseuemrneetmnwteawnstadwsodanosendewownitehithwaaihthhigiaghhh-r-iergeshsoo-lruleutstioioolnnutssiccoaannnnscearn(nAelricc(ooAnnlaai,c,IoInnnffaiin,niItineteFfiFonociucteusF)s.o)T.cThuehs)ep. rpTorhtoeetcepticvrtoievtaeencatdinvde aauntdaoua-tluuot-bolur-ilbcurabitciraoitcniaotlniaoylnaeyrleaoryfoeMrf MonfSnMSwnwaSsawsooabbssseoerbrvvseedrdvooenndttohhnee trhaekerafkaeceefaoocffetthohefetthoooeoltltoitopipl. .tAiApft.fetArersfetseverevrseaerlvamelrmeatlemrtseerostfeorsf mofamchaaiccnhhiininngiinnigsgiosisnosonenstseoet ftootfhftehthewewewaeraeraorof fothfthetehteotootoollottilippt,i,paa,ssassshoshwonwinnn ittnhheethFFeiiggFuuirgreue7r7beb.7.AbAt. ttAhteht etehneedndeonfodaf oatefstaet,sttae,sat, parpoprmoromimnieninnetennttottotooloowll wewaeeraaranaadndmmicircor-oc-rccarracakcckkisiissdddeenennooottetededdiinnintthhtheeettootoooolllttitipipp,,,cccooommmbbibniinenededdwwwitihitthhmmmataaetrteeiarriliaaalldaahddehhseieossniioo, nn,, wwhhwiicchhhiciissh aaisllssaoolsffooouufonnuddndoonnontthhteeherraarkkaeekeffaafccaeec.e. .TTThhhiisissllalaayyyeeerrroooff MMnnSS ccaaannn rrreeetttaaarrrdddeeedddtththheeetottoooool llwwweaeeraarranaadnnddiniicnnrccerraeesaaessdeetddhetthhee pprroopccreeosscssessttsaasbbtiaillbiittiyyli,,tiyinn, ippnaaprrtatiircctuiuclluaarlrawrwwhhehennenuususisinningggdddrryryymmmaaaccchhhiininniiinnngggcccooonnndddiittiioonnss.. Figure 7. Characteristics found on the rake fake of the cutting tool: (a) adhesion on rake face; (b) FFiiggiuunrriteeia77ti..oCnChohafratarhcaetcetwreiresiatsirtcisacfsftoefruonu20dndmonionntohtfehteoraorklaelkiffeeakfwaekitoehfoatfhvetehlcoeucitcttuyintotgifnt1go8o0tlo:mo(la/:m) i(anad)ahaneddsihodenrsyioocnnonroadnkiteiroafnkasce;e(;fca)(cbe); (inbi)taiidanthiiteoisanitoionofnatnhodef ptwhroeemawrineaaeftnretarwf2tee0arrm2o0ifnmthoiefnitnoosofeltrotliowfelhlweifneitrhweaaicthhvienalgovctehitleoycsoittofyp1o8cfr0i1tme8r0/iamm. in/mainndadndrydcroyncdoitniodnitsi;on(cs); (acd)haedshioensioanndanpdropmroinmeinntewntewareoafr tohfethinesienrstewrthwenherenarcehaicnhginthgethsteosptocpritcerritiae.ria. From the results, it is clear that the lubricating effect of the cutting fluid was negligible compared toFFthrrooammt pttrhhoeevirrdeeessuudllbttssy,, iittthiiess accldleehaaerrsttihhoanattotthfheMe llnuuSbb.rrOiiccanattitinhngeg eoeftfffheeeccrtthooaffntthdhe,etcchuuettttciionnogglifflnluugiidedffwwecaatsssnneeegmgllisiggtiiobbllbeeeccoloemmssppfaaorrreedd ttoo tthhaeattinppsrreoorvvtsiiddweedidthbbayy sttphheeeaadddrhhaeenssgiieoonnusooeffdMMinnntSSh..eOOpnnrettshheeentoottshhtueedrryhh.aaFnnidnda,, lttlhhye,eFccioogooullriienngg8 esehffffoeewccttsssteeheeemmTssayttoolobbreeculleerssvssesffoorr tthheecoiinnrrsseesrrpttssonwwdiiittnhhgaatossppSeeAeeEdd 1rr2aaLnn1gg4eeauunssdeeddSAiinnEtt1hh2ee12pprrmeessaeecnnhtitnssettduuddwyyi..thFFiidnniafafllellyrye,,nFFtiiggcuounrreedi88tiosshhnosowwanssdtthhcueetTTtiaanyyglloosprr ecceuudrrsvv.eess ccoorrrreessppoonnddiinngg ttoo SSAAEE 1122LL1144 aanndd SSAAEE 11221122 mmaacchhiinneedd wwiitthh ddiiffffeerreenntt ccoonnddiittiioonnss aanndd ccuuttttiinngg ssppeeeeddss.. MMeettaallss 22001199,, 99,, 5x5F6OR PEER REVIEW 88 ooff 1100 This graph will provide additional information (SAE 1212 was selected as its behavior was very TsihmisilgarratpohSwAiEll p1r2o1v5i)d. ePraedvdiiotuiosnaaul itnhfoorrsmhaatvioena(dSdArEes1s2e1d2 twhaast stheleecatdehdeassioitns obfehMavniSorlawyears vperroymsoimteidlaar ttoooSlAwEea1r2r1e5d).ucPtiroenv,ioaultshoauugthhomrsohstavoef tahdedmredsisdednotthqatuathnetifayddhiefsfeiorennot fcuMttninSglapyaerrampreotemrsotceodmabitnoeodl wweitahr rmedauchctiinoinn,galcthonoudgithiomnsos(twoifththeamnddwiditnhootuqtulaunbtirfiycadnitffse) refonrt csuetvteinraglpcaormammeotenrsscteoeml bgirnaeddews. itIhn mpaarcthiciunlianrg, LcounizdaitniodnMs (awchitahdaon[d23w] fiothcouusetdlutbhreiicrawntosr)kfoornstehveerreadl ucoctmiomnoonf esnteveilrognramdeenst.aIlnimpapratcictualnadr, LhueaizltahncdarMe ainchtaudrnoi[n2g3]ofpoecruasteiodntsh.eTirhweyoprkroopnotsheedrteodruecdtiuocneothf eenuvsieroonfmcuetnttianlgimflupiadcst aanndd hreepallathcecathree ifnreteu-rcnuitntigngopseteraetlisownsi.thThleeaydp, rgoipveonsetdhetotroexdicuictye tohfetuhseelaotftecur.ttOinugr flwuoidrks asnhdowresptlhaacet tthhee ffrreeee--ccuuttttiinngg sstteeeellss wcainthbleeuadse,dgiivnemn athcheintoinxigciwtyitohfotuhteulsaitntgerc. uOttuinrgwfolurikdsshaoswthsetyhaptrothdeucfreede-acuhtigtihnegrswteeealrs rcaatne bone uusnecdoaintemd ahcahridnimngetwalitihnosuetrtuss. iMngocreuottvinerg, flwuiitdhsouast tlheaedy,pfrroede-uccuetdtinaghisgteheelrswheaavreraatseimoniluarncboeahtaevdiohrartdo mtheetaalllionysserwts.ithMoleraedovdeur,rwinigthmouatchleinadin,gfr. eAe-dcduitttiionngaslltye,elXsuhaevteaal.s[i2m7i]laprebrfeohramveiodr etoxpthereimalleonytss wwiitthh lmeaudltdilauyrienrginmsearcthsinbiyngC.VADddinititounrnailnlyg, Xouf SeAt aEl.1[22L7]14pesrtfeoerlmbeyduesxinpgercimutetinntgs wfluitihd matualtislpayeeedr inofse5r0ts0 bmy/mCVinD. TinhetuyrnfoinugndoftShAatEu1n2dLe1r4 sthteeeslebcyounsdiintigoncusttainlgubflruicidanatt zaosnpeeewdaosf f5o0r0mmed/mbiny. MThneSy, fwouhincdh tdheactreuansdeder tthheesweecaornrdaitteio. nWs haelruebasr,ictahnet szaomnee wauatshfoorrsm[2e8d] bpyerMfonrmS,ewdheixcphedriemcreenatssedwitthhe mwuelatrilarayteer. Winsheerrtesasc,otahteedsabmyeCaVutDhoarnsd[28u]npcoeraftoerdmiendseerxtspedruimrienngtstuwrnitihngmuolftinlaoyne-rtoixniscersttseecol aStAedEb1y21C5ViDn adnrdy umnaccohaitneidnginasteartscudtutirnigngsptueerndinogf 5o0f0nmon/m-toinx.icTshteeyeleSxAamEi1n2e1d5tihnadt rays mcoamchpianriendgtaotuanccuotattiendg isnpseeerdts,oaf 5lu00brmic/amnitn.zoTnheeyweaxsamfoinrmedetdhabtyasMconmSpianretdhetocuonactoeadteidnsinerstesr.tsO, aulrubwroicrakntiszocnoemwpalsemfoernmteadrybytoMtnhSe ianfothreemcoeantteiodniendsecratss.esO. uWr ewhoarvkeisesctoimmpatleedmtehnetaardyhteostihoen aoffoMrenmSenattitohneerdakcaesfeasc.eWine uhnavcoeaetsetdiminasteedrtsthaet alodwheesriocnutotfinMgnsSpaetetdhse. rTahkiesfaccoeminpouunncodatheadsinshseorwtsnatalnowauertoc-uluttbinrigcasptieoendsc.hTahraisctceormistpicouinndthheasseshstoewelns awnitahubtoe-tltuebrrpiceartfioornmcahnacreactthearnistaiccionntvheensteiosnteaellsluwbritihcabnett.ter performance than a conventional lubricant. FFiigguurree88..TTaayylloorrccuurrvveess ffoorr tthhee uunnccooaatteedd ccuuttttiinngg ttoooollss tteesstteedd iinnSSAAEE1122LL1144aannddSSAAEE11221122ccaarrbboonnssteteeelsl.s. RReeggaarrddiinngg tthhee aaffoorreemmeennttiioonneedd rreessuullttss,, tthhee pprreesseenntt wwoorrkk ddeessccrriibbeedd tthhaatt SSAAEE 1122LL1144 wwaass mmoorree sseennssiittiivveeiinncchhaannggeesswwitihthcucutttitnigngspsepeede,da,sasshsohwonwinn itnhethselospleopoef tohfetThaeyTloaryclourrvceu,rwveh,ilwe hSiAleES1A21E21a2n1d2 SaAndE S12A1E5 1p2re1s5epnrteedseansteimdialasritmreinladr.tSreinncde.tShienscleotpheedselpopeneddseopnenthdesmonattehriealmoafttehreiatlooofl athned ttohoelmanatdertihael tmoabteermiaalcthoinbeedm, tahcishisnigedni,fitchaisntsidginffiefriceanncte dcoifufeldrebneceatctoriubludtebde taotttrhibeuleteadd ttohatthceolnesatdituthteadt cSoAnEst1it2uLt1e4d. ASAlthEo1u2gLh1,4S. AAElth1o2uLg1h4,eSxAhEib1it2eLd1b4eetxtehribaintetid-wbeetatrercaapnatib-wilietiaerscwapitahbrileistipeescwt tiothSrAesEp1e2ct1t2oaSnAdES1A2E1212a1n5d, bSuAtEth1e2d1i5ff,erbeuntcetshwe edrieffdeirmeninceisshewdewreithditmheininischreedasewoifththethceutitnincgresapseeedo.f Ftohrepcroudttuincgtivsitpyeereda.soFnosr tphreodmuecttailvcituyttrienagsoinndsuthsetrmy ceotaml cmuottninlyguinsdesusthtreyhciogmhemstocnulyttuinsgesstpheeehdisgdheepstecnudtitninggosnpteheedscudtetpinegndtoinogl, wonortkhpeieccuettminagtetroioall,, awnodrkmpaieccheinminagteorpiaelr,aatinodn.mCaocnhsineqinugenotplye,rtahteiopnr.eCseonntsweqoureknptlryo,vtehdetphraetsuennltewadoerdk FpCroSvaerde ethxactelulennlteasudbedstiFtuCtSesaoref SeAxcEel1l2eLn1t 4suwbhsetintumteaschoifnSinAgEw1i2tLh1u4nwcohaetendmcaarcbhiidneincgutwtinitgh tuonoclso.ated 4c.arCboidneclcuustitoinngs tools. 4. CoTnhcelupsrieosnesnt paper evaluated the machining capabilities and the wear evolution of the cutting tool dTuhreinpgraesteunrtnipnagpoepr eervaatilounatoefdththreeemfraeceh-cinuitntigngcaspteaeblsil,iutinesdearnddrythaenwd ewaertecvoonlduittiioonnso,fatnhde actutthtirneeg dtoiffolerdeunrtincugtatitnugrnspinegedosp.eTrahteiofnololofwthirnege cfroenec-lcuustitoinngs csatenelbse, uwnidthedr rdarwyna:nd wet conditions, and at three 1d.ifferTehnet ctuototilnwg esapreeedvso.lTuhtieonfolwloawsinatgtecnounacltuedsioinsdcrayn bmeawchitihndinrgawwni:th respect to wet machining 1. riTTTigtrnnahahhehdkdkeneeeeeeeefmpmrptfrfioaaeaecaacontcntiieeeilndndodooewnerrfanfeneaettatatphhanssoorereodooffnncctteuteuhuhvoolctetteofftttiiiimlsttsonnuthhtneggateeeieteolttelwwaloonlayaoyoeele,llllaawlrorodrdreyabyuurrds,,eeerruataddiiwannncnuuteggddetccdeettttiiniinhhntnoohueenntppeahddatawwewerrrryydtsaateiiusscammcriuuraanfaalttlaoatactccrnrdrhhreii,,rbibitnffnoyhuuooifietnrtrnmetegcgohhddu,ao,iiggacttatlotohhshsainieenadadnrgrdeehihcnncneiimuuggogdotththtagtteewiecieedndnhrr.iggitiaiannhndsdseppththdrhheeeeeeeesesssduidpiEEoorsseDDnnfc(a(St2S2ooc44efafat00,onMnMwaaaawnlnnlnhyySdSdeisscitfif1hs1oso.8m8.uud0T0Tnnaehhmmdccdiirhss//eaamimMaMtntstiitinnehnnnhdS)egS)e.. Metals 2019, 9, 556 9 of 10 2. In three free-cutting steels, the SAE 12L14 carbon steel, presented the best performance in terms of tool life for the lower cutting speeds, but no noticeable differences were found for cutting speed of 240 m/min. Additionally, the wear at the rake face of the cutting tool was lower at lower cutting speed and increased with the increase of the cutting speed at all machining condition of steel alloys. 3. The Taylor curves showed that SAE 12L14 was more sensitive to the cutting speed and type of machining condition. This difference can be noted to the lead, which enhanced the material’s machinability and, consequently, affected the slope of these curves that were associated to the material of the cutting tool and the workpiece to be machined. 4. Auto-lubrication characteristics of these steel grades have shown a better machining capabilities compare to the lubricated conditions. Consequently, lubrication did not bring any benefit for the studied machining conditions and materials; instead, it is showed economic and environmental disadvantages. Therefore, the lubrication should be considered for more challenging machining solicitations (high-speed machining) or hard-to-cut materials. Author Contributions: Conceptualization, D.M.K. and D.P.; data curation, S.H., and A.J.S.E.; funding acquisition, A.J.S.E. and L.N.L.d.L.; methodology, D.M.K. and D.P.; validation, S.H. and D.P.; resources, J.C.; writing original draft, S.H., D.M.K., and D.P.; writing, review, and editing, A.J.S.E., J.C., and L.N.L.d.L. Funding: This research was funded by Serra Húnter program (Generalitat de Catalunya), grant number UPC-LE-304. Acknowledgments: This work is supported by the Serra Húnter program (Generalitat de Catalunya) reference number UPC-LE-304 and the Aeronautics Advanced Manufacturing Center (CFAA) of Bilbao. Thanks to Soledad Pereda from INTI-Mecánica for the valuable support with the electronic microscopy, Andrea Romano for helping with the microscopy analysis and X-ray spectroscopy analysis and Diego Russo for helping in machining activities. Conflicts of Interest: The authors declare no conflict of interest. References 1. Ferraresi, D. Fundamentos do usinagem dos metais. Nona reimpressao; Editora Edgard Blücher Ltd.a: Sao Paulo, Brazil, 1995. 2. Astakhov, V.P. The assessment of cutting tool wear. Int. J. Mach. Tools Manuf. 2004, 44, 637–647. [CrossRef] 3. Diniz, A.; Marcondes, F.; Coppini, N. Tecnologia da usinagem dos materiais, 5ta edicao; Artliber Editora: Sao Paulo, Brazil, 2006; ISBN 8587296019. 4. Castellanos Díaz, R.; Martinez Krahmer, D.; Avila Rondón, R. Application of ISO 3685 in the evaluation of the machinability of steel SAE 1020 during the turning process. In Proceedings of the SAM CONAMET Congress, Buenos Aires, Argentina, 19–23 October 2009. [CrossRef] 5. Sánchez Egea, A.J.; González Rojas, H.A.; Montilla Montaña, C.A.; Kallewaard Echeverri, V. Effect of electroplastic cutting on the manufacturing process and surface properties. J. Mater. Process. Technol. 2015, 222, 327–334. [CrossRef] 6. Kaynak, Y.; Gharibi, A. Progressive Tool Wear in Cryogenic Machining: The Effect of Liquid Nitrogen and Carbon Dioxide. J. Manuf. Mater. Process. 2018, 2, 31. [CrossRef] 7. Rubio, E.; Agustina, B.; Marin, M.; Bericua, A. Cooling systems based on cold compressed air: A review of the applications in machining processes. Procedia Eng. 2015, 132, 413–418. [CrossRef] 8. Do, T.-V.; Hsu, Q.-C. Optimization of Minimum Quantity Lubricant Conditions and Cutting Parameters in Hard Milling of AISI H13 Steel. Appl. Sci. 2016, 6, 83. [CrossRef] 9. Shaw, M. Metal Cutting Principles, 2nd ed.; Oxford University Press: New York, NY, USA, 2005; ISBN 0195142063. 10. Çak¯ır, O.; Yardimeden, A.; Ozben, T.; Kilickap, E. Selection of cutting fluids in machining processes. J. Achiev. Mater. Manuf. Eng. 2007, 25, 99–102. 11. Tanabe, I.; Hoshino, H. Development of a New Forced Cooling Technology Using a High-Pressure Coolant for Machining Difficult-To-Machine Materials. J. Manuf. Mater. Process. 2018, 2, 39. [CrossRef] Metals 2019, 9, 556 10 of 10 12. Astakhov, V.P.; Outeiro, J. Importance of Temperature in Metal Cutting and its Proper Measurement/Modeling. In Measurement in Machining and Tribology. Materials Forming, Machining and Tribology; Davim, J., Ed.; Springer: Cham, Switzerland, 2019. 13. Sánchez Egea, A.J.; Martynenko, V.; Martínez Krahmer, D.; López de Lacalle, L.N.; Benítez, A.; Genovese, G. On the Cutting Performance of Segmented Diamond Blades when Dry-Cutting Concrete. Materials 2018, 11, 264. [CrossRef] [PubMed] 14. Fernández Valdivieso, A.; López de Lacalle, L.N.; Urbikain, G.; Rodríguez, A. Detecting the key geometrical features and grades of carbide inserts for the turning of nickel-based alloys concerning surface integrity. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2016, 230, 3725–3742. [CrossRef] 15. Isik, Y. An Experimental Investigation on Effect of Cutting Fluids in Turning with Coated Carbides Tool. J. Mech. Eng. 2010, 56, 195–201. 16. Priarone, P.; Robiglio, M.; Settineri, L.; Tebaldo, V. Effectiveness of minimizing cutting fluid use when turning difficult-to-cut alloys. Procedia CIRP 2015, 29, 341–346. [CrossRef] 17. Gill, S.; Singh, R. Wear behaviour of cryogenically treated tungsten carbide inserts under dry and wet turning conditions. Int. J. Mach. Tools Manuf. 2009, 49, 256–260. [CrossRef] 18. Jomaa, W.; Zaghbani, I.; Songmene, V.; Philippe, L.; Boire, L.; Lehuy, H. Dry and Wet Machinability of Hardened Mould Steels. In Proceedings of the International Conference on Environmental Pollution and Remediation, Ottawa, ON, Canada, 17–19 August 2011; p. 210. 19. Ibrahim, M.; Rahim, E.; Ghazali, M.; Chai, M.; Goh, Z. Experimental Analysis on Ultrasonic Assisted Turning (UAT) Based on Innovated Tool Holder in the Scope of Dry & Wet Machining. Appl. Mech. Mater. 2014, 660, 104–108. [CrossRef] 20. Adegbuyi, P.; Lawal, G.; Oluseye, O.; Odunaiya, G. Analysing the effect of cutting fluids on the mechanical properties of mild steel in a turning operation. Am. J. Sci. Ind. Res. 2011, 2, 1–10. [CrossRef] 21. Onuoha, O.; Abu, J.; Lawal, S.; Mudiare, E.; Adeyemi, M. Determining the effect of cutting fluids on surface roughness in turning AISI 1330 alloy steel using Taguchi method. Mod. Mech. Eng. 2016, 6, 51–59. [CrossRef] 22. Kuram, E.; Ozcelik, B.; Demirbas, E.; S¸ık, E. Effects of the cutting fluid types and cutting parameters on surface roughness and thrust force. In Proceedings of the World Congress on Engineering Vol II, London, UK, 30 June–2 July 2010. 23. Luiz, N.; Machado, A. Development trends and review of free-machining steels. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2008, 222, 347–360. [CrossRef] 24. Almeida, M.; Ferreira, J.; Luis, N.; Machado, A.; Oliveira, D.; Pimentel, M. Study of the effect of residual elements (Cr, Ni, and Cu) on the machinability of free-machining steel AISI 12L14 using design of experiment. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2010, 224, 1481–1489. [CrossRef] 25. Lane, B.; Shi, M.; Dow, T.; Scattergood, R. Diamond tool wear when machining Al6061 and 1215 steel. Wear 2010, 268, 1434–1441. [CrossRef] 26. Leeba Varghese, L.; Aravind, S.; Shunmugesh, K. Multi-Objective Optimization of Machining Parameters during Dry Turning of 11SMn30 Free Cutting Steel Using Grey Relational Analysis. Mater. Today Proc. 2017, 4, 4196–4203. [CrossRef] 27. Xu, J.; An, Q.; Chen, M. Experimental Study on High-speed Turning of Free-cutting Steel AISI 12L14 Using Multi-Layer Coated Carbide Tools. Adv. Mater. Res. 2012, 500, 3–7. [CrossRef] 28. Xu, J.; Liu, Z.; Guo, G.; Chen, M. An investigation on wear mechanism of high-speed turning of free-cutting steel AISI 1215 using uncoated and multi-layer coated tools. Int. J. Adv. Manuf. Technol. 2013, 67, 517–533. [CrossRef] 29. ASTM E112, Standard Test Methods for Determining Average Grain Size; ASTM International: West Conshohocken, PA, USA, 2013. 30. ISO 3685:1993(E), International Standard, Tool Testing with Single Point Turning Tools; International Organization for Standardization: Geneve, Switzerland, 1993. 31. Komvopoulos, K.; Do, V.; Yamaguchi, E.S.; Ryason, P.R. Effect of Sulfur- and Phosphorus-Containing Additives and Metal Deactivator on the Tribological Properties of Boundary-Lubricated Steel Surfaces. Tribol. Trans. 2003, 46, 315–325. [CrossRef] © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Ver+/- |